Properties

Label 7935.2.a.bt.1.14
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,1,-25,31,-25,-1,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.14
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.185184 q^{2} -1.00000 q^{3} -1.96571 q^{4} -1.00000 q^{5} -0.185184 q^{6} +4.18574 q^{7} -0.734387 q^{8} +1.00000 q^{9} -0.185184 q^{10} +2.22165 q^{11} +1.96571 q^{12} +2.71080 q^{13} +0.775133 q^{14} +1.00000 q^{15} +3.79542 q^{16} -4.35172 q^{17} +0.185184 q^{18} +6.68852 q^{19} +1.96571 q^{20} -4.18574 q^{21} +0.411415 q^{22} +0.734387 q^{24} +1.00000 q^{25} +0.501998 q^{26} -1.00000 q^{27} -8.22793 q^{28} +5.07981 q^{29} +0.185184 q^{30} +2.45676 q^{31} +2.17163 q^{32} -2.22165 q^{33} -0.805871 q^{34} -4.18574 q^{35} -1.96571 q^{36} +5.28265 q^{37} +1.23861 q^{38} -2.71080 q^{39} +0.734387 q^{40} -5.40047 q^{41} -0.775133 q^{42} +10.6778 q^{43} -4.36711 q^{44} -1.00000 q^{45} -2.26733 q^{47} -3.79542 q^{48} +10.5204 q^{49} +0.185184 q^{50} +4.35172 q^{51} -5.32864 q^{52} +13.4418 q^{53} -0.185184 q^{54} -2.22165 q^{55} -3.07395 q^{56} -6.68852 q^{57} +0.940702 q^{58} +6.09520 q^{59} -1.96571 q^{60} +4.75583 q^{61} +0.454955 q^{62} +4.18574 q^{63} -7.18868 q^{64} -2.71080 q^{65} -0.411415 q^{66} +10.5564 q^{67} +8.55421 q^{68} -0.775133 q^{70} -10.3824 q^{71} -0.734387 q^{72} -5.07163 q^{73} +0.978264 q^{74} -1.00000 q^{75} -13.1477 q^{76} +9.29924 q^{77} -0.501998 q^{78} -9.20725 q^{79} -3.79542 q^{80} +1.00000 q^{81} -1.00008 q^{82} -8.87707 q^{83} +8.22793 q^{84} +4.35172 q^{85} +1.97736 q^{86} -5.07981 q^{87} -1.63155 q^{88} +0.783796 q^{89} -0.185184 q^{90} +11.3467 q^{91} -2.45676 q^{93} -0.419874 q^{94} -6.68852 q^{95} -2.17163 q^{96} -1.06264 q^{97} +1.94821 q^{98} +2.22165 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + q^{2} - 25 q^{3} + 31 q^{4} - 25 q^{5} - q^{6} + 15 q^{7} + 3 q^{8} + 25 q^{9} - q^{10} - 15 q^{11} - 31 q^{12} + 24 q^{13} - 5 q^{14} + 25 q^{15} + 39 q^{16} + 6 q^{17} + q^{18} - 13 q^{19}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.185184 0.130945 0.0654726 0.997854i \(-0.479145\pi\)
0.0654726 + 0.997854i \(0.479145\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.96571 −0.982853
\(5\) −1.00000 −0.447214
\(6\) −0.185184 −0.0756012
\(7\) 4.18574 1.58206 0.791030 0.611778i \(-0.209545\pi\)
0.791030 + 0.611778i \(0.209545\pi\)
\(8\) −0.734387 −0.259645
\(9\) 1.00000 0.333333
\(10\) −0.185184 −0.0585605
\(11\) 2.22165 0.669853 0.334926 0.942244i \(-0.391289\pi\)
0.334926 + 0.942244i \(0.391289\pi\)
\(12\) 1.96571 0.567451
\(13\) 2.71080 0.751841 0.375920 0.926652i \(-0.377327\pi\)
0.375920 + 0.926652i \(0.377327\pi\)
\(14\) 0.775133 0.207163
\(15\) 1.00000 0.258199
\(16\) 3.79542 0.948854
\(17\) −4.35172 −1.05545 −0.527724 0.849416i \(-0.676954\pi\)
−0.527724 + 0.849416i \(0.676954\pi\)
\(18\) 0.185184 0.0436484
\(19\) 6.68852 1.53445 0.767226 0.641376i \(-0.221636\pi\)
0.767226 + 0.641376i \(0.221636\pi\)
\(20\) 1.96571 0.439545
\(21\) −4.18574 −0.913403
\(22\) 0.411415 0.0877140
\(23\) 0 0
\(24\) 0.734387 0.149906
\(25\) 1.00000 0.200000
\(26\) 0.501998 0.0984499
\(27\) −1.00000 −0.192450
\(28\) −8.22793 −1.55493
\(29\) 5.07981 0.943297 0.471648 0.881787i \(-0.343659\pi\)
0.471648 + 0.881787i \(0.343659\pi\)
\(30\) 0.185184 0.0338099
\(31\) 2.45676 0.441248 0.220624 0.975359i \(-0.429191\pi\)
0.220624 + 0.975359i \(0.429191\pi\)
\(32\) 2.17163 0.383893
\(33\) −2.22165 −0.386740
\(34\) −0.805871 −0.138206
\(35\) −4.18574 −0.707519
\(36\) −1.96571 −0.327618
\(37\) 5.28265 0.868462 0.434231 0.900802i \(-0.357020\pi\)
0.434231 + 0.900802i \(0.357020\pi\)
\(38\) 1.23861 0.200929
\(39\) −2.71080 −0.434075
\(40\) 0.734387 0.116117
\(41\) −5.40047 −0.843412 −0.421706 0.906733i \(-0.638569\pi\)
−0.421706 + 0.906733i \(0.638569\pi\)
\(42\) −0.775133 −0.119606
\(43\) 10.6778 1.62835 0.814174 0.580620i \(-0.197190\pi\)
0.814174 + 0.580620i \(0.197190\pi\)
\(44\) −4.36711 −0.658367
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −2.26733 −0.330724 −0.165362 0.986233i \(-0.552879\pi\)
−0.165362 + 0.986233i \(0.552879\pi\)
\(48\) −3.79542 −0.547821
\(49\) 10.5204 1.50291
\(50\) 0.185184 0.0261890
\(51\) 4.35172 0.609363
\(52\) −5.32864 −0.738949
\(53\) 13.4418 1.84637 0.923185 0.384357i \(-0.125577\pi\)
0.923185 + 0.384357i \(0.125577\pi\)
\(54\) −0.185184 −0.0252004
\(55\) −2.22165 −0.299567
\(56\) −3.07395 −0.410774
\(57\) −6.68852 −0.885917
\(58\) 0.940702 0.123520
\(59\) 6.09520 0.793527 0.396764 0.917921i \(-0.370133\pi\)
0.396764 + 0.917921i \(0.370133\pi\)
\(60\) −1.96571 −0.253772
\(61\) 4.75583 0.608921 0.304461 0.952525i \(-0.401524\pi\)
0.304461 + 0.952525i \(0.401524\pi\)
\(62\) 0.454955 0.0577793
\(63\) 4.18574 0.527353
\(64\) −7.18868 −0.898585
\(65\) −2.71080 −0.336233
\(66\) −0.411415 −0.0506417
\(67\) 10.5564 1.28967 0.644835 0.764322i \(-0.276926\pi\)
0.644835 + 0.764322i \(0.276926\pi\)
\(68\) 8.55421 1.03735
\(69\) 0 0
\(70\) −0.775133 −0.0926461
\(71\) −10.3824 −1.23216 −0.616081 0.787683i \(-0.711281\pi\)
−0.616081 + 0.787683i \(0.711281\pi\)
\(72\) −0.734387 −0.0865484
\(73\) −5.07163 −0.593590 −0.296795 0.954941i \(-0.595918\pi\)
−0.296795 + 0.954941i \(0.595918\pi\)
\(74\) 0.978264 0.113721
\(75\) −1.00000 −0.115470
\(76\) −13.1477 −1.50814
\(77\) 9.29924 1.05975
\(78\) −0.501998 −0.0568401
\(79\) −9.20725 −1.03590 −0.517948 0.855412i \(-0.673304\pi\)
−0.517948 + 0.855412i \(0.673304\pi\)
\(80\) −3.79542 −0.424340
\(81\) 1.00000 0.111111
\(82\) −1.00008 −0.110441
\(83\) −8.87707 −0.974385 −0.487192 0.873295i \(-0.661979\pi\)
−0.487192 + 0.873295i \(0.661979\pi\)
\(84\) 8.22793 0.897741
\(85\) 4.35172 0.472010
\(86\) 1.97736 0.213224
\(87\) −5.07981 −0.544613
\(88\) −1.63155 −0.173924
\(89\) 0.783796 0.0830822 0.0415411 0.999137i \(-0.486773\pi\)
0.0415411 + 0.999137i \(0.486773\pi\)
\(90\) −0.185184 −0.0195202
\(91\) 11.3467 1.18946
\(92\) 0 0
\(93\) −2.45676 −0.254755
\(94\) −0.419874 −0.0433067
\(95\) −6.68852 −0.686228
\(96\) −2.17163 −0.221641
\(97\) −1.06264 −0.107895 −0.0539474 0.998544i \(-0.517180\pi\)
−0.0539474 + 0.998544i \(0.517180\pi\)
\(98\) 1.94821 0.196799
\(99\) 2.22165 0.223284
\(100\) −1.96571 −0.196571
\(101\) −11.7380 −1.16798 −0.583988 0.811762i \(-0.698508\pi\)
−0.583988 + 0.811762i \(0.698508\pi\)
\(102\) 0.805871 0.0797931
\(103\) 12.3240 1.21432 0.607162 0.794578i \(-0.292308\pi\)
0.607162 + 0.794578i \(0.292308\pi\)
\(104\) −1.99078 −0.195212
\(105\) 4.18574 0.408486
\(106\) 2.48921 0.241773
\(107\) −5.96673 −0.576826 −0.288413 0.957506i \(-0.593128\pi\)
−0.288413 + 0.957506i \(0.593128\pi\)
\(108\) 1.96571 0.189150
\(109\) −2.83780 −0.271812 −0.135906 0.990722i \(-0.543395\pi\)
−0.135906 + 0.990722i \(0.543395\pi\)
\(110\) −0.411415 −0.0392269
\(111\) −5.28265 −0.501407
\(112\) 15.8866 1.50114
\(113\) −16.6051 −1.56208 −0.781038 0.624483i \(-0.785310\pi\)
−0.781038 + 0.624483i \(0.785310\pi\)
\(114\) −1.23861 −0.116007
\(115\) 0 0
\(116\) −9.98541 −0.927122
\(117\) 2.71080 0.250614
\(118\) 1.12874 0.103909
\(119\) −18.2152 −1.66978
\(120\) −0.734387 −0.0670401
\(121\) −6.06427 −0.551298
\(122\) 0.880705 0.0797353
\(123\) 5.40047 0.486944
\(124\) −4.82928 −0.433682
\(125\) −1.00000 −0.0894427
\(126\) 0.775133 0.0690544
\(127\) −3.48413 −0.309167 −0.154583 0.987980i \(-0.549404\pi\)
−0.154583 + 0.987980i \(0.549404\pi\)
\(128\) −5.67449 −0.501558
\(129\) −10.6778 −0.940128
\(130\) −0.501998 −0.0440281
\(131\) 7.61728 0.665525 0.332763 0.943011i \(-0.392019\pi\)
0.332763 + 0.943011i \(0.392019\pi\)
\(132\) 4.36711 0.380108
\(133\) 27.9964 2.42760
\(134\) 1.95488 0.168876
\(135\) 1.00000 0.0860663
\(136\) 3.19585 0.274042
\(137\) −19.1958 −1.64001 −0.820004 0.572358i \(-0.806029\pi\)
−0.820004 + 0.572358i \(0.806029\pi\)
\(138\) 0 0
\(139\) −5.85394 −0.496525 −0.248262 0.968693i \(-0.579860\pi\)
−0.248262 + 0.968693i \(0.579860\pi\)
\(140\) 8.22793 0.695387
\(141\) 2.26733 0.190944
\(142\) −1.92266 −0.161346
\(143\) 6.02245 0.503622
\(144\) 3.79542 0.316285
\(145\) −5.07981 −0.421855
\(146\) −0.939188 −0.0777277
\(147\) −10.5204 −0.867707
\(148\) −10.3841 −0.853571
\(149\) −10.8501 −0.888871 −0.444436 0.895811i \(-0.646596\pi\)
−0.444436 + 0.895811i \(0.646596\pi\)
\(150\) −0.185184 −0.0151202
\(151\) −2.84135 −0.231226 −0.115613 0.993294i \(-0.536883\pi\)
−0.115613 + 0.993294i \(0.536883\pi\)
\(152\) −4.91197 −0.398413
\(153\) −4.35172 −0.351816
\(154\) 1.72207 0.138769
\(155\) −2.45676 −0.197332
\(156\) 5.32864 0.426632
\(157\) −21.9832 −1.75445 −0.877226 0.480078i \(-0.840609\pi\)
−0.877226 + 0.480078i \(0.840609\pi\)
\(158\) −1.70504 −0.135646
\(159\) −13.4418 −1.06600
\(160\) −2.17163 −0.171682
\(161\) 0 0
\(162\) 0.185184 0.0145495
\(163\) −0.0938907 −0.00735409 −0.00367704 0.999993i \(-0.501170\pi\)
−0.00367704 + 0.999993i \(0.501170\pi\)
\(164\) 10.6157 0.828950
\(165\) 2.22165 0.172955
\(166\) −1.64389 −0.127591
\(167\) 3.53996 0.273930 0.136965 0.990576i \(-0.456265\pi\)
0.136965 + 0.990576i \(0.456265\pi\)
\(168\) 3.07395 0.237160
\(169\) −5.65156 −0.434736
\(170\) 0.805871 0.0618075
\(171\) 6.68852 0.511484
\(172\) −20.9894 −1.60043
\(173\) 5.83761 0.443825 0.221913 0.975067i \(-0.428770\pi\)
0.221913 + 0.975067i \(0.428770\pi\)
\(174\) −0.940702 −0.0713144
\(175\) 4.18574 0.316412
\(176\) 8.43208 0.635592
\(177\) −6.09520 −0.458143
\(178\) 0.145147 0.0108792
\(179\) 24.9111 1.86195 0.930973 0.365088i \(-0.118961\pi\)
0.930973 + 0.365088i \(0.118961\pi\)
\(180\) 1.96571 0.146515
\(181\) 26.2828 1.95358 0.976792 0.214189i \(-0.0687108\pi\)
0.976792 + 0.214189i \(0.0687108\pi\)
\(182\) 2.10123 0.155754
\(183\) −4.75583 −0.351561
\(184\) 0 0
\(185\) −5.28265 −0.388388
\(186\) −0.454955 −0.0333589
\(187\) −9.66800 −0.706994
\(188\) 4.45690 0.325053
\(189\) −4.18574 −0.304468
\(190\) −1.23861 −0.0898583
\(191\) 12.0022 0.868448 0.434224 0.900805i \(-0.357023\pi\)
0.434224 + 0.900805i \(0.357023\pi\)
\(192\) 7.18868 0.518798
\(193\) −0.355524 −0.0255912 −0.0127956 0.999918i \(-0.504073\pi\)
−0.0127956 + 0.999918i \(0.504073\pi\)
\(194\) −0.196785 −0.0141283
\(195\) 2.71080 0.194124
\(196\) −20.6800 −1.47714
\(197\) 14.0729 1.00265 0.501326 0.865259i \(-0.332846\pi\)
0.501326 + 0.865259i \(0.332846\pi\)
\(198\) 0.411415 0.0292380
\(199\) −22.0154 −1.56063 −0.780314 0.625388i \(-0.784941\pi\)
−0.780314 + 0.625388i \(0.784941\pi\)
\(200\) −0.734387 −0.0519290
\(201\) −10.5564 −0.744592
\(202\) −2.17370 −0.152941
\(203\) 21.2627 1.49235
\(204\) −8.55421 −0.598914
\(205\) 5.40047 0.377185
\(206\) 2.28222 0.159010
\(207\) 0 0
\(208\) 10.2886 0.713387
\(209\) 14.8596 1.02786
\(210\) 0.775133 0.0534893
\(211\) 5.59537 0.385201 0.192601 0.981277i \(-0.438308\pi\)
0.192601 + 0.981277i \(0.438308\pi\)
\(212\) −26.4226 −1.81471
\(213\) 10.3824 0.711389
\(214\) −1.10495 −0.0755326
\(215\) −10.6778 −0.728220
\(216\) 0.734387 0.0499687
\(217\) 10.2834 0.698080
\(218\) −0.525517 −0.0355925
\(219\) 5.07163 0.342709
\(220\) 4.36711 0.294431
\(221\) −11.7966 −0.793528
\(222\) −0.978264 −0.0656568
\(223\) 15.7581 1.05524 0.527619 0.849481i \(-0.323085\pi\)
0.527619 + 0.849481i \(0.323085\pi\)
\(224\) 9.08986 0.607342
\(225\) 1.00000 0.0666667
\(226\) −3.07501 −0.204546
\(227\) 2.05413 0.136337 0.0681686 0.997674i \(-0.478284\pi\)
0.0681686 + 0.997674i \(0.478284\pi\)
\(228\) 13.1477 0.870726
\(229\) 28.5833 1.88884 0.944418 0.328747i \(-0.106626\pi\)
0.944418 + 0.328747i \(0.106626\pi\)
\(230\) 0 0
\(231\) −9.29924 −0.611845
\(232\) −3.73055 −0.244922
\(233\) −1.70186 −0.111492 −0.0557462 0.998445i \(-0.517754\pi\)
−0.0557462 + 0.998445i \(0.517754\pi\)
\(234\) 0.501998 0.0328166
\(235\) 2.26733 0.147904
\(236\) −11.9814 −0.779921
\(237\) 9.20725 0.598075
\(238\) −3.37316 −0.218650
\(239\) 13.8543 0.896158 0.448079 0.893994i \(-0.352108\pi\)
0.448079 + 0.893994i \(0.352108\pi\)
\(240\) 3.79542 0.244993
\(241\) −6.50047 −0.418732 −0.209366 0.977837i \(-0.567140\pi\)
−0.209366 + 0.977837i \(0.567140\pi\)
\(242\) −1.12301 −0.0721898
\(243\) −1.00000 −0.0641500
\(244\) −9.34856 −0.598480
\(245\) −10.5204 −0.672123
\(246\) 1.00008 0.0637630
\(247\) 18.1313 1.15366
\(248\) −1.80422 −0.114568
\(249\) 8.87707 0.562561
\(250\) −0.185184 −0.0117121
\(251\) 11.2061 0.707323 0.353662 0.935373i \(-0.384936\pi\)
0.353662 + 0.935373i \(0.384936\pi\)
\(252\) −8.22793 −0.518311
\(253\) 0 0
\(254\) −0.645208 −0.0404839
\(255\) −4.35172 −0.272515
\(256\) 13.3265 0.832909
\(257\) 20.4377 1.27487 0.637433 0.770506i \(-0.279996\pi\)
0.637433 + 0.770506i \(0.279996\pi\)
\(258\) −1.97736 −0.123105
\(259\) 22.1118 1.37396
\(260\) 5.32864 0.330468
\(261\) 5.07981 0.314432
\(262\) 1.41060 0.0871473
\(263\) 28.1070 1.73315 0.866577 0.499043i \(-0.166315\pi\)
0.866577 + 0.499043i \(0.166315\pi\)
\(264\) 1.63155 0.100415
\(265\) −13.4418 −0.825722
\(266\) 5.18450 0.317882
\(267\) −0.783796 −0.0479675
\(268\) −20.7508 −1.26756
\(269\) −13.0359 −0.794812 −0.397406 0.917643i \(-0.630090\pi\)
−0.397406 + 0.917643i \(0.630090\pi\)
\(270\) 0.185184 0.0112700
\(271\) 30.6188 1.85996 0.929981 0.367607i \(-0.119823\pi\)
0.929981 + 0.367607i \(0.119823\pi\)
\(272\) −16.5166 −1.00147
\(273\) −11.3467 −0.686733
\(274\) −3.55476 −0.214751
\(275\) 2.22165 0.133971
\(276\) 0 0
\(277\) −29.7377 −1.78677 −0.893383 0.449296i \(-0.851675\pi\)
−0.893383 + 0.449296i \(0.851675\pi\)
\(278\) −1.08406 −0.0650175
\(279\) 2.45676 0.147083
\(280\) 3.07395 0.183704
\(281\) −19.1168 −1.14041 −0.570207 0.821501i \(-0.693137\pi\)
−0.570207 + 0.821501i \(0.693137\pi\)
\(282\) 0.419874 0.0250031
\(283\) 1.32401 0.0787045 0.0393522 0.999225i \(-0.487471\pi\)
0.0393522 + 0.999225i \(0.487471\pi\)
\(284\) 20.4087 1.21103
\(285\) 6.68852 0.396194
\(286\) 1.11526 0.0659469
\(287\) −22.6050 −1.33433
\(288\) 2.17163 0.127964
\(289\) 1.93747 0.113969
\(290\) −0.940702 −0.0552399
\(291\) 1.06264 0.0622931
\(292\) 9.96934 0.583412
\(293\) −3.27151 −0.191123 −0.0955617 0.995424i \(-0.530465\pi\)
−0.0955617 + 0.995424i \(0.530465\pi\)
\(294\) −1.94821 −0.113622
\(295\) −6.09520 −0.354876
\(296\) −3.87951 −0.225492
\(297\) −2.22165 −0.128913
\(298\) −2.00926 −0.116393
\(299\) 0 0
\(300\) 1.96571 0.113490
\(301\) 44.6944 2.57615
\(302\) −0.526174 −0.0302779
\(303\) 11.7380 0.674331
\(304\) 25.3857 1.45597
\(305\) −4.75583 −0.272318
\(306\) −0.805871 −0.0460686
\(307\) 4.27054 0.243733 0.121866 0.992547i \(-0.461112\pi\)
0.121866 + 0.992547i \(0.461112\pi\)
\(308\) −18.2796 −1.04158
\(309\) −12.3240 −0.701090
\(310\) −0.454955 −0.0258397
\(311\) 26.8800 1.52423 0.762113 0.647445i \(-0.224162\pi\)
0.762113 + 0.647445i \(0.224162\pi\)
\(312\) 1.99078 0.112706
\(313\) 16.4712 0.931010 0.465505 0.885045i \(-0.345873\pi\)
0.465505 + 0.885045i \(0.345873\pi\)
\(314\) −4.07095 −0.229737
\(315\) −4.18574 −0.235840
\(316\) 18.0987 1.01813
\(317\) 9.83672 0.552485 0.276242 0.961088i \(-0.410911\pi\)
0.276242 + 0.961088i \(0.410911\pi\)
\(318\) −2.48921 −0.139588
\(319\) 11.2856 0.631870
\(320\) 7.18868 0.401859
\(321\) 5.96673 0.333031
\(322\) 0 0
\(323\) −29.1066 −1.61953
\(324\) −1.96571 −0.109206
\(325\) 2.71080 0.150368
\(326\) −0.0173871 −0.000962982 0
\(327\) 2.83780 0.156931
\(328\) 3.96604 0.218988
\(329\) −9.49044 −0.523225
\(330\) 0.411415 0.0226476
\(331\) −4.36076 −0.239689 −0.119844 0.992793i \(-0.538240\pi\)
−0.119844 + 0.992793i \(0.538240\pi\)
\(332\) 17.4497 0.957677
\(333\) 5.28265 0.289487
\(334\) 0.655545 0.0358698
\(335\) −10.5564 −0.576758
\(336\) −15.8866 −0.866686
\(337\) −11.5975 −0.631758 −0.315879 0.948800i \(-0.602299\pi\)
−0.315879 + 0.948800i \(0.602299\pi\)
\(338\) −1.04658 −0.0569265
\(339\) 16.6051 0.901865
\(340\) −8.55421 −0.463917
\(341\) 5.45807 0.295571
\(342\) 1.23861 0.0669764
\(343\) 14.7354 0.795638
\(344\) −7.84164 −0.422793
\(345\) 0 0
\(346\) 1.08104 0.0581168
\(347\) −19.9381 −1.07033 −0.535166 0.844747i \(-0.679751\pi\)
−0.535166 + 0.844747i \(0.679751\pi\)
\(348\) 9.98541 0.535274
\(349\) −15.8880 −0.850466 −0.425233 0.905084i \(-0.639808\pi\)
−0.425233 + 0.905084i \(0.639808\pi\)
\(350\) 0.775133 0.0414326
\(351\) −2.71080 −0.144692
\(352\) 4.82459 0.257152
\(353\) 19.6009 1.04325 0.521625 0.853175i \(-0.325326\pi\)
0.521625 + 0.853175i \(0.325326\pi\)
\(354\) −1.12874 −0.0599917
\(355\) 10.3824 0.551040
\(356\) −1.54071 −0.0816576
\(357\) 18.2152 0.964048
\(358\) 4.61316 0.243813
\(359\) −19.5732 −1.03303 −0.516516 0.856278i \(-0.672771\pi\)
−0.516516 + 0.856278i \(0.672771\pi\)
\(360\) 0.734387 0.0387056
\(361\) 25.7364 1.35455
\(362\) 4.86716 0.255812
\(363\) 6.06427 0.318292
\(364\) −22.3043 −1.16906
\(365\) 5.07163 0.265461
\(366\) −0.880705 −0.0460352
\(367\) −1.78879 −0.0933743 −0.0466872 0.998910i \(-0.514866\pi\)
−0.0466872 + 0.998910i \(0.514866\pi\)
\(368\) 0 0
\(369\) −5.40047 −0.281137
\(370\) −0.978264 −0.0508575
\(371\) 56.2637 2.92107
\(372\) 4.82928 0.250386
\(373\) −0.688470 −0.0356476 −0.0178238 0.999841i \(-0.505674\pi\)
−0.0178238 + 0.999841i \(0.505674\pi\)
\(374\) −1.79036 −0.0925774
\(375\) 1.00000 0.0516398
\(376\) 1.66510 0.0858708
\(377\) 13.7703 0.709209
\(378\) −0.775133 −0.0398686
\(379\) −13.6084 −0.699016 −0.349508 0.936933i \(-0.613651\pi\)
−0.349508 + 0.936933i \(0.613651\pi\)
\(380\) 13.1477 0.674462
\(381\) 3.48413 0.178498
\(382\) 2.22262 0.113719
\(383\) 16.9222 0.864684 0.432342 0.901710i \(-0.357687\pi\)
0.432342 + 0.901710i \(0.357687\pi\)
\(384\) 5.67449 0.289575
\(385\) −9.29924 −0.473933
\(386\) −0.0658376 −0.00335105
\(387\) 10.6778 0.542783
\(388\) 2.08884 0.106045
\(389\) −28.8328 −1.46188 −0.730940 0.682442i \(-0.760918\pi\)
−0.730940 + 0.682442i \(0.760918\pi\)
\(390\) 0.501998 0.0254197
\(391\) 0 0
\(392\) −7.72604 −0.390224
\(393\) −7.61728 −0.384241
\(394\) 2.60608 0.131292
\(395\) 9.20725 0.463267
\(396\) −4.36711 −0.219456
\(397\) −12.4043 −0.622555 −0.311278 0.950319i \(-0.600757\pi\)
−0.311278 + 0.950319i \(0.600757\pi\)
\(398\) −4.07690 −0.204357
\(399\) −27.9964 −1.40157
\(400\) 3.79542 0.189771
\(401\) −30.2611 −1.51117 −0.755583 0.655052i \(-0.772647\pi\)
−0.755583 + 0.655052i \(0.772647\pi\)
\(402\) −1.95488 −0.0975007
\(403\) 6.65980 0.331748
\(404\) 23.0735 1.14795
\(405\) −1.00000 −0.0496904
\(406\) 3.93753 0.195416
\(407\) 11.7362 0.581741
\(408\) −3.19585 −0.158218
\(409\) 24.1120 1.19226 0.596130 0.802888i \(-0.296704\pi\)
0.596130 + 0.802888i \(0.296704\pi\)
\(410\) 1.00008 0.0493906
\(411\) 19.1958 0.946859
\(412\) −24.2254 −1.19350
\(413\) 25.5129 1.25541
\(414\) 0 0
\(415\) 8.87707 0.435758
\(416\) 5.88685 0.288626
\(417\) 5.85394 0.286669
\(418\) 2.75176 0.134593
\(419\) 29.7862 1.45515 0.727575 0.686028i \(-0.240647\pi\)
0.727575 + 0.686028i \(0.240647\pi\)
\(420\) −8.22793 −0.401482
\(421\) −16.8130 −0.819415 −0.409708 0.912217i \(-0.634369\pi\)
−0.409708 + 0.912217i \(0.634369\pi\)
\(422\) 1.03618 0.0504403
\(423\) −2.26733 −0.110241
\(424\) −9.87147 −0.479401
\(425\) −4.35172 −0.211089
\(426\) 1.92266 0.0931530
\(427\) 19.9066 0.963350
\(428\) 11.7288 0.566935
\(429\) −6.02245 −0.290766
\(430\) −1.97736 −0.0953569
\(431\) 29.7647 1.43371 0.716857 0.697220i \(-0.245580\pi\)
0.716857 + 0.697220i \(0.245580\pi\)
\(432\) −3.79542 −0.182607
\(433\) 13.8351 0.664875 0.332437 0.943125i \(-0.392129\pi\)
0.332437 + 0.943125i \(0.392129\pi\)
\(434\) 1.90432 0.0914103
\(435\) 5.07981 0.243558
\(436\) 5.57829 0.267152
\(437\) 0 0
\(438\) 0.939188 0.0448761
\(439\) −8.51802 −0.406543 −0.203271 0.979122i \(-0.565157\pi\)
−0.203271 + 0.979122i \(0.565157\pi\)
\(440\) 1.63155 0.0777811
\(441\) 10.5204 0.500971
\(442\) −2.18455 −0.103909
\(443\) 24.4951 1.16380 0.581898 0.813262i \(-0.302310\pi\)
0.581898 + 0.813262i \(0.302310\pi\)
\(444\) 10.3841 0.492809
\(445\) −0.783796 −0.0371555
\(446\) 2.91815 0.138178
\(447\) 10.8501 0.513190
\(448\) −30.0899 −1.42162
\(449\) 2.39958 0.113243 0.0566215 0.998396i \(-0.481967\pi\)
0.0566215 + 0.998396i \(0.481967\pi\)
\(450\) 0.185184 0.00872968
\(451\) −11.9980 −0.564962
\(452\) 32.6408 1.53529
\(453\) 2.84135 0.133498
\(454\) 0.380392 0.0178527
\(455\) −11.3467 −0.531941
\(456\) 4.91197 0.230024
\(457\) −29.3642 −1.37360 −0.686799 0.726848i \(-0.740985\pi\)
−0.686799 + 0.726848i \(0.740985\pi\)
\(458\) 5.29318 0.247334
\(459\) 4.35172 0.203121
\(460\) 0 0
\(461\) 22.8083 1.06229 0.531144 0.847281i \(-0.321762\pi\)
0.531144 + 0.847281i \(0.321762\pi\)
\(462\) −1.72207 −0.0801182
\(463\) −27.5408 −1.27993 −0.639965 0.768404i \(-0.721051\pi\)
−0.639965 + 0.768404i \(0.721051\pi\)
\(464\) 19.2800 0.895051
\(465\) 2.45676 0.113930
\(466\) −0.315157 −0.0145994
\(467\) 12.7824 0.591501 0.295750 0.955265i \(-0.404430\pi\)
0.295750 + 0.955265i \(0.404430\pi\)
\(468\) −5.32864 −0.246316
\(469\) 44.1863 2.04034
\(470\) 0.419874 0.0193673
\(471\) 21.9832 1.01293
\(472\) −4.47624 −0.206035
\(473\) 23.7223 1.09075
\(474\) 1.70504 0.0783150
\(475\) 6.68852 0.306891
\(476\) 35.8056 1.64115
\(477\) 13.4418 0.615456
\(478\) 2.56559 0.117348
\(479\) −36.5879 −1.67174 −0.835872 0.548925i \(-0.815037\pi\)
−0.835872 + 0.548925i \(0.815037\pi\)
\(480\) 2.17163 0.0991207
\(481\) 14.3202 0.652945
\(482\) −1.20379 −0.0548309
\(483\) 0 0
\(484\) 11.9206 0.541845
\(485\) 1.06264 0.0482520
\(486\) −0.185184 −0.00840014
\(487\) −26.4385 −1.19804 −0.599022 0.800732i \(-0.704444\pi\)
−0.599022 + 0.800732i \(0.704444\pi\)
\(488\) −3.49262 −0.158103
\(489\) 0.0938907 0.00424588
\(490\) −1.94821 −0.0880113
\(491\) −36.9117 −1.66580 −0.832901 0.553421i \(-0.813322\pi\)
−0.832901 + 0.553421i \(0.813322\pi\)
\(492\) −10.6157 −0.478595
\(493\) −22.1059 −0.995600
\(494\) 3.35763 0.151067
\(495\) −2.22165 −0.0998557
\(496\) 9.32444 0.418680
\(497\) −43.4579 −1.94935
\(498\) 1.64389 0.0736647
\(499\) 16.5638 0.741496 0.370748 0.928733i \(-0.379101\pi\)
0.370748 + 0.928733i \(0.379101\pi\)
\(500\) 1.96571 0.0879091
\(501\) −3.53996 −0.158154
\(502\) 2.07520 0.0926206
\(503\) 6.12304 0.273013 0.136506 0.990639i \(-0.456413\pi\)
0.136506 + 0.990639i \(0.456413\pi\)
\(504\) −3.07395 −0.136925
\(505\) 11.7380 0.522335
\(506\) 0 0
\(507\) 5.65156 0.250995
\(508\) 6.84879 0.303866
\(509\) −0.988946 −0.0438342 −0.0219171 0.999760i \(-0.506977\pi\)
−0.0219171 + 0.999760i \(0.506977\pi\)
\(510\) −0.805871 −0.0356846
\(511\) −21.2285 −0.939095
\(512\) 13.8168 0.610624
\(513\) −6.68852 −0.295306
\(514\) 3.78474 0.166938
\(515\) −12.3240 −0.543062
\(516\) 20.9894 0.924008
\(517\) −5.03721 −0.221536
\(518\) 4.09476 0.179913
\(519\) −5.83761 −0.256243
\(520\) 1.99078 0.0873013
\(521\) −31.4002 −1.37567 −0.687833 0.725869i \(-0.741438\pi\)
−0.687833 + 0.725869i \(0.741438\pi\)
\(522\) 0.940702 0.0411734
\(523\) 3.24854 0.142049 0.0710243 0.997475i \(-0.477373\pi\)
0.0710243 + 0.997475i \(0.477373\pi\)
\(524\) −14.9733 −0.654114
\(525\) −4.18574 −0.182681
\(526\) 5.20499 0.226948
\(527\) −10.6912 −0.465714
\(528\) −8.43208 −0.366959
\(529\) 0 0
\(530\) −2.48921 −0.108124
\(531\) 6.09520 0.264509
\(532\) −55.0327 −2.38597
\(533\) −14.6396 −0.634111
\(534\) −0.145147 −0.00628112
\(535\) 5.96673 0.257964
\(536\) −7.75249 −0.334857
\(537\) −24.9111 −1.07500
\(538\) −2.41404 −0.104077
\(539\) 23.3726 1.00673
\(540\) −1.96571 −0.0845905
\(541\) 24.7780 1.06529 0.532644 0.846339i \(-0.321198\pi\)
0.532644 + 0.846339i \(0.321198\pi\)
\(542\) 5.67013 0.243553
\(543\) −26.2828 −1.12790
\(544\) −9.45031 −0.405179
\(545\) 2.83780 0.121558
\(546\) −2.10123 −0.0899244
\(547\) 9.26818 0.396279 0.198139 0.980174i \(-0.436510\pi\)
0.198139 + 0.980174i \(0.436510\pi\)
\(548\) 37.7333 1.61189
\(549\) 4.75583 0.202974
\(550\) 0.411415 0.0175428
\(551\) 33.9764 1.44744
\(552\) 0 0
\(553\) −38.5391 −1.63885
\(554\) −5.50696 −0.233968
\(555\) 5.28265 0.224236
\(556\) 11.5071 0.488011
\(557\) −3.27144 −0.138615 −0.0693077 0.997595i \(-0.522079\pi\)
−0.0693077 + 0.997595i \(0.522079\pi\)
\(558\) 0.454955 0.0192598
\(559\) 28.9454 1.22426
\(560\) −15.8866 −0.671332
\(561\) 9.66800 0.408183
\(562\) −3.54014 −0.149332
\(563\) 23.9155 1.00792 0.503959 0.863727i \(-0.331876\pi\)
0.503959 + 0.863727i \(0.331876\pi\)
\(564\) −4.45690 −0.187670
\(565\) 16.6051 0.698582
\(566\) 0.245187 0.0103060
\(567\) 4.18574 0.175784
\(568\) 7.62469 0.319925
\(569\) 14.4843 0.607213 0.303606 0.952798i \(-0.401809\pi\)
0.303606 + 0.952798i \(0.401809\pi\)
\(570\) 1.23861 0.0518797
\(571\) 21.4951 0.899542 0.449771 0.893144i \(-0.351506\pi\)
0.449771 + 0.893144i \(0.351506\pi\)
\(572\) −11.8384 −0.494987
\(573\) −12.0022 −0.501399
\(574\) −4.18609 −0.174724
\(575\) 0 0
\(576\) −7.18868 −0.299528
\(577\) −11.9216 −0.496301 −0.248151 0.968721i \(-0.579823\pi\)
−0.248151 + 0.968721i \(0.579823\pi\)
\(578\) 0.358789 0.0149236
\(579\) 0.355524 0.0147751
\(580\) 9.98541 0.414622
\(581\) −37.1571 −1.54153
\(582\) 0.196785 0.00815698
\(583\) 29.8629 1.23680
\(584\) 3.72454 0.154123
\(585\) −2.71080 −0.112078
\(586\) −0.605832 −0.0250267
\(587\) −39.2517 −1.62009 −0.810046 0.586366i \(-0.800558\pi\)
−0.810046 + 0.586366i \(0.800558\pi\)
\(588\) 20.6800 0.852829
\(589\) 16.4321 0.677074
\(590\) −1.12874 −0.0464693
\(591\) −14.0729 −0.578881
\(592\) 20.0498 0.824044
\(593\) 29.4050 1.20752 0.603760 0.797166i \(-0.293668\pi\)
0.603760 + 0.797166i \(0.293668\pi\)
\(594\) −0.411415 −0.0168806
\(595\) 18.2152 0.746748
\(596\) 21.3280 0.873630
\(597\) 22.0154 0.901029
\(598\) 0 0
\(599\) 13.7716 0.562692 0.281346 0.959606i \(-0.409219\pi\)
0.281346 + 0.959606i \(0.409219\pi\)
\(600\) 0.734387 0.0299812
\(601\) −11.5091 −0.469467 −0.234733 0.972060i \(-0.575422\pi\)
−0.234733 + 0.972060i \(0.575422\pi\)
\(602\) 8.27672 0.337334
\(603\) 10.5564 0.429890
\(604\) 5.58527 0.227261
\(605\) 6.06427 0.246548
\(606\) 2.17370 0.0883004
\(607\) −22.8264 −0.926497 −0.463248 0.886228i \(-0.653316\pi\)
−0.463248 + 0.886228i \(0.653316\pi\)
\(608\) 14.5250 0.589066
\(609\) −21.2627 −0.861610
\(610\) −0.880705 −0.0356587
\(611\) −6.14628 −0.248652
\(612\) 8.55421 0.345783
\(613\) 24.6374 0.995094 0.497547 0.867437i \(-0.334234\pi\)
0.497547 + 0.867437i \(0.334234\pi\)
\(614\) 0.790837 0.0319156
\(615\) −5.40047 −0.217768
\(616\) −6.82924 −0.275158
\(617\) 7.19923 0.289830 0.144915 0.989444i \(-0.453709\pi\)
0.144915 + 0.989444i \(0.453709\pi\)
\(618\) −2.28222 −0.0918043
\(619\) −10.5065 −0.422292 −0.211146 0.977454i \(-0.567720\pi\)
−0.211146 + 0.977454i \(0.567720\pi\)
\(620\) 4.82928 0.193948
\(621\) 0 0
\(622\) 4.97776 0.199590
\(623\) 3.28076 0.131441
\(624\) −10.2886 −0.411874
\(625\) 1.00000 0.0400000
\(626\) 3.05022 0.121911
\(627\) −14.8596 −0.593434
\(628\) 43.2126 1.72437
\(629\) −22.9886 −0.916616
\(630\) −0.775133 −0.0308820
\(631\) −8.05367 −0.320612 −0.160306 0.987067i \(-0.551248\pi\)
−0.160306 + 0.987067i \(0.551248\pi\)
\(632\) 6.76169 0.268965
\(633\) −5.59537 −0.222396
\(634\) 1.82161 0.0723452
\(635\) 3.48413 0.138264
\(636\) 26.4226 1.04772
\(637\) 28.5187 1.12995
\(638\) 2.08991 0.0827403
\(639\) −10.3824 −0.410721
\(640\) 5.67449 0.224304
\(641\) −20.5779 −0.812779 −0.406389 0.913700i \(-0.633212\pi\)
−0.406389 + 0.913700i \(0.633212\pi\)
\(642\) 1.10495 0.0436088
\(643\) −8.39805 −0.331187 −0.165593 0.986194i \(-0.552954\pi\)
−0.165593 + 0.986194i \(0.552954\pi\)
\(644\) 0 0
\(645\) 10.6778 0.420438
\(646\) −5.39009 −0.212070
\(647\) 41.0424 1.61354 0.806771 0.590865i \(-0.201213\pi\)
0.806771 + 0.590865i \(0.201213\pi\)
\(648\) −0.734387 −0.0288495
\(649\) 13.5414 0.531546
\(650\) 0.501998 0.0196900
\(651\) −10.2834 −0.403037
\(652\) 0.184562 0.00722799
\(653\) −4.29728 −0.168166 −0.0840829 0.996459i \(-0.526796\pi\)
−0.0840829 + 0.996459i \(0.526796\pi\)
\(654\) 0.525517 0.0205494
\(655\) −7.61728 −0.297632
\(656\) −20.4970 −0.800275
\(657\) −5.07163 −0.197863
\(658\) −1.75748 −0.0685138
\(659\) 4.55539 0.177453 0.0887263 0.996056i \(-0.471720\pi\)
0.0887263 + 0.996056i \(0.471720\pi\)
\(660\) −4.36711 −0.169990
\(661\) −42.7688 −1.66351 −0.831757 0.555140i \(-0.812665\pi\)
−0.831757 + 0.555140i \(0.812665\pi\)
\(662\) −0.807545 −0.0313861
\(663\) 11.7966 0.458144
\(664\) 6.51920 0.252994
\(665\) −27.9964 −1.08565
\(666\) 0.978264 0.0379070
\(667\) 0 0
\(668\) −6.95852 −0.269233
\(669\) −15.7581 −0.609242
\(670\) −1.95488 −0.0755237
\(671\) 10.5658 0.407888
\(672\) −9.08986 −0.350649
\(673\) 1.29195 0.0498009 0.0249004 0.999690i \(-0.492073\pi\)
0.0249004 + 0.999690i \(0.492073\pi\)
\(674\) −2.14768 −0.0827256
\(675\) −1.00000 −0.0384900
\(676\) 11.1093 0.427281
\(677\) −23.9672 −0.921134 −0.460567 0.887625i \(-0.652354\pi\)
−0.460567 + 0.887625i \(0.652354\pi\)
\(678\) 3.07501 0.118095
\(679\) −4.44793 −0.170696
\(680\) −3.19585 −0.122555
\(681\) −2.05413 −0.0787143
\(682\) 1.01075 0.0387036
\(683\) 38.1569 1.46003 0.730017 0.683429i \(-0.239512\pi\)
0.730017 + 0.683429i \(0.239512\pi\)
\(684\) −13.1477 −0.502714
\(685\) 19.1958 0.733434
\(686\) 2.72877 0.104185
\(687\) −28.5833 −1.09052
\(688\) 40.5267 1.54507
\(689\) 36.4380 1.38818
\(690\) 0 0
\(691\) −14.9028 −0.566930 −0.283465 0.958983i \(-0.591484\pi\)
−0.283465 + 0.958983i \(0.591484\pi\)
\(692\) −11.4750 −0.436215
\(693\) 9.29924 0.353249
\(694\) −3.69222 −0.140155
\(695\) 5.85394 0.222053
\(696\) 3.73055 0.141406
\(697\) 23.5013 0.890177
\(698\) −2.94221 −0.111364
\(699\) 1.70186 0.0643701
\(700\) −8.22793 −0.310987
\(701\) −2.26631 −0.0855972 −0.0427986 0.999084i \(-0.513627\pi\)
−0.0427986 + 0.999084i \(0.513627\pi\)
\(702\) −0.501998 −0.0189467
\(703\) 35.3331 1.33261
\(704\) −15.9707 −0.601920
\(705\) −2.26733 −0.0853925
\(706\) 3.62978 0.136609
\(707\) −49.1322 −1.84781
\(708\) 11.9814 0.450288
\(709\) −43.8610 −1.64723 −0.823616 0.567147i \(-0.808047\pi\)
−0.823616 + 0.567147i \(0.808047\pi\)
\(710\) 1.92266 0.0721560
\(711\) −9.20725 −0.345299
\(712\) −0.575610 −0.0215719
\(713\) 0 0
\(714\) 3.37316 0.126237
\(715\) −6.02245 −0.225227
\(716\) −48.9680 −1.83002
\(717\) −13.8543 −0.517397
\(718\) −3.62464 −0.135271
\(719\) 22.2025 0.828012 0.414006 0.910274i \(-0.364129\pi\)
0.414006 + 0.910274i \(0.364129\pi\)
\(720\) −3.79542 −0.141447
\(721\) 51.5852 1.92113
\(722\) 4.76597 0.177371
\(723\) 6.50047 0.241755
\(724\) −51.6643 −1.92009
\(725\) 5.07981 0.188659
\(726\) 1.12301 0.0416788
\(727\) 1.68112 0.0623494 0.0311747 0.999514i \(-0.490075\pi\)
0.0311747 + 0.999514i \(0.490075\pi\)
\(728\) −8.33287 −0.308837
\(729\) 1.00000 0.0370370
\(730\) 0.939188 0.0347609
\(731\) −46.4668 −1.71864
\(732\) 9.34856 0.345533
\(733\) −16.5826 −0.612491 −0.306245 0.951953i \(-0.599073\pi\)
−0.306245 + 0.951953i \(0.599073\pi\)
\(734\) −0.331257 −0.0122269
\(735\) 10.5204 0.388050
\(736\) 0 0
\(737\) 23.4526 0.863889
\(738\) −1.00008 −0.0368136
\(739\) 6.51904 0.239807 0.119903 0.992786i \(-0.461742\pi\)
0.119903 + 0.992786i \(0.461742\pi\)
\(740\) 10.3841 0.381728
\(741\) −18.1313 −0.666068
\(742\) 10.4192 0.382500
\(743\) 14.2148 0.521492 0.260746 0.965407i \(-0.416032\pi\)
0.260746 + 0.965407i \(0.416032\pi\)
\(744\) 1.80422 0.0661458
\(745\) 10.8501 0.397515
\(746\) −0.127494 −0.00466788
\(747\) −8.87707 −0.324795
\(748\) 19.0044 0.694871
\(749\) −24.9752 −0.912573
\(750\) 0.185184 0.00676198
\(751\) −7.14155 −0.260599 −0.130299 0.991475i \(-0.541594\pi\)
−0.130299 + 0.991475i \(0.541594\pi\)
\(752\) −8.60546 −0.313809
\(753\) −11.2061 −0.408373
\(754\) 2.55005 0.0928675
\(755\) 2.84135 0.103407
\(756\) 8.22793 0.299247
\(757\) 10.3054 0.374557 0.187278 0.982307i \(-0.440033\pi\)
0.187278 + 0.982307i \(0.440033\pi\)
\(758\) −2.52006 −0.0915328
\(759\) 0 0
\(760\) 4.91197 0.178176
\(761\) −8.93250 −0.323803 −0.161901 0.986807i \(-0.551763\pi\)
−0.161901 + 0.986807i \(0.551763\pi\)
\(762\) 0.645208 0.0233734
\(763\) −11.8783 −0.430023
\(764\) −23.5928 −0.853557
\(765\) 4.35172 0.157337
\(766\) 3.13373 0.113226
\(767\) 16.5229 0.596606
\(768\) −13.3265 −0.480880
\(769\) −27.9326 −1.00728 −0.503638 0.863915i \(-0.668005\pi\)
−0.503638 + 0.863915i \(0.668005\pi\)
\(770\) −1.72207 −0.0620593
\(771\) −20.4377 −0.736044
\(772\) 0.698857 0.0251524
\(773\) 47.5627 1.71071 0.855355 0.518042i \(-0.173339\pi\)
0.855355 + 0.518042i \(0.173339\pi\)
\(774\) 1.97736 0.0710748
\(775\) 2.45676 0.0882496
\(776\) 0.780390 0.0280144
\(777\) −22.1118 −0.793255
\(778\) −5.33938 −0.191426
\(779\) −36.1212 −1.29418
\(780\) −5.32864 −0.190796
\(781\) −23.0660 −0.825367
\(782\) 0 0
\(783\) −5.07981 −0.181538
\(784\) 39.9293 1.42604
\(785\) 21.9832 0.784615
\(786\) −1.41060 −0.0503145
\(787\) 24.8019 0.884094 0.442047 0.896992i \(-0.354253\pi\)
0.442047 + 0.896992i \(0.354253\pi\)
\(788\) −27.6632 −0.985459
\(789\) −28.1070 −1.00064
\(790\) 1.70504 0.0606626
\(791\) −69.5046 −2.47130
\(792\) −1.63155 −0.0579746
\(793\) 12.8921 0.457812
\(794\) −2.29709 −0.0815206
\(795\) 13.4418 0.476731
\(796\) 43.2758 1.53387
\(797\) 11.0885 0.392774 0.196387 0.980526i \(-0.437079\pi\)
0.196387 + 0.980526i \(0.437079\pi\)
\(798\) −5.18450 −0.183529
\(799\) 9.86678 0.349062
\(800\) 2.17163 0.0767786
\(801\) 0.783796 0.0276941
\(802\) −5.60388 −0.197880
\(803\) −11.2674 −0.397618
\(804\) 20.7508 0.731824
\(805\) 0 0
\(806\) 1.23329 0.0434408
\(807\) 13.0359 0.458885
\(808\) 8.62024 0.303259
\(809\) 9.85381 0.346441 0.173221 0.984883i \(-0.444583\pi\)
0.173221 + 0.984883i \(0.444583\pi\)
\(810\) −0.185184 −0.00650672
\(811\) 38.0433 1.33588 0.667940 0.744215i \(-0.267176\pi\)
0.667940 + 0.744215i \(0.267176\pi\)
\(812\) −41.7963 −1.46676
\(813\) −30.6188 −1.07385
\(814\) 2.17336 0.0761762
\(815\) 0.0938907 0.00328885
\(816\) 16.5166 0.578196
\(817\) 71.4187 2.49862
\(818\) 4.46516 0.156121
\(819\) 11.3467 0.396486
\(820\) −10.6157 −0.370718
\(821\) 4.86915 0.169934 0.0849672 0.996384i \(-0.472921\pi\)
0.0849672 + 0.996384i \(0.472921\pi\)
\(822\) 3.55476 0.123987
\(823\) 38.0462 1.32621 0.663103 0.748528i \(-0.269239\pi\)
0.663103 + 0.748528i \(0.269239\pi\)
\(824\) −9.05061 −0.315293
\(825\) −2.22165 −0.0773479
\(826\) 4.72459 0.164390
\(827\) −2.57032 −0.0893787 −0.0446893 0.999001i \(-0.514230\pi\)
−0.0446893 + 0.999001i \(0.514230\pi\)
\(828\) 0 0
\(829\) 42.3456 1.47072 0.735362 0.677674i \(-0.237012\pi\)
0.735362 + 0.677674i \(0.237012\pi\)
\(830\) 1.64389 0.0570604
\(831\) 29.7377 1.03159
\(832\) −19.4871 −0.675593
\(833\) −45.7818 −1.58624
\(834\) 1.08406 0.0375379
\(835\) −3.53996 −0.122505
\(836\) −29.2095 −1.01023
\(837\) −2.45676 −0.0849182
\(838\) 5.51594 0.190545
\(839\) −21.9907 −0.759204 −0.379602 0.925150i \(-0.623939\pi\)
−0.379602 + 0.925150i \(0.623939\pi\)
\(840\) −3.07395 −0.106061
\(841\) −3.19554 −0.110191
\(842\) −3.11350 −0.107298
\(843\) 19.1168 0.658419
\(844\) −10.9989 −0.378597
\(845\) 5.65156 0.194420
\(846\) −0.419874 −0.0144356
\(847\) −25.3835 −0.872186
\(848\) 51.0171 1.75194
\(849\) −1.32401 −0.0454401
\(850\) −0.805871 −0.0276411
\(851\) 0 0
\(852\) −20.4087 −0.699191
\(853\) −13.0377 −0.446402 −0.223201 0.974772i \(-0.571651\pi\)
−0.223201 + 0.974772i \(0.571651\pi\)
\(854\) 3.68640 0.126146
\(855\) −6.68852 −0.228743
\(856\) 4.38189 0.149770
\(857\) 8.09087 0.276379 0.138189 0.990406i \(-0.455872\pi\)
0.138189 + 0.990406i \(0.455872\pi\)
\(858\) −1.11526 −0.0380745
\(859\) 26.5397 0.905523 0.452761 0.891632i \(-0.350439\pi\)
0.452761 + 0.891632i \(0.350439\pi\)
\(860\) 20.9894 0.715733
\(861\) 22.6050 0.770375
\(862\) 5.51196 0.187738
\(863\) 26.2183 0.892480 0.446240 0.894913i \(-0.352763\pi\)
0.446240 + 0.894913i \(0.352763\pi\)
\(864\) −2.17163 −0.0738802
\(865\) −5.83761 −0.198485
\(866\) 2.56205 0.0870621
\(867\) −1.93747 −0.0657998
\(868\) −20.2141 −0.686111
\(869\) −20.4553 −0.693898
\(870\) 0.940702 0.0318928
\(871\) 28.6163 0.969627
\(872\) 2.08405 0.0705748
\(873\) −1.06264 −0.0359649
\(874\) 0 0
\(875\) −4.18574 −0.141504
\(876\) −9.96934 −0.336833
\(877\) 36.3858 1.22866 0.614330 0.789049i \(-0.289426\pi\)
0.614330 + 0.789049i \(0.289426\pi\)
\(878\) −1.57740 −0.0532348
\(879\) 3.27151 0.110345
\(880\) −8.43208 −0.284246
\(881\) 7.66233 0.258150 0.129075 0.991635i \(-0.458799\pi\)
0.129075 + 0.991635i \(0.458799\pi\)
\(882\) 1.94821 0.0655997
\(883\) −28.9939 −0.975723 −0.487861 0.872921i \(-0.662223\pi\)
−0.487861 + 0.872921i \(0.662223\pi\)
\(884\) 23.1887 0.779922
\(885\) 6.09520 0.204888
\(886\) 4.53611 0.152394
\(887\) −32.2648 −1.08335 −0.541674 0.840589i \(-0.682209\pi\)
−0.541674 + 0.840589i \(0.682209\pi\)
\(888\) 3.87951 0.130188
\(889\) −14.5837 −0.489121
\(890\) −0.145147 −0.00486533
\(891\) 2.22165 0.0744281
\(892\) −30.9757 −1.03714
\(893\) −15.1651 −0.507480
\(894\) 2.00926 0.0671998
\(895\) −24.9111 −0.832688
\(896\) −23.7519 −0.793495
\(897\) 0 0
\(898\) 0.444364 0.0148286
\(899\) 12.4799 0.416228
\(900\) −1.96571 −0.0655236
\(901\) −58.4948 −1.94875
\(902\) −2.22183 −0.0739790
\(903\) −44.6944 −1.48734
\(904\) 12.1946 0.405586
\(905\) −26.2828 −0.873670
\(906\) 0.526174 0.0174810
\(907\) −48.1780 −1.59972 −0.799862 0.600184i \(-0.795094\pi\)
−0.799862 + 0.600184i \(0.795094\pi\)
\(908\) −4.03781 −0.133999
\(909\) −11.7380 −0.389325
\(910\) −2.10123 −0.0696551
\(911\) −35.5630 −1.17826 −0.589128 0.808040i \(-0.700529\pi\)
−0.589128 + 0.808040i \(0.700529\pi\)
\(912\) −25.3857 −0.840606
\(913\) −19.7217 −0.652694
\(914\) −5.43778 −0.179866
\(915\) 4.75583 0.157223
\(916\) −56.1863 −1.85645
\(917\) 31.8839 1.05290
\(918\) 0.805871 0.0265977
\(919\) −58.6491 −1.93465 −0.967327 0.253532i \(-0.918408\pi\)
−0.967327 + 0.253532i \(0.918408\pi\)
\(920\) 0 0
\(921\) −4.27054 −0.140719
\(922\) 4.22374 0.139102
\(923\) −28.1446 −0.926389
\(924\) 18.2796 0.601354
\(925\) 5.28265 0.173692
\(926\) −5.10013 −0.167601
\(927\) 12.3240 0.404774
\(928\) 11.0314 0.362125
\(929\) −7.18750 −0.235814 −0.117907 0.993025i \(-0.537618\pi\)
−0.117907 + 0.993025i \(0.537618\pi\)
\(930\) 0.454955 0.0149185
\(931\) 70.3659 2.30615
\(932\) 3.34535 0.109581
\(933\) −26.8800 −0.880012
\(934\) 2.36711 0.0774542
\(935\) 9.66800 0.316177
\(936\) −1.99078 −0.0650706
\(937\) 15.6013 0.509671 0.254835 0.966984i \(-0.417979\pi\)
0.254835 + 0.966984i \(0.417979\pi\)
\(938\) 8.18262 0.267172
\(939\) −16.4712 −0.537519
\(940\) −4.45690 −0.145368
\(941\) 36.6900 1.19606 0.598030 0.801474i \(-0.295950\pi\)
0.598030 + 0.801474i \(0.295950\pi\)
\(942\) 4.07095 0.132639
\(943\) 0 0
\(944\) 23.1338 0.752942
\(945\) 4.18574 0.136162
\(946\) 4.39301 0.142829
\(947\) −55.0681 −1.78947 −0.894737 0.446594i \(-0.852637\pi\)
−0.894737 + 0.446594i \(0.852637\pi\)
\(948\) −18.0987 −0.587820
\(949\) −13.7482 −0.446285
\(950\) 1.23861 0.0401858
\(951\) −9.83672 −0.318977
\(952\) 13.3770 0.433550
\(953\) 18.1389 0.587576 0.293788 0.955871i \(-0.405084\pi\)
0.293788 + 0.955871i \(0.405084\pi\)
\(954\) 2.48921 0.0805911
\(955\) −12.0022 −0.388382
\(956\) −27.2334 −0.880792
\(957\) −11.2856 −0.364810
\(958\) −6.77551 −0.218907
\(959\) −80.3485 −2.59459
\(960\) −7.18868 −0.232014
\(961\) −24.9643 −0.805300
\(962\) 2.65188 0.0855000
\(963\) −5.96673 −0.192275
\(964\) 12.7780 0.411552
\(965\) 0.355524 0.0114447
\(966\) 0 0
\(967\) 37.8260 1.21640 0.608201 0.793783i \(-0.291892\pi\)
0.608201 + 0.793783i \(0.291892\pi\)
\(968\) 4.45352 0.143142
\(969\) 29.1066 0.935038
\(970\) 0.196785 0.00631837
\(971\) −6.49918 −0.208569 −0.104284 0.994548i \(-0.533255\pi\)
−0.104284 + 0.994548i \(0.533255\pi\)
\(972\) 1.96571 0.0630501
\(973\) −24.5031 −0.785532
\(974\) −4.89601 −0.156878
\(975\) −2.71080 −0.0868151
\(976\) 18.0503 0.577778
\(977\) 34.0867 1.09053 0.545264 0.838264i \(-0.316429\pi\)
0.545264 + 0.838264i \(0.316429\pi\)
\(978\) 0.0173871 0.000555978 0
\(979\) 1.74132 0.0556528
\(980\) 20.6800 0.660598
\(981\) −2.83780 −0.0906041
\(982\) −6.83548 −0.218129
\(983\) 61.2968 1.95506 0.977532 0.210785i \(-0.0676020\pi\)
0.977532 + 0.210785i \(0.0676020\pi\)
\(984\) −3.96604 −0.126433
\(985\) −14.0729 −0.448399
\(986\) −4.09367 −0.130369
\(987\) 9.49044 0.302084
\(988\) −35.6407 −1.13388
\(989\) 0 0
\(990\) −0.411415 −0.0130756
\(991\) 8.77523 0.278754 0.139377 0.990239i \(-0.455490\pi\)
0.139377 + 0.990239i \(0.455490\pi\)
\(992\) 5.33517 0.169392
\(993\) 4.36076 0.138384
\(994\) −8.04773 −0.255258
\(995\) 22.0154 0.697934
\(996\) −17.4497 −0.552915
\(997\) 62.0467 1.96504 0.982519 0.186161i \(-0.0596046\pi\)
0.982519 + 0.186161i \(0.0596046\pi\)
\(998\) 3.06735 0.0970954
\(999\) −5.28265 −0.167136
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bt.1.14 25
23.11 odd 22 345.2.m.d.121.3 50
23.21 odd 22 345.2.m.d.211.3 yes 50
23.22 odd 2 7935.2.a.bu.1.14 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.d.121.3 50 23.11 odd 22
345.2.m.d.211.3 yes 50 23.21 odd 22
7935.2.a.bt.1.14 25 1.1 even 1 trivial
7935.2.a.bu.1.14 25 23.22 odd 2