Properties

Label 7935.2.a.bt.1.11
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $25$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [25,1,-25,31,-25,-1,15] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(25\)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.587229 q^{2} -1.00000 q^{3} -1.65516 q^{4} -1.00000 q^{5} +0.587229 q^{6} -1.98135 q^{7} +2.14642 q^{8} +1.00000 q^{9} +0.587229 q^{10} +1.32641 q^{11} +1.65516 q^{12} -4.37911 q^{13} +1.16351 q^{14} +1.00000 q^{15} +2.04988 q^{16} +6.01632 q^{17} -0.587229 q^{18} -8.00370 q^{19} +1.65516 q^{20} +1.98135 q^{21} -0.778910 q^{22} -2.14642 q^{24} +1.00000 q^{25} +2.57154 q^{26} -1.00000 q^{27} +3.27946 q^{28} -1.61945 q^{29} -0.587229 q^{30} +1.47039 q^{31} -5.49659 q^{32} -1.32641 q^{33} -3.53296 q^{34} +1.98135 q^{35} -1.65516 q^{36} -0.666505 q^{37} +4.70001 q^{38} +4.37911 q^{39} -2.14642 q^{40} +3.57137 q^{41} -1.16351 q^{42} +8.48841 q^{43} -2.19543 q^{44} -1.00000 q^{45} -9.62613 q^{47} -2.04988 q^{48} -3.07423 q^{49} -0.587229 q^{50} -6.01632 q^{51} +7.24813 q^{52} +2.20910 q^{53} +0.587229 q^{54} -1.32641 q^{55} -4.25282 q^{56} +8.00370 q^{57} +0.950988 q^{58} +7.22150 q^{59} -1.65516 q^{60} -12.7396 q^{61} -0.863454 q^{62} -1.98135 q^{63} -0.872010 q^{64} +4.37911 q^{65} +0.778910 q^{66} -12.0280 q^{67} -9.95799 q^{68} -1.16351 q^{70} +13.4980 q^{71} +2.14642 q^{72} -6.96019 q^{73} +0.391392 q^{74} -1.00000 q^{75} +13.2474 q^{76} -2.62810 q^{77} -2.57154 q^{78} -12.3272 q^{79} -2.04988 q^{80} +1.00000 q^{81} -2.09721 q^{82} +11.5024 q^{83} -3.27946 q^{84} -6.01632 q^{85} -4.98464 q^{86} +1.61945 q^{87} +2.84704 q^{88} +5.21463 q^{89} +0.587229 q^{90} +8.67656 q^{91} -1.47039 q^{93} +5.65275 q^{94} +8.00370 q^{95} +5.49659 q^{96} -5.95363 q^{97} +1.80528 q^{98} +1.32641 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 25 q + q^{2} - 25 q^{3} + 31 q^{4} - 25 q^{5} - q^{6} + 15 q^{7} + 3 q^{8} + 25 q^{9} - q^{10} - 15 q^{11} - 31 q^{12} + 24 q^{13} - 5 q^{14} + 25 q^{15} + 39 q^{16} + 6 q^{17} + q^{18} - 13 q^{19}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.587229 −0.415234 −0.207617 0.978210i \(-0.566571\pi\)
−0.207617 + 0.978210i \(0.566571\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.65516 −0.827581
\(5\) −1.00000 −0.447214
\(6\) 0.587229 0.239735
\(7\) −1.98135 −0.748882 −0.374441 0.927251i \(-0.622165\pi\)
−0.374441 + 0.927251i \(0.622165\pi\)
\(8\) 2.14642 0.758873
\(9\) 1.00000 0.333333
\(10\) 0.587229 0.185698
\(11\) 1.32641 0.399929 0.199965 0.979803i \(-0.435917\pi\)
0.199965 + 0.979803i \(0.435917\pi\)
\(12\) 1.65516 0.477804
\(13\) −4.37911 −1.21455 −0.607273 0.794493i \(-0.707737\pi\)
−0.607273 + 0.794493i \(0.707737\pi\)
\(14\) 1.16351 0.310961
\(15\) 1.00000 0.258199
\(16\) 2.04988 0.512471
\(17\) 6.01632 1.45917 0.729586 0.683889i \(-0.239713\pi\)
0.729586 + 0.683889i \(0.239713\pi\)
\(18\) −0.587229 −0.138411
\(19\) −8.00370 −1.83617 −0.918087 0.396379i \(-0.870267\pi\)
−0.918087 + 0.396379i \(0.870267\pi\)
\(20\) 1.65516 0.370105
\(21\) 1.98135 0.432367
\(22\) −0.778910 −0.166064
\(23\) 0 0
\(24\) −2.14642 −0.438136
\(25\) 1.00000 0.200000
\(26\) 2.57154 0.504321
\(27\) −1.00000 −0.192450
\(28\) 3.27946 0.619760
\(29\) −1.61945 −0.300724 −0.150362 0.988631i \(-0.548044\pi\)
−0.150362 + 0.988631i \(0.548044\pi\)
\(30\) −0.587229 −0.107213
\(31\) 1.47039 0.264089 0.132045 0.991244i \(-0.457846\pi\)
0.132045 + 0.991244i \(0.457846\pi\)
\(32\) −5.49659 −0.971669
\(33\) −1.32641 −0.230899
\(34\) −3.53296 −0.605898
\(35\) 1.98135 0.334910
\(36\) −1.65516 −0.275860
\(37\) −0.666505 −0.109573 −0.0547864 0.998498i \(-0.517448\pi\)
−0.0547864 + 0.998498i \(0.517448\pi\)
\(38\) 4.70001 0.762442
\(39\) 4.37911 0.701218
\(40\) −2.14642 −0.339378
\(41\) 3.57137 0.557754 0.278877 0.960327i \(-0.410038\pi\)
0.278877 + 0.960327i \(0.410038\pi\)
\(42\) −1.16351 −0.179533
\(43\) 8.48841 1.29447 0.647235 0.762290i \(-0.275925\pi\)
0.647235 + 0.762290i \(0.275925\pi\)
\(44\) −2.19543 −0.330974
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −9.62613 −1.40412 −0.702058 0.712120i \(-0.747735\pi\)
−0.702058 + 0.712120i \(0.747735\pi\)
\(48\) −2.04988 −0.295875
\(49\) −3.07423 −0.439176
\(50\) −0.587229 −0.0830468
\(51\) −6.01632 −0.842454
\(52\) 7.24813 1.00513
\(53\) 2.20910 0.303443 0.151722 0.988423i \(-0.451518\pi\)
0.151722 + 0.988423i \(0.451518\pi\)
\(54\) 0.587229 0.0799118
\(55\) −1.32641 −0.178854
\(56\) −4.25282 −0.568306
\(57\) 8.00370 1.06012
\(58\) 0.950988 0.124871
\(59\) 7.22150 0.940160 0.470080 0.882624i \(-0.344225\pi\)
0.470080 + 0.882624i \(0.344225\pi\)
\(60\) −1.65516 −0.213680
\(61\) −12.7396 −1.63114 −0.815568 0.578661i \(-0.803575\pi\)
−0.815568 + 0.578661i \(0.803575\pi\)
\(62\) −0.863454 −0.109659
\(63\) −1.98135 −0.249627
\(64\) −0.872010 −0.109001
\(65\) 4.37911 0.543161
\(66\) 0.778910 0.0958771
\(67\) −12.0280 −1.46945 −0.734727 0.678363i \(-0.762690\pi\)
−0.734727 + 0.678363i \(0.762690\pi\)
\(68\) −9.95799 −1.20758
\(69\) 0 0
\(70\) −1.16351 −0.139066
\(71\) 13.4980 1.60192 0.800958 0.598721i \(-0.204324\pi\)
0.800958 + 0.598721i \(0.204324\pi\)
\(72\) 2.14642 0.252958
\(73\) −6.96019 −0.814629 −0.407315 0.913288i \(-0.633535\pi\)
−0.407315 + 0.913288i \(0.633535\pi\)
\(74\) 0.391392 0.0454983
\(75\) −1.00000 −0.115470
\(76\) 13.2474 1.51958
\(77\) −2.62810 −0.299500
\(78\) −2.57154 −0.291170
\(79\) −12.3272 −1.38692 −0.693458 0.720497i \(-0.743914\pi\)
−0.693458 + 0.720497i \(0.743914\pi\)
\(80\) −2.04988 −0.229184
\(81\) 1.00000 0.111111
\(82\) −2.09721 −0.231598
\(83\) 11.5024 1.26256 0.631278 0.775556i \(-0.282531\pi\)
0.631278 + 0.775556i \(0.282531\pi\)
\(84\) −3.27946 −0.357819
\(85\) −6.01632 −0.652562
\(86\) −4.98464 −0.537508
\(87\) 1.61945 0.173623
\(88\) 2.84704 0.303496
\(89\) 5.21463 0.552749 0.276375 0.961050i \(-0.410867\pi\)
0.276375 + 0.961050i \(0.410867\pi\)
\(90\) 0.587229 0.0618994
\(91\) 8.67656 0.909551
\(92\) 0 0
\(93\) −1.47039 −0.152472
\(94\) 5.65275 0.583036
\(95\) 8.00370 0.821162
\(96\) 5.49659 0.560993
\(97\) −5.95363 −0.604500 −0.302250 0.953229i \(-0.597738\pi\)
−0.302250 + 0.953229i \(0.597738\pi\)
\(98\) 1.80528 0.182361
\(99\) 1.32641 0.133310
\(100\) −1.65516 −0.165516
\(101\) −14.4844 −1.44126 −0.720628 0.693322i \(-0.756147\pi\)
−0.720628 + 0.693322i \(0.756147\pi\)
\(102\) 3.53296 0.349815
\(103\) −18.3810 −1.81113 −0.905565 0.424207i \(-0.860553\pi\)
−0.905565 + 0.424207i \(0.860553\pi\)
\(104\) −9.39939 −0.921687
\(105\) −1.98135 −0.193360
\(106\) −1.29725 −0.126000
\(107\) −4.48711 −0.433785 −0.216893 0.976195i \(-0.569592\pi\)
−0.216893 + 0.976195i \(0.569592\pi\)
\(108\) 1.65516 0.159268
\(109\) 0.977068 0.0935861 0.0467931 0.998905i \(-0.485100\pi\)
0.0467931 + 0.998905i \(0.485100\pi\)
\(110\) 0.778910 0.0742661
\(111\) 0.666505 0.0632619
\(112\) −4.06155 −0.383780
\(113\) 6.08822 0.572732 0.286366 0.958120i \(-0.407553\pi\)
0.286366 + 0.958120i \(0.407553\pi\)
\(114\) −4.70001 −0.440196
\(115\) 0 0
\(116\) 2.68045 0.248874
\(117\) −4.37911 −0.404849
\(118\) −4.24068 −0.390386
\(119\) −11.9205 −1.09275
\(120\) 2.14642 0.195940
\(121\) −9.24062 −0.840057
\(122\) 7.48106 0.677303
\(123\) −3.57137 −0.322019
\(124\) −2.43373 −0.218555
\(125\) −1.00000 −0.0894427
\(126\) 1.16351 0.103654
\(127\) −5.17999 −0.459650 −0.229825 0.973232i \(-0.573815\pi\)
−0.229825 + 0.973232i \(0.573815\pi\)
\(128\) 11.5052 1.01693
\(129\) −8.48841 −0.747363
\(130\) −2.57154 −0.225539
\(131\) 6.34097 0.554013 0.277007 0.960868i \(-0.410658\pi\)
0.277007 + 0.960868i \(0.410658\pi\)
\(132\) 2.19543 0.191088
\(133\) 15.8582 1.37508
\(134\) 7.06319 0.610167
\(135\) 1.00000 0.0860663
\(136\) 12.9135 1.10733
\(137\) 6.38278 0.545317 0.272659 0.962111i \(-0.412097\pi\)
0.272659 + 0.962111i \(0.412097\pi\)
\(138\) 0 0
\(139\) −7.86494 −0.667096 −0.333548 0.942733i \(-0.608246\pi\)
−0.333548 + 0.942733i \(0.608246\pi\)
\(140\) −3.27946 −0.277165
\(141\) 9.62613 0.810666
\(142\) −7.92641 −0.665169
\(143\) −5.80851 −0.485732
\(144\) 2.04988 0.170824
\(145\) 1.61945 0.134488
\(146\) 4.08723 0.338262
\(147\) 3.07423 0.253559
\(148\) 1.10317 0.0906804
\(149\) −13.8792 −1.13703 −0.568513 0.822674i \(-0.692481\pi\)
−0.568513 + 0.822674i \(0.692481\pi\)
\(150\) 0.587229 0.0479471
\(151\) 0.653845 0.0532092 0.0266046 0.999646i \(-0.491530\pi\)
0.0266046 + 0.999646i \(0.491530\pi\)
\(152\) −17.1793 −1.39342
\(153\) 6.01632 0.486391
\(154\) 1.54330 0.124362
\(155\) −1.47039 −0.118104
\(156\) −7.24813 −0.580315
\(157\) −2.87719 −0.229624 −0.114812 0.993387i \(-0.536627\pi\)
−0.114812 + 0.993387i \(0.536627\pi\)
\(158\) 7.23888 0.575895
\(159\) −2.20910 −0.175193
\(160\) 5.49659 0.434543
\(161\) 0 0
\(162\) −0.587229 −0.0461371
\(163\) −12.8468 −1.00624 −0.503118 0.864218i \(-0.667814\pi\)
−0.503118 + 0.864218i \(0.667814\pi\)
\(164\) −5.91119 −0.461586
\(165\) 1.32641 0.103261
\(166\) −6.75457 −0.524256
\(167\) 11.9470 0.924489 0.462244 0.886753i \(-0.347044\pi\)
0.462244 + 0.886753i \(0.347044\pi\)
\(168\) 4.25282 0.328112
\(169\) 6.17658 0.475122
\(170\) 3.53296 0.270966
\(171\) −8.00370 −0.612058
\(172\) −14.0497 −1.07128
\(173\) 17.8127 1.35428 0.677138 0.735856i \(-0.263220\pi\)
0.677138 + 0.735856i \(0.263220\pi\)
\(174\) −0.950988 −0.0720943
\(175\) −1.98135 −0.149776
\(176\) 2.71900 0.204952
\(177\) −7.22150 −0.542801
\(178\) −3.06218 −0.229520
\(179\) −19.0494 −1.42382 −0.711909 0.702272i \(-0.752169\pi\)
−0.711909 + 0.702272i \(0.752169\pi\)
\(180\) 1.65516 0.123368
\(181\) 20.7929 1.54552 0.772761 0.634697i \(-0.218875\pi\)
0.772761 + 0.634697i \(0.218875\pi\)
\(182\) −5.09513 −0.377676
\(183\) 12.7396 0.941737
\(184\) 0 0
\(185\) 0.666505 0.0490025
\(186\) 0.863454 0.0633115
\(187\) 7.98014 0.583565
\(188\) 15.9328 1.16202
\(189\) 1.98135 0.144122
\(190\) −4.70001 −0.340974
\(191\) −11.5210 −0.833633 −0.416816 0.908991i \(-0.636854\pi\)
−0.416816 + 0.908991i \(0.636854\pi\)
\(192\) 0.872010 0.0629319
\(193\) −10.6100 −0.763725 −0.381862 0.924219i \(-0.624717\pi\)
−0.381862 + 0.924219i \(0.624717\pi\)
\(194\) 3.49615 0.251009
\(195\) −4.37911 −0.313594
\(196\) 5.08835 0.363454
\(197\) −9.41984 −0.671136 −0.335568 0.942016i \(-0.608928\pi\)
−0.335568 + 0.942016i \(0.608928\pi\)
\(198\) −0.778910 −0.0553547
\(199\) −14.5331 −1.03022 −0.515112 0.857123i \(-0.672250\pi\)
−0.515112 + 0.857123i \(0.672250\pi\)
\(200\) 2.14642 0.151775
\(201\) 12.0280 0.848389
\(202\) 8.50569 0.598458
\(203\) 3.20870 0.225207
\(204\) 9.95799 0.697198
\(205\) −3.57137 −0.249435
\(206\) 10.7938 0.752043
\(207\) 0 0
\(208\) −8.97666 −0.622419
\(209\) −10.6162 −0.734339
\(210\) 1.16351 0.0802898
\(211\) −16.1442 −1.11141 −0.555707 0.831378i \(-0.687552\pi\)
−0.555707 + 0.831378i \(0.687552\pi\)
\(212\) −3.65642 −0.251124
\(213\) −13.4980 −0.924866
\(214\) 2.63496 0.180122
\(215\) −8.48841 −0.578905
\(216\) −2.14642 −0.146045
\(217\) −2.91336 −0.197771
\(218\) −0.573763 −0.0388601
\(219\) 6.96019 0.470326
\(220\) 2.19543 0.148016
\(221\) −26.3461 −1.77223
\(222\) −0.391392 −0.0262685
\(223\) 21.2636 1.42392 0.711959 0.702221i \(-0.247808\pi\)
0.711959 + 0.702221i \(0.247808\pi\)
\(224\) 10.8907 0.727665
\(225\) 1.00000 0.0666667
\(226\) −3.57518 −0.237818
\(227\) −13.0490 −0.866092 −0.433046 0.901372i \(-0.642561\pi\)
−0.433046 + 0.901372i \(0.642561\pi\)
\(228\) −13.2474 −0.877331
\(229\) −3.53598 −0.233664 −0.116832 0.993152i \(-0.537274\pi\)
−0.116832 + 0.993152i \(0.537274\pi\)
\(230\) 0 0
\(231\) 2.62810 0.172916
\(232\) −3.47602 −0.228212
\(233\) 19.4283 1.27279 0.636397 0.771362i \(-0.280424\pi\)
0.636397 + 0.771362i \(0.280424\pi\)
\(234\) 2.57154 0.168107
\(235\) 9.62613 0.627940
\(236\) −11.9528 −0.778058
\(237\) 12.3272 0.800736
\(238\) 7.00005 0.453746
\(239\) 0.106901 0.00691482 0.00345741 0.999994i \(-0.498899\pi\)
0.00345741 + 0.999994i \(0.498899\pi\)
\(240\) 2.04988 0.132319
\(241\) 14.2230 0.916186 0.458093 0.888904i \(-0.348533\pi\)
0.458093 + 0.888904i \(0.348533\pi\)
\(242\) 5.42637 0.348820
\(243\) −1.00000 −0.0641500
\(244\) 21.0861 1.34990
\(245\) 3.07423 0.196406
\(246\) 2.09721 0.133713
\(247\) 35.0491 2.23012
\(248\) 3.15606 0.200410
\(249\) −11.5024 −0.728937
\(250\) 0.587229 0.0371396
\(251\) 0.794786 0.0501665 0.0250832 0.999685i \(-0.492015\pi\)
0.0250832 + 0.999685i \(0.492015\pi\)
\(252\) 3.27946 0.206587
\(253\) 0 0
\(254\) 3.04184 0.190862
\(255\) 6.01632 0.376757
\(256\) −5.01220 −0.313262
\(257\) −6.77389 −0.422543 −0.211272 0.977427i \(-0.567760\pi\)
−0.211272 + 0.977427i \(0.567760\pi\)
\(258\) 4.98464 0.310330
\(259\) 1.32058 0.0820571
\(260\) −7.24813 −0.449510
\(261\) −1.61945 −0.100241
\(262\) −3.72361 −0.230045
\(263\) −1.60108 −0.0987268 −0.0493634 0.998781i \(-0.515719\pi\)
−0.0493634 + 0.998781i \(0.515719\pi\)
\(264\) −2.84704 −0.175223
\(265\) −2.20910 −0.135704
\(266\) −9.31238 −0.570979
\(267\) −5.21463 −0.319130
\(268\) 19.9083 1.21609
\(269\) 17.3308 1.05668 0.528340 0.849033i \(-0.322815\pi\)
0.528340 + 0.849033i \(0.322815\pi\)
\(270\) −0.587229 −0.0357376
\(271\) 5.72514 0.347778 0.173889 0.984765i \(-0.444367\pi\)
0.173889 + 0.984765i \(0.444367\pi\)
\(272\) 12.3328 0.747783
\(273\) −8.67656 −0.525130
\(274\) −3.74815 −0.226434
\(275\) 1.32641 0.0799858
\(276\) 0 0
\(277\) 4.21841 0.253460 0.126730 0.991937i \(-0.459552\pi\)
0.126730 + 0.991937i \(0.459552\pi\)
\(278\) 4.61852 0.277001
\(279\) 1.47039 0.0880297
\(280\) 4.25282 0.254154
\(281\) −5.53117 −0.329962 −0.164981 0.986297i \(-0.552756\pi\)
−0.164981 + 0.986297i \(0.552756\pi\)
\(282\) −5.65275 −0.336616
\(283\) 28.1991 1.67626 0.838130 0.545471i \(-0.183649\pi\)
0.838130 + 0.545471i \(0.183649\pi\)
\(284\) −22.3413 −1.32571
\(285\) −8.00370 −0.474098
\(286\) 3.41093 0.201692
\(287\) −7.07614 −0.417691
\(288\) −5.49659 −0.323890
\(289\) 19.1961 1.12918
\(290\) −0.950988 −0.0558440
\(291\) 5.95363 0.349008
\(292\) 11.5202 0.674172
\(293\) 19.0595 1.11347 0.556734 0.830691i \(-0.312054\pi\)
0.556734 + 0.830691i \(0.312054\pi\)
\(294\) −1.80528 −0.105286
\(295\) −7.22150 −0.420452
\(296\) −1.43060 −0.0831519
\(297\) −1.32641 −0.0769664
\(298\) 8.15026 0.472132
\(299\) 0 0
\(300\) 1.65516 0.0955608
\(301\) −16.8186 −0.969405
\(302\) −0.383957 −0.0220942
\(303\) 14.4844 0.832110
\(304\) −16.4067 −0.940986
\(305\) 12.7396 0.729466
\(306\) −3.53296 −0.201966
\(307\) 31.3691 1.79033 0.895163 0.445739i \(-0.147059\pi\)
0.895163 + 0.445739i \(0.147059\pi\)
\(308\) 4.34993 0.247860
\(309\) 18.3810 1.04566
\(310\) 0.863454 0.0490409
\(311\) −23.0310 −1.30597 −0.652984 0.757372i \(-0.726483\pi\)
−0.652984 + 0.757372i \(0.726483\pi\)
\(312\) 9.39939 0.532136
\(313\) 8.36516 0.472827 0.236413 0.971653i \(-0.424028\pi\)
0.236413 + 0.971653i \(0.424028\pi\)
\(314\) 1.68957 0.0953478
\(315\) 1.98135 0.111637
\(316\) 20.4035 1.14779
\(317\) 15.3262 0.860803 0.430402 0.902638i \(-0.358372\pi\)
0.430402 + 0.902638i \(0.358372\pi\)
\(318\) 1.29725 0.0727460
\(319\) −2.14806 −0.120268
\(320\) 0.872010 0.0487469
\(321\) 4.48711 0.250446
\(322\) 0 0
\(323\) −48.1528 −2.67929
\(324\) −1.65516 −0.0919534
\(325\) −4.37911 −0.242909
\(326\) 7.54399 0.417823
\(327\) −0.977068 −0.0540320
\(328\) 7.66564 0.423264
\(329\) 19.0728 1.05152
\(330\) −0.778910 −0.0428776
\(331\) 17.4539 0.959353 0.479677 0.877445i \(-0.340754\pi\)
0.479677 + 0.877445i \(0.340754\pi\)
\(332\) −19.0384 −1.04487
\(333\) −0.666505 −0.0365243
\(334\) −7.01565 −0.383879
\(335\) 12.0280 0.657160
\(336\) 4.06155 0.221576
\(337\) −7.54403 −0.410949 −0.205475 0.978662i \(-0.565874\pi\)
−0.205475 + 0.978662i \(0.565874\pi\)
\(338\) −3.62707 −0.197287
\(339\) −6.08822 −0.330667
\(340\) 9.95799 0.540048
\(341\) 1.95034 0.105617
\(342\) 4.70001 0.254147
\(343\) 19.9606 1.07777
\(344\) 18.2197 0.982339
\(345\) 0 0
\(346\) −10.4602 −0.562341
\(347\) 5.52837 0.296778 0.148389 0.988929i \(-0.452591\pi\)
0.148389 + 0.988929i \(0.452591\pi\)
\(348\) −2.68045 −0.143687
\(349\) 17.9725 0.962043 0.481022 0.876709i \(-0.340266\pi\)
0.481022 + 0.876709i \(0.340266\pi\)
\(350\) 1.16351 0.0621922
\(351\) 4.37911 0.233739
\(352\) −7.29076 −0.388599
\(353\) −14.1660 −0.753982 −0.376991 0.926217i \(-0.623041\pi\)
−0.376991 + 0.926217i \(0.623041\pi\)
\(354\) 4.24068 0.225390
\(355\) −13.4980 −0.716398
\(356\) −8.63105 −0.457445
\(357\) 11.9205 0.630898
\(358\) 11.1864 0.591217
\(359\) −30.0163 −1.58420 −0.792100 0.610391i \(-0.791012\pi\)
−0.792100 + 0.610391i \(0.791012\pi\)
\(360\) −2.14642 −0.113126
\(361\) 45.0592 2.37154
\(362\) −12.2102 −0.641753
\(363\) 9.24062 0.485007
\(364\) −14.3611 −0.752727
\(365\) 6.96019 0.364313
\(366\) −7.48106 −0.391041
\(367\) 4.90179 0.255871 0.127936 0.991782i \(-0.459165\pi\)
0.127936 + 0.991782i \(0.459165\pi\)
\(368\) 0 0
\(369\) 3.57137 0.185918
\(370\) −0.391392 −0.0203475
\(371\) −4.37701 −0.227243
\(372\) 2.43373 0.126183
\(373\) −9.77213 −0.505982 −0.252991 0.967469i \(-0.581414\pi\)
−0.252991 + 0.967469i \(0.581414\pi\)
\(374\) −4.68617 −0.242316
\(375\) 1.00000 0.0516398
\(376\) −20.6617 −1.06555
\(377\) 7.09175 0.365243
\(378\) −1.16351 −0.0598445
\(379\) −29.8768 −1.53467 −0.767334 0.641248i \(-0.778417\pi\)
−0.767334 + 0.641248i \(0.778417\pi\)
\(380\) −13.2474 −0.679578
\(381\) 5.17999 0.265379
\(382\) 6.76549 0.346152
\(383\) −29.7415 −1.51972 −0.759860 0.650087i \(-0.774732\pi\)
−0.759860 + 0.650087i \(0.774732\pi\)
\(384\) −11.5052 −0.587125
\(385\) 2.62810 0.133940
\(386\) 6.23051 0.317124
\(387\) 8.48841 0.431490
\(388\) 9.85422 0.500272
\(389\) −25.0386 −1.26951 −0.634753 0.772715i \(-0.718898\pi\)
−0.634753 + 0.772715i \(0.718898\pi\)
\(390\) 2.57154 0.130215
\(391\) 0 0
\(392\) −6.59859 −0.333279
\(393\) −6.34097 −0.319860
\(394\) 5.53160 0.278678
\(395\) 12.3272 0.620248
\(396\) −2.19543 −0.110325
\(397\) 25.1925 1.26438 0.632188 0.774815i \(-0.282157\pi\)
0.632188 + 0.774815i \(0.282157\pi\)
\(398\) 8.53426 0.427784
\(399\) −15.8582 −0.793901
\(400\) 2.04988 0.102494
\(401\) 28.9392 1.44515 0.722577 0.691290i \(-0.242957\pi\)
0.722577 + 0.691290i \(0.242957\pi\)
\(402\) −7.06319 −0.352280
\(403\) −6.43898 −0.320748
\(404\) 23.9741 1.19276
\(405\) −1.00000 −0.0496904
\(406\) −1.88425 −0.0935135
\(407\) −0.884063 −0.0438214
\(408\) −12.9135 −0.639316
\(409\) 22.0972 1.09263 0.546317 0.837578i \(-0.316029\pi\)
0.546317 + 0.837578i \(0.316029\pi\)
\(410\) 2.09721 0.103574
\(411\) −6.38278 −0.314839
\(412\) 30.4235 1.49886
\(413\) −14.3084 −0.704068
\(414\) 0 0
\(415\) −11.5024 −0.564632
\(416\) 24.0701 1.18014
\(417\) 7.86494 0.385148
\(418\) 6.23416 0.304923
\(419\) 25.5345 1.24744 0.623722 0.781646i \(-0.285620\pi\)
0.623722 + 0.781646i \(0.285620\pi\)
\(420\) 3.27946 0.160021
\(421\) −20.3717 −0.992854 −0.496427 0.868079i \(-0.665355\pi\)
−0.496427 + 0.868079i \(0.665355\pi\)
\(422\) 9.48036 0.461497
\(423\) −9.62613 −0.468038
\(424\) 4.74165 0.230275
\(425\) 6.01632 0.291834
\(426\) 7.92641 0.384036
\(427\) 25.2416 1.22153
\(428\) 7.42689 0.358992
\(429\) 5.80851 0.280438
\(430\) 4.98464 0.240381
\(431\) 5.97602 0.287855 0.143927 0.989588i \(-0.454027\pi\)
0.143927 + 0.989588i \(0.454027\pi\)
\(432\) −2.04988 −0.0986251
\(433\) 11.1843 0.537485 0.268743 0.963212i \(-0.413392\pi\)
0.268743 + 0.963212i \(0.413392\pi\)
\(434\) 1.71081 0.0821214
\(435\) −1.61945 −0.0776467
\(436\) −1.61721 −0.0774501
\(437\) 0 0
\(438\) −4.08723 −0.195295
\(439\) 24.8487 1.18596 0.592982 0.805216i \(-0.297950\pi\)
0.592982 + 0.805216i \(0.297950\pi\)
\(440\) −2.84704 −0.135727
\(441\) −3.07423 −0.146392
\(442\) 15.4712 0.735891
\(443\) 15.9117 0.755989 0.377994 0.925808i \(-0.376614\pi\)
0.377994 + 0.925808i \(0.376614\pi\)
\(444\) −1.10317 −0.0523543
\(445\) −5.21463 −0.247197
\(446\) −12.4866 −0.591259
\(447\) 13.8792 0.656463
\(448\) 1.72776 0.0816291
\(449\) 28.6982 1.35435 0.677177 0.735820i \(-0.263203\pi\)
0.677177 + 0.735820i \(0.263203\pi\)
\(450\) −0.587229 −0.0276823
\(451\) 4.73711 0.223062
\(452\) −10.0770 −0.473982
\(453\) −0.653845 −0.0307203
\(454\) 7.66275 0.359631
\(455\) −8.67656 −0.406764
\(456\) 17.1793 0.804494
\(457\) 16.1635 0.756095 0.378048 0.925786i \(-0.376596\pi\)
0.378048 + 0.925786i \(0.376596\pi\)
\(458\) 2.07643 0.0970252
\(459\) −6.01632 −0.280818
\(460\) 0 0
\(461\) −18.4103 −0.857454 −0.428727 0.903434i \(-0.641038\pi\)
−0.428727 + 0.903434i \(0.641038\pi\)
\(462\) −1.54330 −0.0718006
\(463\) −5.52604 −0.256817 −0.128408 0.991721i \(-0.540987\pi\)
−0.128408 + 0.991721i \(0.540987\pi\)
\(464\) −3.31968 −0.154112
\(465\) 1.47039 0.0681875
\(466\) −11.4089 −0.528507
\(467\) 22.2337 1.02885 0.514427 0.857534i \(-0.328005\pi\)
0.514427 + 0.857534i \(0.328005\pi\)
\(468\) 7.24813 0.335045
\(469\) 23.8317 1.10045
\(470\) −5.65275 −0.260742
\(471\) 2.87719 0.132574
\(472\) 15.5004 0.713462
\(473\) 11.2592 0.517696
\(474\) −7.23888 −0.332493
\(475\) −8.00370 −0.367235
\(476\) 19.7303 0.904337
\(477\) 2.20910 0.101148
\(478\) −0.0627751 −0.00287127
\(479\) −4.99165 −0.228074 −0.114037 0.993476i \(-0.536378\pi\)
−0.114037 + 0.993476i \(0.536378\pi\)
\(480\) −5.49659 −0.250884
\(481\) 2.91870 0.133081
\(482\) −8.35218 −0.380432
\(483\) 0 0
\(484\) 15.2947 0.695215
\(485\) 5.95363 0.270340
\(486\) 0.587229 0.0266373
\(487\) −12.9466 −0.586665 −0.293332 0.956011i \(-0.594764\pi\)
−0.293332 + 0.956011i \(0.594764\pi\)
\(488\) −27.3445 −1.23783
\(489\) 12.8468 0.580950
\(490\) −1.80528 −0.0815542
\(491\) 7.29988 0.329439 0.164719 0.986340i \(-0.447328\pi\)
0.164719 + 0.986340i \(0.447328\pi\)
\(492\) 5.91119 0.266497
\(493\) −9.74313 −0.438809
\(494\) −20.5818 −0.926020
\(495\) −1.32641 −0.0596179
\(496\) 3.01412 0.135338
\(497\) −26.7443 −1.19965
\(498\) 6.75457 0.302679
\(499\) −17.3869 −0.778346 −0.389173 0.921165i \(-0.627239\pi\)
−0.389173 + 0.921165i \(0.627239\pi\)
\(500\) 1.65516 0.0740211
\(501\) −11.9470 −0.533754
\(502\) −0.466722 −0.0208308
\(503\) −11.5414 −0.514606 −0.257303 0.966331i \(-0.582834\pi\)
−0.257303 + 0.966331i \(0.582834\pi\)
\(504\) −4.25282 −0.189435
\(505\) 14.4844 0.644549
\(506\) 0 0
\(507\) −6.17658 −0.274312
\(508\) 8.57372 0.380397
\(509\) 25.8737 1.14683 0.573416 0.819265i \(-0.305618\pi\)
0.573416 + 0.819265i \(0.305618\pi\)
\(510\) −3.53296 −0.156442
\(511\) 13.7906 0.610061
\(512\) −20.0672 −0.886853
\(513\) 8.00370 0.353372
\(514\) 3.97783 0.175454
\(515\) 18.3810 0.809962
\(516\) 14.0497 0.618503
\(517\) −12.7682 −0.561547
\(518\) −0.775485 −0.0340729
\(519\) −17.8127 −0.781892
\(520\) 9.39939 0.412191
\(521\) 34.5640 1.51428 0.757138 0.653255i \(-0.226597\pi\)
0.757138 + 0.653255i \(0.226597\pi\)
\(522\) 0.950988 0.0416236
\(523\) −33.0218 −1.44394 −0.721972 0.691922i \(-0.756764\pi\)
−0.721972 + 0.691922i \(0.756764\pi\)
\(524\) −10.4953 −0.458491
\(525\) 1.98135 0.0864734
\(526\) 0.940201 0.0409947
\(527\) 8.84631 0.385351
\(528\) −2.71900 −0.118329
\(529\) 0 0
\(530\) 1.29725 0.0563488
\(531\) 7.22150 0.313387
\(532\) −26.2478 −1.13799
\(533\) −15.6394 −0.677417
\(534\) 3.06218 0.132514
\(535\) 4.48711 0.193995
\(536\) −25.8171 −1.11513
\(537\) 19.0494 0.822041
\(538\) −10.1772 −0.438769
\(539\) −4.07771 −0.175639
\(540\) −1.65516 −0.0712268
\(541\) 17.6617 0.759334 0.379667 0.925123i \(-0.376039\pi\)
0.379667 + 0.925123i \(0.376039\pi\)
\(542\) −3.36197 −0.144409
\(543\) −20.7929 −0.892307
\(544\) −33.0692 −1.41783
\(545\) −0.977068 −0.0418530
\(546\) 5.09513 0.218052
\(547\) 27.0659 1.15725 0.578627 0.815593i \(-0.303589\pi\)
0.578627 + 0.815593i \(0.303589\pi\)
\(548\) −10.5645 −0.451294
\(549\) −12.7396 −0.543712
\(550\) −0.778910 −0.0332128
\(551\) 12.9616 0.552182
\(552\) 0 0
\(553\) 24.4245 1.03864
\(554\) −2.47718 −0.105245
\(555\) −0.666505 −0.0282916
\(556\) 13.0178 0.552076
\(557\) 7.34400 0.311175 0.155588 0.987822i \(-0.450273\pi\)
0.155588 + 0.987822i \(0.450273\pi\)
\(558\) −0.863454 −0.0365529
\(559\) −37.1717 −1.57219
\(560\) 4.06155 0.171632
\(561\) −7.98014 −0.336922
\(562\) 3.24807 0.137011
\(563\) 29.0669 1.22503 0.612513 0.790461i \(-0.290159\pi\)
0.612513 + 0.790461i \(0.290159\pi\)
\(564\) −15.9328 −0.670892
\(565\) −6.08822 −0.256133
\(566\) −16.5593 −0.696040
\(567\) −1.98135 −0.0832091
\(568\) 28.9723 1.21565
\(569\) 0.910447 0.0381679 0.0190840 0.999818i \(-0.493925\pi\)
0.0190840 + 0.999818i \(0.493925\pi\)
\(570\) 4.70001 0.196862
\(571\) −38.9204 −1.62877 −0.814384 0.580326i \(-0.802925\pi\)
−0.814384 + 0.580326i \(0.802925\pi\)
\(572\) 9.61403 0.401983
\(573\) 11.5210 0.481298
\(574\) 4.15532 0.173440
\(575\) 0 0
\(576\) −0.872010 −0.0363338
\(577\) 46.4750 1.93478 0.967390 0.253292i \(-0.0815134\pi\)
0.967390 + 0.253292i \(0.0815134\pi\)
\(578\) −11.2725 −0.468875
\(579\) 10.6100 0.440937
\(580\) −2.68045 −0.111300
\(581\) −22.7904 −0.945505
\(582\) −3.49615 −0.144920
\(583\) 2.93018 0.121356
\(584\) −14.9395 −0.618200
\(585\) 4.37911 0.181054
\(586\) −11.1923 −0.462350
\(587\) 29.6971 1.22573 0.612866 0.790187i \(-0.290017\pi\)
0.612866 + 0.790187i \(0.290017\pi\)
\(588\) −5.08835 −0.209840
\(589\) −11.7685 −0.484914
\(590\) 4.24068 0.174586
\(591\) 9.41984 0.387480
\(592\) −1.36626 −0.0561529
\(593\) 40.7972 1.67534 0.837669 0.546178i \(-0.183918\pi\)
0.837669 + 0.546178i \(0.183918\pi\)
\(594\) 0.778910 0.0319590
\(595\) 11.9205 0.488691
\(596\) 22.9723 0.940982
\(597\) 14.5331 0.594800
\(598\) 0 0
\(599\) 25.0894 1.02513 0.512564 0.858649i \(-0.328696\pi\)
0.512564 + 0.858649i \(0.328696\pi\)
\(600\) −2.14642 −0.0876272
\(601\) 37.4790 1.52880 0.764400 0.644742i \(-0.223035\pi\)
0.764400 + 0.644742i \(0.223035\pi\)
\(602\) 9.87635 0.402530
\(603\) −12.0280 −0.489818
\(604\) −1.08222 −0.0440349
\(605\) 9.24062 0.375685
\(606\) −8.50569 −0.345520
\(607\) 40.7022 1.65205 0.826026 0.563632i \(-0.190596\pi\)
0.826026 + 0.563632i \(0.190596\pi\)
\(608\) 43.9930 1.78415
\(609\) −3.20870 −0.130023
\(610\) −7.48106 −0.302899
\(611\) 42.1539 1.70536
\(612\) −9.95799 −0.402528
\(613\) −28.5579 −1.15344 −0.576721 0.816941i \(-0.695668\pi\)
−0.576721 + 0.816941i \(0.695668\pi\)
\(614\) −18.4208 −0.743404
\(615\) 3.57137 0.144011
\(616\) −5.64100 −0.227282
\(617\) −22.9966 −0.925810 −0.462905 0.886408i \(-0.653193\pi\)
−0.462905 + 0.886408i \(0.653193\pi\)
\(618\) −10.7938 −0.434192
\(619\) −23.8429 −0.958328 −0.479164 0.877725i \(-0.659060\pi\)
−0.479164 + 0.877725i \(0.659060\pi\)
\(620\) 2.43373 0.0977408
\(621\) 0 0
\(622\) 13.5245 0.542282
\(623\) −10.3320 −0.413944
\(624\) 8.97666 0.359354
\(625\) 1.00000 0.0400000
\(626\) −4.91227 −0.196334
\(627\) 10.6162 0.423971
\(628\) 4.76221 0.190033
\(629\) −4.00991 −0.159886
\(630\) −1.16351 −0.0463553
\(631\) −11.3594 −0.452209 −0.226104 0.974103i \(-0.572599\pi\)
−0.226104 + 0.974103i \(0.572599\pi\)
\(632\) −26.4593 −1.05249
\(633\) 16.1442 0.641675
\(634\) −8.99997 −0.357435
\(635\) 5.17999 0.205562
\(636\) 3.65642 0.144986
\(637\) 13.4624 0.533400
\(638\) 1.26141 0.0499395
\(639\) 13.4980 0.533972
\(640\) −11.5052 −0.454785
\(641\) 2.81009 0.110992 0.0554958 0.998459i \(-0.482326\pi\)
0.0554958 + 0.998459i \(0.482326\pi\)
\(642\) −2.63496 −0.103994
\(643\) −17.8375 −0.703443 −0.351721 0.936105i \(-0.614404\pi\)
−0.351721 + 0.936105i \(0.614404\pi\)
\(644\) 0 0
\(645\) 8.48841 0.334231
\(646\) 28.2767 1.11253
\(647\) 25.3959 0.998415 0.499207 0.866483i \(-0.333625\pi\)
0.499207 + 0.866483i \(0.333625\pi\)
\(648\) 2.14642 0.0843193
\(649\) 9.57871 0.375997
\(650\) 2.57154 0.100864
\(651\) 2.91336 0.114183
\(652\) 21.2635 0.832741
\(653\) −26.1383 −1.02287 −0.511436 0.859321i \(-0.670886\pi\)
−0.511436 + 0.859321i \(0.670886\pi\)
\(654\) 0.573763 0.0224359
\(655\) −6.34097 −0.247762
\(656\) 7.32089 0.285833
\(657\) −6.96019 −0.271543
\(658\) −11.2001 −0.436625
\(659\) −9.65589 −0.376140 −0.188070 0.982156i \(-0.560223\pi\)
−0.188070 + 0.982156i \(0.560223\pi\)
\(660\) −2.19543 −0.0854570
\(661\) 0.841121 0.0327158 0.0163579 0.999866i \(-0.494793\pi\)
0.0163579 + 0.999866i \(0.494793\pi\)
\(662\) −10.2494 −0.398356
\(663\) 26.3461 1.02320
\(664\) 24.6890 0.958120
\(665\) −15.8582 −0.614953
\(666\) 0.391392 0.0151661
\(667\) 0 0
\(668\) −19.7743 −0.765089
\(669\) −21.2636 −0.822100
\(670\) −7.06319 −0.272875
\(671\) −16.8980 −0.652339
\(672\) −10.8907 −0.420118
\(673\) 4.90785 0.189184 0.0945919 0.995516i \(-0.469845\pi\)
0.0945919 + 0.995516i \(0.469845\pi\)
\(674\) 4.43007 0.170640
\(675\) −1.00000 −0.0384900
\(676\) −10.2232 −0.393202
\(677\) −25.1996 −0.968498 −0.484249 0.874930i \(-0.660907\pi\)
−0.484249 + 0.874930i \(0.660907\pi\)
\(678\) 3.57518 0.137304
\(679\) 11.7963 0.452699
\(680\) −12.9135 −0.495212
\(681\) 13.0490 0.500038
\(682\) −1.14530 −0.0438557
\(683\) −8.09321 −0.309678 −0.154839 0.987940i \(-0.549486\pi\)
−0.154839 + 0.987940i \(0.549486\pi\)
\(684\) 13.2474 0.506528
\(685\) −6.38278 −0.243873
\(686\) −11.7215 −0.447528
\(687\) 3.53598 0.134906
\(688\) 17.4003 0.663378
\(689\) −9.67388 −0.368545
\(690\) 0 0
\(691\) −12.3228 −0.468782 −0.234391 0.972142i \(-0.575310\pi\)
−0.234391 + 0.972142i \(0.575310\pi\)
\(692\) −29.4829 −1.12077
\(693\) −2.62810 −0.0998332
\(694\) −3.24642 −0.123232
\(695\) 7.86494 0.298334
\(696\) 3.47602 0.131758
\(697\) 21.4865 0.813859
\(698\) −10.5540 −0.399473
\(699\) −19.4283 −0.734848
\(700\) 3.27946 0.123952
\(701\) 29.7304 1.12290 0.561451 0.827510i \(-0.310243\pi\)
0.561451 + 0.827510i \(0.310243\pi\)
\(702\) −2.57154 −0.0970565
\(703\) 5.33451 0.201195
\(704\) −1.15665 −0.0435928
\(705\) −9.62613 −0.362541
\(706\) 8.31871 0.313079
\(707\) 28.6988 1.07933
\(708\) 11.9528 0.449212
\(709\) −46.6564 −1.75222 −0.876108 0.482114i \(-0.839869\pi\)
−0.876108 + 0.482114i \(0.839869\pi\)
\(710\) 7.92641 0.297473
\(711\) −12.3272 −0.462305
\(712\) 11.1928 0.419467
\(713\) 0 0
\(714\) −7.00005 −0.261970
\(715\) 5.80851 0.217226
\(716\) 31.5298 1.17832
\(717\) −0.106901 −0.00399227
\(718\) 17.6265 0.657814
\(719\) −15.8828 −0.592328 −0.296164 0.955137i \(-0.595707\pi\)
−0.296164 + 0.955137i \(0.595707\pi\)
\(720\) −2.04988 −0.0763947
\(721\) 36.4192 1.35632
\(722\) −26.4601 −0.984742
\(723\) −14.2230 −0.528960
\(724\) −34.4156 −1.27904
\(725\) −1.61945 −0.0601449
\(726\) −5.42637 −0.201391
\(727\) 18.5158 0.686714 0.343357 0.939205i \(-0.388436\pi\)
0.343357 + 0.939205i \(0.388436\pi\)
\(728\) 18.6235 0.690234
\(729\) 1.00000 0.0370370
\(730\) −4.08723 −0.151275
\(731\) 51.0690 1.88886
\(732\) −21.0861 −0.779363
\(733\) 3.77761 0.139529 0.0697646 0.997563i \(-0.477775\pi\)
0.0697646 + 0.997563i \(0.477775\pi\)
\(734\) −2.87847 −0.106246
\(735\) −3.07423 −0.113395
\(736\) 0 0
\(737\) −15.9541 −0.587677
\(738\) −2.09721 −0.0771994
\(739\) −4.03829 −0.148551 −0.0742755 0.997238i \(-0.523664\pi\)
−0.0742755 + 0.997238i \(0.523664\pi\)
\(740\) −1.10317 −0.0405535
\(741\) −35.0491 −1.28756
\(742\) 2.57031 0.0943589
\(743\) −11.3382 −0.415958 −0.207979 0.978133i \(-0.566689\pi\)
−0.207979 + 0.978133i \(0.566689\pi\)
\(744\) −3.15606 −0.115707
\(745\) 13.8792 0.508494
\(746\) 5.73848 0.210101
\(747\) 11.5024 0.420852
\(748\) −13.2084 −0.482948
\(749\) 8.89056 0.324854
\(750\) −0.587229 −0.0214426
\(751\) 25.3428 0.924772 0.462386 0.886679i \(-0.346993\pi\)
0.462386 + 0.886679i \(0.346993\pi\)
\(752\) −19.7325 −0.719568
\(753\) −0.794786 −0.0289636
\(754\) −4.16448 −0.151661
\(755\) −0.653845 −0.0237959
\(756\) −3.27946 −0.119273
\(757\) −12.5531 −0.456249 −0.228125 0.973632i \(-0.573259\pi\)
−0.228125 + 0.973632i \(0.573259\pi\)
\(758\) 17.5445 0.637246
\(759\) 0 0
\(760\) 17.1793 0.623158
\(761\) −54.0891 −1.96073 −0.980363 0.197200i \(-0.936815\pi\)
−0.980363 + 0.197200i \(0.936815\pi\)
\(762\) −3.04184 −0.110194
\(763\) −1.93592 −0.0700849
\(764\) 19.0692 0.689898
\(765\) −6.01632 −0.217521
\(766\) 17.4651 0.631039
\(767\) −31.6237 −1.14187
\(768\) 5.01220 0.180862
\(769\) −31.5517 −1.13778 −0.568892 0.822412i \(-0.692628\pi\)
−0.568892 + 0.822412i \(0.692628\pi\)
\(770\) −1.54330 −0.0556165
\(771\) 6.77389 0.243956
\(772\) 17.5613 0.632044
\(773\) −9.60816 −0.345581 −0.172791 0.984959i \(-0.555278\pi\)
−0.172791 + 0.984959i \(0.555278\pi\)
\(774\) −4.98464 −0.179169
\(775\) 1.47039 0.0528178
\(776\) −12.7790 −0.458739
\(777\) −1.32058 −0.0473757
\(778\) 14.7034 0.527141
\(779\) −28.5841 −1.02413
\(780\) 7.24813 0.259525
\(781\) 17.9039 0.640653
\(782\) 0 0
\(783\) 1.61945 0.0578744
\(784\) −6.30182 −0.225065
\(785\) 2.87719 0.102691
\(786\) 3.72361 0.132817
\(787\) 6.21337 0.221483 0.110741 0.993849i \(-0.464677\pi\)
0.110741 + 0.993849i \(0.464677\pi\)
\(788\) 15.5914 0.555419
\(789\) 1.60108 0.0570000
\(790\) −7.23888 −0.257548
\(791\) −12.0629 −0.428908
\(792\) 2.84704 0.101165
\(793\) 55.7880 1.98109
\(794\) −14.7938 −0.525011
\(795\) 2.20910 0.0783487
\(796\) 24.0546 0.852594
\(797\) 32.3141 1.14462 0.572312 0.820036i \(-0.306046\pi\)
0.572312 + 0.820036i \(0.306046\pi\)
\(798\) 9.31238 0.329655
\(799\) −57.9139 −2.04885
\(800\) −5.49659 −0.194334
\(801\) 5.21463 0.184250
\(802\) −16.9939 −0.600077
\(803\) −9.23211 −0.325794
\(804\) −19.9083 −0.702111
\(805\) 0 0
\(806\) 3.78116 0.133186
\(807\) −17.3308 −0.610074
\(808\) −31.0897 −1.09373
\(809\) −20.8406 −0.732716 −0.366358 0.930474i \(-0.619395\pi\)
−0.366358 + 0.930474i \(0.619395\pi\)
\(810\) 0.587229 0.0206331
\(811\) 11.2665 0.395620 0.197810 0.980240i \(-0.436617\pi\)
0.197810 + 0.980240i \(0.436617\pi\)
\(812\) −5.31093 −0.186377
\(813\) −5.72514 −0.200789
\(814\) 0.519147 0.0181961
\(815\) 12.8468 0.450002
\(816\) −12.3328 −0.431733
\(817\) −67.9387 −2.37687
\(818\) −12.9761 −0.453699
\(819\) 8.67656 0.303184
\(820\) 5.91119 0.206428
\(821\) −50.9227 −1.77721 −0.888607 0.458670i \(-0.848326\pi\)
−0.888607 + 0.458670i \(0.848326\pi\)
\(822\) 3.74815 0.130732
\(823\) 44.4162 1.54825 0.774125 0.633032i \(-0.218190\pi\)
0.774125 + 0.633032i \(0.218190\pi\)
\(824\) −39.4532 −1.37442
\(825\) −1.32641 −0.0461798
\(826\) 8.40229 0.292353
\(827\) 6.97399 0.242510 0.121255 0.992621i \(-0.461308\pi\)
0.121255 + 0.992621i \(0.461308\pi\)
\(828\) 0 0
\(829\) 21.8823 0.760004 0.380002 0.924986i \(-0.375923\pi\)
0.380002 + 0.924986i \(0.375923\pi\)
\(830\) 6.75457 0.234454
\(831\) −4.21841 −0.146335
\(832\) 3.81863 0.132387
\(833\) −18.4956 −0.640834
\(834\) −4.61852 −0.159926
\(835\) −11.9470 −0.413444
\(836\) 17.5716 0.607725
\(837\) −1.47039 −0.0508240
\(838\) −14.9946 −0.517981
\(839\) 29.3202 1.01225 0.506123 0.862461i \(-0.331078\pi\)
0.506123 + 0.862461i \(0.331078\pi\)
\(840\) −4.25282 −0.146736
\(841\) −26.3774 −0.909565
\(842\) 11.9628 0.412266
\(843\) 5.53117 0.190504
\(844\) 26.7213 0.919785
\(845\) −6.17658 −0.212481
\(846\) 5.65275 0.194345
\(847\) 18.3090 0.629103
\(848\) 4.52840 0.155506
\(849\) −28.1991 −0.967789
\(850\) −3.53296 −0.121180
\(851\) 0 0
\(852\) 22.3413 0.765402
\(853\) 29.6748 1.01605 0.508023 0.861343i \(-0.330376\pi\)
0.508023 + 0.861343i \(0.330376\pi\)
\(854\) −14.8226 −0.507220
\(855\) 8.00370 0.273721
\(856\) −9.63121 −0.329188
\(857\) 19.7671 0.675231 0.337616 0.941284i \(-0.390380\pi\)
0.337616 + 0.941284i \(0.390380\pi\)
\(858\) −3.41093 −0.116447
\(859\) −36.9601 −1.26106 −0.630531 0.776164i \(-0.717163\pi\)
−0.630531 + 0.776164i \(0.717163\pi\)
\(860\) 14.0497 0.479090
\(861\) 7.07614 0.241154
\(862\) −3.50929 −0.119527
\(863\) 43.1825 1.46995 0.734975 0.678094i \(-0.237194\pi\)
0.734975 + 0.678094i \(0.237194\pi\)
\(864\) 5.49659 0.186998
\(865\) −17.8127 −0.605651
\(866\) −6.56777 −0.223182
\(867\) −19.1961 −0.651935
\(868\) 4.82207 0.163672
\(869\) −16.3510 −0.554668
\(870\) 0.950988 0.0322415
\(871\) 52.6719 1.78472
\(872\) 2.09720 0.0710200
\(873\) −5.95363 −0.201500
\(874\) 0 0
\(875\) 1.98135 0.0669820
\(876\) −11.5202 −0.389233
\(877\) −14.4857 −0.489147 −0.244573 0.969631i \(-0.578648\pi\)
−0.244573 + 0.969631i \(0.578648\pi\)
\(878\) −14.5919 −0.492452
\(879\) −19.0595 −0.642861
\(880\) −2.71900 −0.0916573
\(881\) −13.7756 −0.464111 −0.232055 0.972703i \(-0.574545\pi\)
−0.232055 + 0.972703i \(0.574545\pi\)
\(882\) 1.80528 0.0607869
\(883\) −6.02573 −0.202782 −0.101391 0.994847i \(-0.532329\pi\)
−0.101391 + 0.994847i \(0.532329\pi\)
\(884\) 43.6071 1.46666
\(885\) 7.22150 0.242748
\(886\) −9.34383 −0.313912
\(887\) 3.55204 0.119266 0.0596329 0.998220i \(-0.481007\pi\)
0.0596329 + 0.998220i \(0.481007\pi\)
\(888\) 1.43060 0.0480078
\(889\) 10.2634 0.344223
\(890\) 3.06218 0.102645
\(891\) 1.32641 0.0444366
\(892\) −35.1948 −1.17841
\(893\) 77.0446 2.57820
\(894\) −8.15026 −0.272586
\(895\) 19.0494 0.636751
\(896\) −22.7960 −0.761560
\(897\) 0 0
\(898\) −16.8524 −0.562373
\(899\) −2.38122 −0.0794180
\(900\) −1.65516 −0.0551721
\(901\) 13.2906 0.442776
\(902\) −2.78177 −0.0926229
\(903\) 16.8186 0.559686
\(904\) 13.0679 0.434631
\(905\) −20.7929 −0.691178
\(906\) 0.383957 0.0127561
\(907\) 15.2309 0.505733 0.252867 0.967501i \(-0.418627\pi\)
0.252867 + 0.967501i \(0.418627\pi\)
\(908\) 21.5982 0.716761
\(909\) −14.4844 −0.480419
\(910\) 5.09513 0.168902
\(911\) 0.923469 0.0305959 0.0152979 0.999883i \(-0.495130\pi\)
0.0152979 + 0.999883i \(0.495130\pi\)
\(912\) 16.4067 0.543279
\(913\) 15.2570 0.504933
\(914\) −9.49166 −0.313956
\(915\) −12.7396 −0.421158
\(916\) 5.85262 0.193376
\(917\) −12.5637 −0.414891
\(918\) 3.53296 0.116605
\(919\) 24.1622 0.797038 0.398519 0.917160i \(-0.369524\pi\)
0.398519 + 0.917160i \(0.369524\pi\)
\(920\) 0 0
\(921\) −31.3691 −1.03365
\(922\) 10.8111 0.356044
\(923\) −59.1091 −1.94560
\(924\) −4.34993 −0.143102
\(925\) −0.666505 −0.0219146
\(926\) 3.24505 0.106639
\(927\) −18.3810 −0.603710
\(928\) 8.90145 0.292204
\(929\) 44.8830 1.47256 0.736281 0.676676i \(-0.236580\pi\)
0.736281 + 0.676676i \(0.236580\pi\)
\(930\) −0.863454 −0.0283138
\(931\) 24.6052 0.806404
\(932\) −32.1571 −1.05334
\(933\) 23.0310 0.754001
\(934\) −13.0563 −0.427215
\(935\) −7.98014 −0.260978
\(936\) −9.39939 −0.307229
\(937\) −35.7587 −1.16819 −0.584093 0.811687i \(-0.698550\pi\)
−0.584093 + 0.811687i \(0.698550\pi\)
\(938\) −13.9947 −0.456943
\(939\) −8.36516 −0.272987
\(940\) −15.9328 −0.519671
\(941\) 12.2723 0.400064 0.200032 0.979789i \(-0.435895\pi\)
0.200032 + 0.979789i \(0.435895\pi\)
\(942\) −1.68957 −0.0550491
\(943\) 0 0
\(944\) 14.8032 0.481805
\(945\) −1.98135 −0.0644535
\(946\) −6.61170 −0.214965
\(947\) 16.4496 0.534542 0.267271 0.963621i \(-0.413878\pi\)
0.267271 + 0.963621i \(0.413878\pi\)
\(948\) −20.4035 −0.662674
\(949\) 30.4794 0.989404
\(950\) 4.70001 0.152488
\(951\) −15.3262 −0.496985
\(952\) −25.5863 −0.829257
\(953\) 44.4403 1.43956 0.719781 0.694202i \(-0.244242\pi\)
0.719781 + 0.694202i \(0.244242\pi\)
\(954\) −1.29725 −0.0419999
\(955\) 11.5210 0.372812
\(956\) −0.176938 −0.00572257
\(957\) 2.14806 0.0694370
\(958\) 2.93124 0.0947041
\(959\) −12.6465 −0.408378
\(960\) −0.872010 −0.0281440
\(961\) −28.8380 −0.930257
\(962\) −1.71395 −0.0552598
\(963\) −4.48711 −0.144595
\(964\) −23.5414 −0.758218
\(965\) 10.6100 0.341548
\(966\) 0 0
\(967\) −47.5786 −1.53003 −0.765013 0.644015i \(-0.777267\pi\)
−0.765013 + 0.644015i \(0.777267\pi\)
\(968\) −19.8342 −0.637497
\(969\) 48.1528 1.54689
\(970\) −3.49615 −0.112254
\(971\) −19.0649 −0.611820 −0.305910 0.952060i \(-0.598961\pi\)
−0.305910 + 0.952060i \(0.598961\pi\)
\(972\) 1.65516 0.0530893
\(973\) 15.5832 0.499576
\(974\) 7.60260 0.243603
\(975\) 4.37911 0.140244
\(976\) −26.1147 −0.835910
\(977\) −34.1970 −1.09406 −0.547029 0.837114i \(-0.684241\pi\)
−0.547029 + 0.837114i \(0.684241\pi\)
\(978\) −7.54399 −0.241230
\(979\) 6.91676 0.221061
\(980\) −5.08835 −0.162541
\(981\) 0.977068 0.0311954
\(982\) −4.28670 −0.136794
\(983\) −3.65780 −0.116666 −0.0583329 0.998297i \(-0.518578\pi\)
−0.0583329 + 0.998297i \(0.518578\pi\)
\(984\) −7.66564 −0.244372
\(985\) 9.41984 0.300141
\(986\) 5.72145 0.182208
\(987\) −19.0728 −0.607093
\(988\) −58.0118 −1.84560
\(989\) 0 0
\(990\) 0.778910 0.0247554
\(991\) 39.2208 1.24589 0.622945 0.782265i \(-0.285936\pi\)
0.622945 + 0.782265i \(0.285936\pi\)
\(992\) −8.08210 −0.256607
\(993\) −17.4539 −0.553883
\(994\) 15.7050 0.498133
\(995\) 14.5331 0.460730
\(996\) 19.0384 0.603255
\(997\) 37.1319 1.17598 0.587990 0.808868i \(-0.299919\pi\)
0.587990 + 0.808868i \(0.299919\pi\)
\(998\) 10.2101 0.323196
\(999\) 0.666505 0.0210873
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bt.1.11 25
23.11 odd 22 345.2.m.d.121.2 50
23.21 odd 22 345.2.m.d.211.2 yes 50
23.22 odd 2 7935.2.a.bu.1.11 25
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.d.121.2 50 23.11 odd 22
345.2.m.d.211.2 yes 50 23.21 odd 22
7935.2.a.bt.1.11 25 1.1 even 1 trivial
7935.2.a.bu.1.11 25 23.22 odd 2