Properties

Label 7935.2.a.bq.1.3
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-15,12,15,0,5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 21x^{13} + 172x^{11} - 696x^{9} + 1466x^{7} - 1583x^{5} + 803x^{3} - 11x^{2} - 143x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-2.12733\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.12733 q^{2} -1.00000 q^{3} +2.52552 q^{4} +1.00000 q^{5} +2.12733 q^{6} -2.46529 q^{7} -1.11794 q^{8} +1.00000 q^{9} -2.12733 q^{10} -2.49782 q^{11} -2.52552 q^{12} +0.527315 q^{13} +5.24447 q^{14} -1.00000 q^{15} -2.67280 q^{16} -4.57109 q^{17} -2.12733 q^{18} -5.03906 q^{19} +2.52552 q^{20} +2.46529 q^{21} +5.31368 q^{22} +1.11794 q^{24} +1.00000 q^{25} -1.12177 q^{26} -1.00000 q^{27} -6.22613 q^{28} +1.30386 q^{29} +2.12733 q^{30} -1.05220 q^{31} +7.92181 q^{32} +2.49782 q^{33} +9.72420 q^{34} -2.46529 q^{35} +2.52552 q^{36} +4.73198 q^{37} +10.7197 q^{38} -0.527315 q^{39} -1.11794 q^{40} -2.46869 q^{41} -5.24447 q^{42} +12.2431 q^{43} -6.30828 q^{44} +1.00000 q^{45} +6.76385 q^{47} +2.67280 q^{48} -0.922350 q^{49} -2.12733 q^{50} +4.57109 q^{51} +1.33174 q^{52} +2.41092 q^{53} +2.12733 q^{54} -2.49782 q^{55} +2.75605 q^{56} +5.03906 q^{57} -2.77374 q^{58} +1.49746 q^{59} -2.52552 q^{60} +6.45669 q^{61} +2.23838 q^{62} -2.46529 q^{63} -11.5067 q^{64} +0.527315 q^{65} -5.31368 q^{66} +8.91145 q^{67} -11.5444 q^{68} +5.24447 q^{70} +2.83000 q^{71} -1.11794 q^{72} -14.8821 q^{73} -10.0665 q^{74} -1.00000 q^{75} -12.7262 q^{76} +6.15785 q^{77} +1.12177 q^{78} +15.2049 q^{79} -2.67280 q^{80} +1.00000 q^{81} +5.25171 q^{82} +0.703225 q^{83} +6.22613 q^{84} -4.57109 q^{85} -26.0450 q^{86} -1.30386 q^{87} +2.79242 q^{88} +7.10193 q^{89} -2.12733 q^{90} -1.29998 q^{91} +1.05220 q^{93} -14.3889 q^{94} -5.03906 q^{95} -7.92181 q^{96} -3.32670 q^{97} +1.96214 q^{98} -2.49782 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{3} + 12 q^{4} + 15 q^{5} + 5 q^{7} + 15 q^{9} - 13 q^{11} - 12 q^{12} - 24 q^{13} - 15 q^{14} - 15 q^{15} + 2 q^{16} - 2 q^{17} - 13 q^{19} + 12 q^{20} - 5 q^{21} + 9 q^{22} + 15 q^{25} - 9 q^{26}+ \cdots - 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.12733 −1.50425 −0.752123 0.659022i \(-0.770970\pi\)
−0.752123 + 0.659022i \(0.770970\pi\)
\(3\) −1.00000 −0.577350
\(4\) 2.52552 1.26276
\(5\) 1.00000 0.447214
\(6\) 2.12733 0.868477
\(7\) −2.46529 −0.931792 −0.465896 0.884840i \(-0.654268\pi\)
−0.465896 + 0.884840i \(0.654268\pi\)
\(8\) −1.11794 −0.395253
\(9\) 1.00000 0.333333
\(10\) −2.12733 −0.672720
\(11\) −2.49782 −0.753121 −0.376561 0.926392i \(-0.622893\pi\)
−0.376561 + 0.926392i \(0.622893\pi\)
\(12\) −2.52552 −0.729054
\(13\) 0.527315 0.146251 0.0731254 0.997323i \(-0.476703\pi\)
0.0731254 + 0.997323i \(0.476703\pi\)
\(14\) 5.24447 1.40164
\(15\) −1.00000 −0.258199
\(16\) −2.67280 −0.668201
\(17\) −4.57109 −1.10865 −0.554326 0.832300i \(-0.687024\pi\)
−0.554326 + 0.832300i \(0.687024\pi\)
\(18\) −2.12733 −0.501416
\(19\) −5.03906 −1.15604 −0.578020 0.816023i \(-0.696174\pi\)
−0.578020 + 0.816023i \(0.696174\pi\)
\(20\) 2.52552 0.564722
\(21\) 2.46529 0.537970
\(22\) 5.31368 1.13288
\(23\) 0 0
\(24\) 1.11794 0.228199
\(25\) 1.00000 0.200000
\(26\) −1.12177 −0.219997
\(27\) −1.00000 −0.192450
\(28\) −6.22613 −1.17663
\(29\) 1.30386 0.242122 0.121061 0.992645i \(-0.461370\pi\)
0.121061 + 0.992645i \(0.461370\pi\)
\(30\) 2.12733 0.388395
\(31\) −1.05220 −0.188981 −0.0944905 0.995526i \(-0.530122\pi\)
−0.0944905 + 0.995526i \(0.530122\pi\)
\(32\) 7.92181 1.40039
\(33\) 2.49782 0.434815
\(34\) 9.72420 1.66769
\(35\) −2.46529 −0.416710
\(36\) 2.52552 0.420919
\(37\) 4.73198 0.777932 0.388966 0.921252i \(-0.372832\pi\)
0.388966 + 0.921252i \(0.372832\pi\)
\(38\) 10.7197 1.73897
\(39\) −0.527315 −0.0844380
\(40\) −1.11794 −0.176762
\(41\) −2.46869 −0.385545 −0.192772 0.981243i \(-0.561748\pi\)
−0.192772 + 0.981243i \(0.561748\pi\)
\(42\) −5.24447 −0.809240
\(43\) 12.2431 1.86705 0.933526 0.358509i \(-0.116715\pi\)
0.933526 + 0.358509i \(0.116715\pi\)
\(44\) −6.30828 −0.951009
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) 6.76385 0.986608 0.493304 0.869857i \(-0.335789\pi\)
0.493304 + 0.869857i \(0.335789\pi\)
\(48\) 2.67280 0.385786
\(49\) −0.922350 −0.131764
\(50\) −2.12733 −0.300849
\(51\) 4.57109 0.640081
\(52\) 1.33174 0.184679
\(53\) 2.41092 0.331166 0.165583 0.986196i \(-0.447049\pi\)
0.165583 + 0.986196i \(0.447049\pi\)
\(54\) 2.12733 0.289492
\(55\) −2.49782 −0.336806
\(56\) 2.75605 0.368293
\(57\) 5.03906 0.667439
\(58\) −2.77374 −0.364210
\(59\) 1.49746 0.194953 0.0974764 0.995238i \(-0.468923\pi\)
0.0974764 + 0.995238i \(0.468923\pi\)
\(60\) −2.52552 −0.326043
\(61\) 6.45669 0.826695 0.413347 0.910573i \(-0.364360\pi\)
0.413347 + 0.910573i \(0.364360\pi\)
\(62\) 2.23838 0.284274
\(63\) −2.46529 −0.310597
\(64\) −11.5067 −1.43833
\(65\) 0.527315 0.0654054
\(66\) −5.31368 −0.654068
\(67\) 8.91145 1.08871 0.544354 0.838856i \(-0.316775\pi\)
0.544354 + 0.838856i \(0.316775\pi\)
\(68\) −11.5444 −1.39996
\(69\) 0 0
\(70\) 5.24447 0.626834
\(71\) 2.83000 0.335859 0.167930 0.985799i \(-0.446292\pi\)
0.167930 + 0.985799i \(0.446292\pi\)
\(72\) −1.11794 −0.131751
\(73\) −14.8821 −1.74182 −0.870912 0.491440i \(-0.836471\pi\)
−0.870912 + 0.491440i \(0.836471\pi\)
\(74\) −10.0665 −1.17020
\(75\) −1.00000 −0.115470
\(76\) −12.7262 −1.45980
\(77\) 6.15785 0.701752
\(78\) 1.12177 0.127016
\(79\) 15.2049 1.71068 0.855341 0.518066i \(-0.173348\pi\)
0.855341 + 0.518066i \(0.173348\pi\)
\(80\) −2.67280 −0.298828
\(81\) 1.00000 0.111111
\(82\) 5.25171 0.579955
\(83\) 0.703225 0.0771889 0.0385945 0.999255i \(-0.487712\pi\)
0.0385945 + 0.999255i \(0.487712\pi\)
\(84\) 6.22613 0.679326
\(85\) −4.57109 −0.495804
\(86\) −26.0450 −2.80851
\(87\) −1.30386 −0.139789
\(88\) 2.79242 0.297673
\(89\) 7.10193 0.752803 0.376402 0.926457i \(-0.377161\pi\)
0.376402 + 0.926457i \(0.377161\pi\)
\(90\) −2.12733 −0.224240
\(91\) −1.29998 −0.136275
\(92\) 0 0
\(93\) 1.05220 0.109108
\(94\) −14.3889 −1.48410
\(95\) −5.03906 −0.516996
\(96\) −7.92181 −0.808516
\(97\) −3.32670 −0.337775 −0.168888 0.985635i \(-0.554018\pi\)
−0.168888 + 0.985635i \(0.554018\pi\)
\(98\) 1.96214 0.198206
\(99\) −2.49782 −0.251040
\(100\) 2.52552 0.252552
\(101\) −2.67750 −0.266421 −0.133210 0.991088i \(-0.542529\pi\)
−0.133210 + 0.991088i \(0.542529\pi\)
\(102\) −9.72420 −0.962839
\(103\) 5.69796 0.561437 0.280719 0.959790i \(-0.409427\pi\)
0.280719 + 0.959790i \(0.409427\pi\)
\(104\) −0.589508 −0.0578060
\(105\) 2.46529 0.240588
\(106\) −5.12882 −0.498155
\(107\) 17.2402 1.66667 0.833335 0.552769i \(-0.186429\pi\)
0.833335 + 0.552769i \(0.186429\pi\)
\(108\) −2.52552 −0.243018
\(109\) −16.9758 −1.62599 −0.812995 0.582271i \(-0.802164\pi\)
−0.812995 + 0.582271i \(0.802164\pi\)
\(110\) 5.31368 0.506639
\(111\) −4.73198 −0.449139
\(112\) 6.58923 0.622624
\(113\) 5.38102 0.506204 0.253102 0.967440i \(-0.418549\pi\)
0.253102 + 0.967440i \(0.418549\pi\)
\(114\) −10.7197 −1.00399
\(115\) 0 0
\(116\) 3.29293 0.305741
\(117\) 0.527315 0.0487503
\(118\) −3.18559 −0.293257
\(119\) 11.2691 1.03303
\(120\) 1.11794 0.102054
\(121\) −4.76090 −0.432809
\(122\) −13.7355 −1.24355
\(123\) 2.46869 0.222594
\(124\) −2.65735 −0.238637
\(125\) 1.00000 0.0894427
\(126\) 5.24447 0.467215
\(127\) −19.9557 −1.77078 −0.885390 0.464848i \(-0.846109\pi\)
−0.885390 + 0.464848i \(0.846109\pi\)
\(128\) 8.63481 0.763216
\(129\) −12.2431 −1.07794
\(130\) −1.12177 −0.0983858
\(131\) −21.3624 −1.86644 −0.933220 0.359306i \(-0.883013\pi\)
−0.933220 + 0.359306i \(0.883013\pi\)
\(132\) 6.30828 0.549066
\(133\) 12.4227 1.07719
\(134\) −18.9576 −1.63768
\(135\) −1.00000 −0.0860663
\(136\) 5.11022 0.438198
\(137\) 11.7144 1.00083 0.500413 0.865787i \(-0.333182\pi\)
0.500413 + 0.865787i \(0.333182\pi\)
\(138\) 0 0
\(139\) 5.99314 0.508331 0.254166 0.967161i \(-0.418199\pi\)
0.254166 + 0.967161i \(0.418199\pi\)
\(140\) −6.22613 −0.526204
\(141\) −6.76385 −0.569619
\(142\) −6.02033 −0.505215
\(143\) −1.31714 −0.110145
\(144\) −2.67280 −0.222734
\(145\) 1.30386 0.108280
\(146\) 31.6592 2.62013
\(147\) 0.922350 0.0760741
\(148\) 11.9507 0.982340
\(149\) 0.298095 0.0244209 0.0122104 0.999925i \(-0.496113\pi\)
0.0122104 + 0.999925i \(0.496113\pi\)
\(150\) 2.12733 0.173695
\(151\) −7.36031 −0.598974 −0.299487 0.954100i \(-0.596815\pi\)
−0.299487 + 0.954100i \(0.596815\pi\)
\(152\) 5.63338 0.456927
\(153\) −4.57109 −0.369551
\(154\) −13.0997 −1.05561
\(155\) −1.05220 −0.0845149
\(156\) −1.33174 −0.106625
\(157\) 14.3607 1.14611 0.573053 0.819518i \(-0.305759\pi\)
0.573053 + 0.819518i \(0.305759\pi\)
\(158\) −32.3457 −2.57329
\(159\) −2.41092 −0.191199
\(160\) 7.92181 0.626274
\(161\) 0 0
\(162\) −2.12733 −0.167139
\(163\) 9.41408 0.737368 0.368684 0.929555i \(-0.379808\pi\)
0.368684 + 0.929555i \(0.379808\pi\)
\(164\) −6.23472 −0.486850
\(165\) 2.49782 0.194455
\(166\) −1.49599 −0.116111
\(167\) 20.1617 1.56016 0.780081 0.625679i \(-0.215178\pi\)
0.780081 + 0.625679i \(0.215178\pi\)
\(168\) −2.75605 −0.212634
\(169\) −12.7219 −0.978611
\(170\) 9.72420 0.745812
\(171\) −5.03906 −0.385346
\(172\) 30.9201 2.35764
\(173\) −11.9949 −0.911958 −0.455979 0.889991i \(-0.650711\pi\)
−0.455979 + 0.889991i \(0.650711\pi\)
\(174\) 2.77374 0.210277
\(175\) −2.46529 −0.186358
\(176\) 6.67618 0.503236
\(177\) −1.49746 −0.112556
\(178\) −15.1081 −1.13240
\(179\) 4.08883 0.305613 0.152807 0.988256i \(-0.451169\pi\)
0.152807 + 0.988256i \(0.451169\pi\)
\(180\) 2.52552 0.188241
\(181\) −15.6355 −1.16218 −0.581090 0.813839i \(-0.697374\pi\)
−0.581090 + 0.813839i \(0.697374\pi\)
\(182\) 2.76549 0.204992
\(183\) −6.45669 −0.477292
\(184\) 0 0
\(185\) 4.73198 0.347902
\(186\) −2.23838 −0.164126
\(187\) 11.4178 0.834949
\(188\) 17.0822 1.24585
\(189\) 2.46529 0.179323
\(190\) 10.7197 0.777690
\(191\) 22.2616 1.61079 0.805395 0.592738i \(-0.201953\pi\)
0.805395 + 0.592738i \(0.201953\pi\)
\(192\) 11.5067 0.830422
\(193\) −4.76315 −0.342859 −0.171430 0.985196i \(-0.554839\pi\)
−0.171430 + 0.985196i \(0.554839\pi\)
\(194\) 7.07698 0.508097
\(195\) −0.527315 −0.0377618
\(196\) −2.32941 −0.166386
\(197\) −13.7522 −0.979801 −0.489900 0.871778i \(-0.662967\pi\)
−0.489900 + 0.871778i \(0.662967\pi\)
\(198\) 5.31368 0.377627
\(199\) −2.66387 −0.188836 −0.0944182 0.995533i \(-0.530099\pi\)
−0.0944182 + 0.995533i \(0.530099\pi\)
\(200\) −1.11794 −0.0790505
\(201\) −8.91145 −0.628565
\(202\) 5.69590 0.400762
\(203\) −3.21440 −0.225607
\(204\) 11.5444 0.808267
\(205\) −2.46869 −0.172421
\(206\) −12.1214 −0.844540
\(207\) 0 0
\(208\) −1.40941 −0.0977249
\(209\) 12.5867 0.870637
\(210\) −5.24447 −0.361903
\(211\) −1.70109 −0.117108 −0.0585539 0.998284i \(-0.518649\pi\)
−0.0585539 + 0.998284i \(0.518649\pi\)
\(212\) 6.08882 0.418182
\(213\) −2.83000 −0.193908
\(214\) −36.6754 −2.50708
\(215\) 12.2431 0.834971
\(216\) 1.11794 0.0760664
\(217\) 2.59398 0.176091
\(218\) 36.1131 2.44589
\(219\) 14.8821 1.00564
\(220\) −6.30828 −0.425304
\(221\) −2.41040 −0.162141
\(222\) 10.0665 0.675616
\(223\) −25.3598 −1.69822 −0.849110 0.528216i \(-0.822861\pi\)
−0.849110 + 0.528216i \(0.822861\pi\)
\(224\) −19.5295 −1.30487
\(225\) 1.00000 0.0666667
\(226\) −11.4472 −0.761455
\(227\) 5.13230 0.340643 0.170321 0.985389i \(-0.445519\pi\)
0.170321 + 0.985389i \(0.445519\pi\)
\(228\) 12.7262 0.842814
\(229\) −8.56535 −0.566014 −0.283007 0.959118i \(-0.591332\pi\)
−0.283007 + 0.959118i \(0.591332\pi\)
\(230\) 0 0
\(231\) −6.15785 −0.405157
\(232\) −1.45765 −0.0956991
\(233\) −1.79157 −0.117370 −0.0586850 0.998277i \(-0.518691\pi\)
−0.0586850 + 0.998277i \(0.518691\pi\)
\(234\) −1.12177 −0.0733324
\(235\) 6.76385 0.441225
\(236\) 3.78186 0.246178
\(237\) −15.2049 −0.987663
\(238\) −23.9730 −1.55394
\(239\) 4.62309 0.299043 0.149521 0.988759i \(-0.452227\pi\)
0.149521 + 0.988759i \(0.452227\pi\)
\(240\) 2.67280 0.172529
\(241\) −21.1252 −1.36080 −0.680398 0.732843i \(-0.738193\pi\)
−0.680398 + 0.732843i \(0.738193\pi\)
\(242\) 10.1280 0.651051
\(243\) −1.00000 −0.0641500
\(244\) 16.3065 1.04392
\(245\) −0.922350 −0.0589267
\(246\) −5.25171 −0.334837
\(247\) −2.65717 −0.169072
\(248\) 1.17630 0.0746952
\(249\) −0.703225 −0.0445651
\(250\) −2.12733 −0.134544
\(251\) −31.1876 −1.96854 −0.984272 0.176658i \(-0.943471\pi\)
−0.984272 + 0.176658i \(0.943471\pi\)
\(252\) −6.22613 −0.392209
\(253\) 0 0
\(254\) 42.4522 2.66369
\(255\) 4.57109 0.286253
\(256\) 4.64428 0.290267
\(257\) 22.0231 1.37376 0.686880 0.726771i \(-0.258980\pi\)
0.686880 + 0.726771i \(0.258980\pi\)
\(258\) 26.0450 1.62149
\(259\) −11.6657 −0.724871
\(260\) 1.33174 0.0825911
\(261\) 1.30386 0.0807072
\(262\) 45.4447 2.80759
\(263\) 23.4299 1.44475 0.722375 0.691502i \(-0.243051\pi\)
0.722375 + 0.691502i \(0.243051\pi\)
\(264\) −2.79242 −0.171862
\(265\) 2.41092 0.148102
\(266\) −26.4272 −1.62036
\(267\) −7.10193 −0.434631
\(268\) 22.5060 1.37477
\(269\) 12.3997 0.756022 0.378011 0.925801i \(-0.376608\pi\)
0.378011 + 0.925801i \(0.376608\pi\)
\(270\) 2.12733 0.129465
\(271\) 25.3394 1.53926 0.769629 0.638491i \(-0.220441\pi\)
0.769629 + 0.638491i \(0.220441\pi\)
\(272\) 12.2176 0.740802
\(273\) 1.29998 0.0786786
\(274\) −24.9203 −1.50549
\(275\) −2.49782 −0.150624
\(276\) 0 0
\(277\) −12.9940 −0.780736 −0.390368 0.920659i \(-0.627652\pi\)
−0.390368 + 0.920659i \(0.627652\pi\)
\(278\) −12.7494 −0.764655
\(279\) −1.05220 −0.0629937
\(280\) 2.75605 0.164706
\(281\) −8.95711 −0.534337 −0.267168 0.963650i \(-0.586088\pi\)
−0.267168 + 0.963650i \(0.586088\pi\)
\(282\) 14.3889 0.856847
\(283\) −15.5605 −0.924974 −0.462487 0.886626i \(-0.653043\pi\)
−0.462487 + 0.886626i \(0.653043\pi\)
\(284\) 7.14721 0.424109
\(285\) 5.03906 0.298488
\(286\) 2.80198 0.165685
\(287\) 6.08604 0.359248
\(288\) 7.92181 0.466797
\(289\) 3.89487 0.229110
\(290\) −2.77374 −0.162880
\(291\) 3.32670 0.195015
\(292\) −37.5851 −2.19950
\(293\) −22.0424 −1.28773 −0.643865 0.765139i \(-0.722670\pi\)
−0.643865 + 0.765139i \(0.722670\pi\)
\(294\) −1.96214 −0.114434
\(295\) 1.49746 0.0871855
\(296\) −5.29008 −0.307480
\(297\) 2.49782 0.144938
\(298\) −0.634145 −0.0367350
\(299\) 0 0
\(300\) −2.52552 −0.145811
\(301\) −30.1827 −1.73970
\(302\) 15.6578 0.901004
\(303\) 2.67750 0.153818
\(304\) 13.4684 0.772466
\(305\) 6.45669 0.369709
\(306\) 9.72420 0.555896
\(307\) −14.2470 −0.813117 −0.406558 0.913625i \(-0.633271\pi\)
−0.406558 + 0.913625i \(0.633271\pi\)
\(308\) 15.5517 0.886143
\(309\) −5.69796 −0.324146
\(310\) 2.23838 0.127131
\(311\) −11.0558 −0.626920 −0.313460 0.949601i \(-0.601488\pi\)
−0.313460 + 0.949601i \(0.601488\pi\)
\(312\) 0.589508 0.0333743
\(313\) 18.0195 1.01852 0.509262 0.860612i \(-0.329919\pi\)
0.509262 + 0.860612i \(0.329919\pi\)
\(314\) −30.5498 −1.72403
\(315\) −2.46529 −0.138903
\(316\) 38.4001 2.16018
\(317\) −20.1547 −1.13200 −0.565999 0.824406i \(-0.691510\pi\)
−0.565999 + 0.824406i \(0.691510\pi\)
\(318\) 5.12882 0.287610
\(319\) −3.25682 −0.182347
\(320\) −11.5067 −0.643242
\(321\) −17.2402 −0.962252
\(322\) 0 0
\(323\) 23.0340 1.28165
\(324\) 2.52552 0.140306
\(325\) 0.527315 0.0292502
\(326\) −20.0268 −1.10918
\(327\) 16.9758 0.938765
\(328\) 2.75986 0.152388
\(329\) −16.6748 −0.919314
\(330\) −5.31368 −0.292508
\(331\) −1.48597 −0.0816760 −0.0408380 0.999166i \(-0.513003\pi\)
−0.0408380 + 0.999166i \(0.513003\pi\)
\(332\) 1.77600 0.0974709
\(333\) 4.73198 0.259311
\(334\) −42.8906 −2.34687
\(335\) 8.91145 0.486885
\(336\) −6.58923 −0.359472
\(337\) −9.72609 −0.529814 −0.264907 0.964274i \(-0.585341\pi\)
−0.264907 + 0.964274i \(0.585341\pi\)
\(338\) 27.0637 1.47207
\(339\) −5.38102 −0.292257
\(340\) −11.5444 −0.626081
\(341\) 2.62821 0.142326
\(342\) 10.7197 0.579656
\(343\) 19.5309 1.05457
\(344\) −13.6871 −0.737957
\(345\) 0 0
\(346\) 25.5171 1.37181
\(347\) 33.8197 1.81554 0.907768 0.419474i \(-0.137785\pi\)
0.907768 + 0.419474i \(0.137785\pi\)
\(348\) −3.29293 −0.176520
\(349\) 5.32711 0.285154 0.142577 0.989784i \(-0.454461\pi\)
0.142577 + 0.989784i \(0.454461\pi\)
\(350\) 5.24447 0.280329
\(351\) −0.527315 −0.0281460
\(352\) −19.7872 −1.05466
\(353\) 30.1157 1.60290 0.801448 0.598064i \(-0.204063\pi\)
0.801448 + 0.598064i \(0.204063\pi\)
\(354\) 3.18559 0.169312
\(355\) 2.83000 0.150201
\(356\) 17.9360 0.950608
\(357\) −11.2691 −0.596422
\(358\) −8.69826 −0.459718
\(359\) 12.1500 0.641252 0.320626 0.947206i \(-0.396107\pi\)
0.320626 + 0.947206i \(0.396107\pi\)
\(360\) −1.11794 −0.0589208
\(361\) 6.39210 0.336426
\(362\) 33.2619 1.74821
\(363\) 4.76090 0.249882
\(364\) −3.28313 −0.172083
\(365\) −14.8821 −0.778967
\(366\) 13.7355 0.717965
\(367\) 29.2358 1.52610 0.763048 0.646342i \(-0.223702\pi\)
0.763048 + 0.646342i \(0.223702\pi\)
\(368\) 0 0
\(369\) −2.46869 −0.128515
\(370\) −10.0665 −0.523330
\(371\) −5.94362 −0.308577
\(372\) 2.65735 0.137777
\(373\) −8.21888 −0.425557 −0.212779 0.977100i \(-0.568251\pi\)
−0.212779 + 0.977100i \(0.568251\pi\)
\(374\) −24.2893 −1.25597
\(375\) −1.00000 −0.0516398
\(376\) −7.56159 −0.389959
\(377\) 0.687547 0.0354105
\(378\) −5.24447 −0.269747
\(379\) −1.80972 −0.0929590 −0.0464795 0.998919i \(-0.514800\pi\)
−0.0464795 + 0.998919i \(0.514800\pi\)
\(380\) −12.7262 −0.652841
\(381\) 19.9557 1.02236
\(382\) −47.3576 −2.42303
\(383\) −28.7802 −1.47060 −0.735300 0.677742i \(-0.762959\pi\)
−0.735300 + 0.677742i \(0.762959\pi\)
\(384\) −8.63481 −0.440643
\(385\) 6.15785 0.313833
\(386\) 10.1328 0.515745
\(387\) 12.2431 0.622351
\(388\) −8.40163 −0.426528
\(389\) −13.3390 −0.676315 −0.338158 0.941090i \(-0.609804\pi\)
−0.338158 + 0.941090i \(0.609804\pi\)
\(390\) 1.12177 0.0568031
\(391\) 0 0
\(392\) 1.03113 0.0520801
\(393\) 21.3624 1.07759
\(394\) 29.2553 1.47386
\(395\) 15.2049 0.765040
\(396\) −6.30828 −0.317003
\(397\) −25.6011 −1.28488 −0.642440 0.766336i \(-0.722078\pi\)
−0.642440 + 0.766336i \(0.722078\pi\)
\(398\) 5.66691 0.284057
\(399\) −12.4227 −0.621915
\(400\) −2.67280 −0.133640
\(401\) 28.9714 1.44676 0.723380 0.690450i \(-0.242587\pi\)
0.723380 + 0.690450i \(0.242587\pi\)
\(402\) 18.9576 0.945517
\(403\) −0.554842 −0.0276386
\(404\) −6.76206 −0.336425
\(405\) 1.00000 0.0496904
\(406\) 6.83808 0.339368
\(407\) −11.8196 −0.585877
\(408\) −5.11022 −0.252994
\(409\) −15.5886 −0.770807 −0.385403 0.922748i \(-0.625938\pi\)
−0.385403 + 0.922748i \(0.625938\pi\)
\(410\) 5.25171 0.259364
\(411\) −11.7144 −0.577827
\(412\) 14.3903 0.708959
\(413\) −3.69167 −0.181655
\(414\) 0 0
\(415\) 0.703225 0.0345199
\(416\) 4.17729 0.204808
\(417\) −5.99314 −0.293485
\(418\) −26.7759 −1.30965
\(419\) −8.71478 −0.425745 −0.212872 0.977080i \(-0.568282\pi\)
−0.212872 + 0.977080i \(0.568282\pi\)
\(420\) 6.22613 0.303804
\(421\) −26.7715 −1.30476 −0.652381 0.757891i \(-0.726230\pi\)
−0.652381 + 0.757891i \(0.726230\pi\)
\(422\) 3.61877 0.176159
\(423\) 6.76385 0.328869
\(424\) −2.69527 −0.130894
\(425\) −4.57109 −0.221730
\(426\) 6.02033 0.291686
\(427\) −15.9176 −0.770307
\(428\) 43.5403 2.10460
\(429\) 1.31714 0.0635920
\(430\) −26.0450 −1.25600
\(431\) 14.1630 0.682206 0.341103 0.940026i \(-0.389199\pi\)
0.341103 + 0.940026i \(0.389199\pi\)
\(432\) 2.67280 0.128595
\(433\) 13.0542 0.627344 0.313672 0.949531i \(-0.398441\pi\)
0.313672 + 0.949531i \(0.398441\pi\)
\(434\) −5.51824 −0.264884
\(435\) −1.30386 −0.0625155
\(436\) −42.8727 −2.05323
\(437\) 0 0
\(438\) −31.6592 −1.51273
\(439\) −4.92310 −0.234967 −0.117483 0.993075i \(-0.537483\pi\)
−0.117483 + 0.993075i \(0.537483\pi\)
\(440\) 2.79242 0.133123
\(441\) −0.922350 −0.0439214
\(442\) 5.12772 0.243901
\(443\) −30.3486 −1.44191 −0.720953 0.692984i \(-0.756295\pi\)
−0.720953 + 0.692984i \(0.756295\pi\)
\(444\) −11.9507 −0.567154
\(445\) 7.10193 0.336664
\(446\) 53.9486 2.55454
\(447\) −0.298095 −0.0140994
\(448\) 28.3672 1.34023
\(449\) 16.0629 0.758054 0.379027 0.925386i \(-0.376259\pi\)
0.379027 + 0.925386i \(0.376259\pi\)
\(450\) −2.12733 −0.100283
\(451\) 6.16635 0.290362
\(452\) 13.5898 0.639213
\(453\) 7.36031 0.345818
\(454\) −10.9181 −0.512411
\(455\) −1.29998 −0.0609442
\(456\) −5.63338 −0.263807
\(457\) −10.1572 −0.475136 −0.237568 0.971371i \(-0.576350\pi\)
−0.237568 + 0.971371i \(0.576350\pi\)
\(458\) 18.2213 0.851425
\(459\) 4.57109 0.213360
\(460\) 0 0
\(461\) −14.9033 −0.694116 −0.347058 0.937844i \(-0.612819\pi\)
−0.347058 + 0.937844i \(0.612819\pi\)
\(462\) 13.0997 0.609456
\(463\) −26.4942 −1.23129 −0.615644 0.788024i \(-0.711104\pi\)
−0.615644 + 0.788024i \(0.711104\pi\)
\(464\) −3.48497 −0.161786
\(465\) 1.05220 0.0487947
\(466\) 3.81126 0.176553
\(467\) 35.2818 1.63265 0.816323 0.577595i \(-0.196009\pi\)
0.816323 + 0.577595i \(0.196009\pi\)
\(468\) 1.33174 0.0615598
\(469\) −21.9693 −1.01445
\(470\) −14.3889 −0.663711
\(471\) −14.3607 −0.661705
\(472\) −1.67408 −0.0770556
\(473\) −30.5810 −1.40612
\(474\) 32.3457 1.48569
\(475\) −5.03906 −0.231208
\(476\) 28.4602 1.30447
\(477\) 2.41092 0.110389
\(478\) −9.83481 −0.449834
\(479\) −11.3638 −0.519225 −0.259613 0.965713i \(-0.583595\pi\)
−0.259613 + 0.965713i \(0.583595\pi\)
\(480\) −7.92181 −0.361579
\(481\) 2.49524 0.113773
\(482\) 44.9403 2.04697
\(483\) 0 0
\(484\) −12.0237 −0.546533
\(485\) −3.32670 −0.151058
\(486\) 2.12733 0.0964975
\(487\) 32.1002 1.45460 0.727299 0.686321i \(-0.240775\pi\)
0.727299 + 0.686321i \(0.240775\pi\)
\(488\) −7.21821 −0.326753
\(489\) −9.41408 −0.425720
\(490\) 1.96214 0.0886404
\(491\) 29.2758 1.32120 0.660599 0.750739i \(-0.270302\pi\)
0.660599 + 0.750739i \(0.270302\pi\)
\(492\) 6.23472 0.281083
\(493\) −5.96008 −0.268429
\(494\) 5.65267 0.254326
\(495\) −2.49782 −0.112269
\(496\) 2.81233 0.126277
\(497\) −6.97677 −0.312951
\(498\) 1.49599 0.0670368
\(499\) 29.6975 1.32944 0.664722 0.747091i \(-0.268550\pi\)
0.664722 + 0.747091i \(0.268550\pi\)
\(500\) 2.52552 0.112944
\(501\) −20.1617 −0.900760
\(502\) 66.3462 2.96118
\(503\) 14.5310 0.647905 0.323953 0.946073i \(-0.394988\pi\)
0.323953 + 0.946073i \(0.394988\pi\)
\(504\) 2.75605 0.122764
\(505\) −2.67750 −0.119147
\(506\) 0 0
\(507\) 12.7219 0.565001
\(508\) −50.3984 −2.23607
\(509\) −33.9297 −1.50391 −0.751954 0.659215i \(-0.770889\pi\)
−0.751954 + 0.659215i \(0.770889\pi\)
\(510\) −9.72420 −0.430595
\(511\) 36.6888 1.62302
\(512\) −27.1495 −1.19985
\(513\) 5.03906 0.222480
\(514\) −46.8502 −2.06647
\(515\) 5.69796 0.251082
\(516\) −30.9201 −1.36118
\(517\) −16.8949 −0.743036
\(518\) 24.8167 1.09038
\(519\) 11.9949 0.526519
\(520\) −0.589508 −0.0258516
\(521\) 14.3074 0.626819 0.313410 0.949618i \(-0.398529\pi\)
0.313410 + 0.949618i \(0.398529\pi\)
\(522\) −2.77374 −0.121403
\(523\) −15.2416 −0.666470 −0.333235 0.942844i \(-0.608140\pi\)
−0.333235 + 0.942844i \(0.608140\pi\)
\(524\) −53.9510 −2.35686
\(525\) 2.46529 0.107594
\(526\) −49.8430 −2.17326
\(527\) 4.80971 0.209514
\(528\) −6.67618 −0.290543
\(529\) 0 0
\(530\) −5.12882 −0.222782
\(531\) 1.49746 0.0649843
\(532\) 31.3738 1.36023
\(533\) −1.30178 −0.0563863
\(534\) 15.1081 0.653792
\(535\) 17.2402 0.745357
\(536\) −9.96249 −0.430314
\(537\) −4.08883 −0.176446
\(538\) −26.3782 −1.13724
\(539\) 2.30386 0.0992344
\(540\) −2.52552 −0.108681
\(541\) 32.7950 1.40997 0.704984 0.709223i \(-0.250954\pi\)
0.704984 + 0.709223i \(0.250954\pi\)
\(542\) −53.9052 −2.31542
\(543\) 15.6355 0.670986
\(544\) −36.2113 −1.55255
\(545\) −16.9758 −0.727164
\(546\) −2.76549 −0.118352
\(547\) −11.8157 −0.505205 −0.252602 0.967570i \(-0.581286\pi\)
−0.252602 + 0.967570i \(0.581286\pi\)
\(548\) 29.5848 1.26380
\(549\) 6.45669 0.275565
\(550\) 5.31368 0.226576
\(551\) −6.57025 −0.279902
\(552\) 0 0
\(553\) −37.4844 −1.59400
\(554\) 27.6425 1.17442
\(555\) −4.73198 −0.200861
\(556\) 15.1358 0.641899
\(557\) 0.502448 0.0212894 0.0106447 0.999943i \(-0.496612\pi\)
0.0106447 + 0.999943i \(0.496612\pi\)
\(558\) 2.23838 0.0947580
\(559\) 6.45596 0.273058
\(560\) 6.58923 0.278446
\(561\) −11.4178 −0.482058
\(562\) 19.0547 0.803774
\(563\) −27.8070 −1.17193 −0.585963 0.810338i \(-0.699283\pi\)
−0.585963 + 0.810338i \(0.699283\pi\)
\(564\) −17.0822 −0.719290
\(565\) 5.38102 0.226381
\(566\) 33.1022 1.39139
\(567\) −2.46529 −0.103532
\(568\) −3.16378 −0.132749
\(569\) −20.6645 −0.866301 −0.433150 0.901322i \(-0.642598\pi\)
−0.433150 + 0.901322i \(0.642598\pi\)
\(570\) −10.7197 −0.449000
\(571\) 30.9692 1.29602 0.648011 0.761631i \(-0.275601\pi\)
0.648011 + 0.761631i \(0.275601\pi\)
\(572\) −3.32645 −0.139086
\(573\) −22.2616 −0.929990
\(574\) −12.9470 −0.540397
\(575\) 0 0
\(576\) −11.5067 −0.479444
\(577\) 12.1018 0.503805 0.251903 0.967753i \(-0.418944\pi\)
0.251903 + 0.967753i \(0.418944\pi\)
\(578\) −8.28566 −0.344638
\(579\) 4.76315 0.197950
\(580\) 3.29293 0.136731
\(581\) −1.73365 −0.0719240
\(582\) −7.07698 −0.293350
\(583\) −6.02205 −0.249408
\(584\) 16.6374 0.688460
\(585\) 0.527315 0.0218018
\(586\) 46.8914 1.93706
\(587\) −24.7625 −1.02206 −0.511030 0.859563i \(-0.670736\pi\)
−0.511030 + 0.859563i \(0.670736\pi\)
\(588\) 2.32941 0.0960632
\(589\) 5.30211 0.218469
\(590\) −3.18559 −0.131149
\(591\) 13.7522 0.565688
\(592\) −12.6476 −0.519815
\(593\) 41.1220 1.68868 0.844339 0.535810i \(-0.179994\pi\)
0.844339 + 0.535810i \(0.179994\pi\)
\(594\) −5.31368 −0.218023
\(595\) 11.2691 0.461986
\(596\) 0.752844 0.0308377
\(597\) 2.66387 0.109025
\(598\) 0 0
\(599\) 37.8782 1.54766 0.773830 0.633393i \(-0.218338\pi\)
0.773830 + 0.633393i \(0.218338\pi\)
\(600\) 1.11794 0.0456398
\(601\) −40.8198 −1.66507 −0.832537 0.553970i \(-0.813112\pi\)
−0.832537 + 0.553970i \(0.813112\pi\)
\(602\) 64.2085 2.61694
\(603\) 8.91145 0.362902
\(604\) −18.5886 −0.756359
\(605\) −4.76090 −0.193558
\(606\) −5.69590 −0.231380
\(607\) −38.2591 −1.55289 −0.776445 0.630185i \(-0.782979\pi\)
−0.776445 + 0.630185i \(0.782979\pi\)
\(608\) −39.9184 −1.61891
\(609\) 3.21440 0.130254
\(610\) −13.7355 −0.556134
\(611\) 3.56668 0.144292
\(612\) −11.5444 −0.466653
\(613\) 9.77228 0.394699 0.197349 0.980333i \(-0.436767\pi\)
0.197349 + 0.980333i \(0.436767\pi\)
\(614\) 30.3079 1.22313
\(615\) 2.46869 0.0995473
\(616\) −6.88412 −0.277369
\(617\) −23.8291 −0.959322 −0.479661 0.877454i \(-0.659240\pi\)
−0.479661 + 0.877454i \(0.659240\pi\)
\(618\) 12.1214 0.487595
\(619\) −24.7664 −0.995444 −0.497722 0.867336i \(-0.665830\pi\)
−0.497722 + 0.867336i \(0.665830\pi\)
\(620\) −2.65735 −0.106722
\(621\) 0 0
\(622\) 23.5194 0.943042
\(623\) −17.5083 −0.701456
\(624\) 1.40941 0.0564215
\(625\) 1.00000 0.0400000
\(626\) −38.3334 −1.53211
\(627\) −12.5867 −0.502663
\(628\) 36.2681 1.44725
\(629\) −21.6303 −0.862456
\(630\) 5.24447 0.208945
\(631\) −32.6694 −1.30055 −0.650275 0.759699i \(-0.725346\pi\)
−0.650275 + 0.759699i \(0.725346\pi\)
\(632\) −16.9982 −0.676151
\(633\) 1.70109 0.0676122
\(634\) 42.8755 1.70281
\(635\) −19.9557 −0.791917
\(636\) −6.08882 −0.241437
\(637\) −0.486369 −0.0192706
\(638\) 6.92831 0.274295
\(639\) 2.83000 0.111953
\(640\) 8.63481 0.341321
\(641\) −5.58700 −0.220673 −0.110337 0.993894i \(-0.535193\pi\)
−0.110337 + 0.993894i \(0.535193\pi\)
\(642\) 36.6754 1.44746
\(643\) −22.4403 −0.884959 −0.442479 0.896779i \(-0.645901\pi\)
−0.442479 + 0.896779i \(0.645901\pi\)
\(644\) 0 0
\(645\) −12.2431 −0.482071
\(646\) −49.0008 −1.92791
\(647\) −26.7563 −1.05190 −0.525948 0.850516i \(-0.676290\pi\)
−0.525948 + 0.850516i \(0.676290\pi\)
\(648\) −1.11794 −0.0439169
\(649\) −3.74039 −0.146823
\(650\) −1.12177 −0.0439995
\(651\) −2.59398 −0.101666
\(652\) 23.7754 0.931117
\(653\) −33.9987 −1.33047 −0.665236 0.746633i \(-0.731669\pi\)
−0.665236 + 0.746633i \(0.731669\pi\)
\(654\) −36.1131 −1.41213
\(655\) −21.3624 −0.834697
\(656\) 6.59832 0.257621
\(657\) −14.8821 −0.580608
\(658\) 35.4728 1.38287
\(659\) 11.9827 0.466778 0.233389 0.972383i \(-0.425018\pi\)
0.233389 + 0.972383i \(0.425018\pi\)
\(660\) 6.30828 0.245550
\(661\) 39.6610 1.54263 0.771317 0.636451i \(-0.219598\pi\)
0.771317 + 0.636451i \(0.219598\pi\)
\(662\) 3.16113 0.122861
\(663\) 2.41040 0.0936124
\(664\) −0.786165 −0.0305091
\(665\) 12.4227 0.481733
\(666\) −10.0665 −0.390067
\(667\) 0 0
\(668\) 50.9188 1.97011
\(669\) 25.3598 0.980468
\(670\) −18.9576 −0.732394
\(671\) −16.1277 −0.622601
\(672\) 19.5295 0.753369
\(673\) −31.2265 −1.20369 −0.601847 0.798611i \(-0.705568\pi\)
−0.601847 + 0.798611i \(0.705568\pi\)
\(674\) 20.6906 0.796971
\(675\) −1.00000 −0.0384900
\(676\) −32.1295 −1.23575
\(677\) −8.57586 −0.329597 −0.164799 0.986327i \(-0.552697\pi\)
−0.164799 + 0.986327i \(0.552697\pi\)
\(678\) 11.4472 0.439626
\(679\) 8.20128 0.314736
\(680\) 5.11022 0.195968
\(681\) −5.13230 −0.196670
\(682\) −5.59106 −0.214093
\(683\) 28.5484 1.09237 0.546187 0.837663i \(-0.316079\pi\)
0.546187 + 0.837663i \(0.316079\pi\)
\(684\) −12.7262 −0.486599
\(685\) 11.7144 0.447583
\(686\) −41.5486 −1.58633
\(687\) 8.56535 0.326788
\(688\) −32.7233 −1.24757
\(689\) 1.27132 0.0484333
\(690\) 0 0
\(691\) 13.9817 0.531891 0.265945 0.963988i \(-0.414316\pi\)
0.265945 + 0.963988i \(0.414316\pi\)
\(692\) −30.2934 −1.15158
\(693\) 6.15785 0.233917
\(694\) −71.9455 −2.73101
\(695\) 5.99314 0.227333
\(696\) 1.45765 0.0552519
\(697\) 11.2846 0.427435
\(698\) −11.3325 −0.428941
\(699\) 1.79157 0.0677636
\(700\) −6.22613 −0.235325
\(701\) −30.6388 −1.15721 −0.578606 0.815608i \(-0.696403\pi\)
−0.578606 + 0.815608i \(0.696403\pi\)
\(702\) 1.12177 0.0423385
\(703\) −23.8447 −0.899320
\(704\) 28.7416 1.08324
\(705\) −6.76385 −0.254741
\(706\) −64.0659 −2.41115
\(707\) 6.60080 0.248249
\(708\) −3.78186 −0.142131
\(709\) −14.3909 −0.540463 −0.270232 0.962795i \(-0.587100\pi\)
−0.270232 + 0.962795i \(0.587100\pi\)
\(710\) −6.02033 −0.225939
\(711\) 15.2049 0.570227
\(712\) −7.93955 −0.297547
\(713\) 0 0
\(714\) 23.9730 0.897166
\(715\) −1.31714 −0.0492582
\(716\) 10.3264 0.385915
\(717\) −4.62309 −0.172652
\(718\) −25.8470 −0.964601
\(719\) −0.460699 −0.0171812 −0.00859058 0.999963i \(-0.502735\pi\)
−0.00859058 + 0.999963i \(0.502735\pi\)
\(720\) −2.67280 −0.0996095
\(721\) −14.0471 −0.523142
\(722\) −13.5981 −0.506068
\(723\) 21.1252 0.785656
\(724\) −39.4878 −1.46755
\(725\) 1.30386 0.0484243
\(726\) −10.1280 −0.375885
\(727\) −49.1224 −1.82185 −0.910924 0.412573i \(-0.864630\pi\)
−0.910924 + 0.412573i \(0.864630\pi\)
\(728\) 1.45331 0.0538632
\(729\) 1.00000 0.0370370
\(730\) 31.6592 1.17176
\(731\) −55.9642 −2.06991
\(732\) −16.3065 −0.602705
\(733\) −20.5312 −0.758338 −0.379169 0.925327i \(-0.623790\pi\)
−0.379169 + 0.925327i \(0.623790\pi\)
\(734\) −62.1940 −2.29562
\(735\) 0.922350 0.0340214
\(736\) 0 0
\(737\) −22.2592 −0.819928
\(738\) 5.25171 0.193318
\(739\) −3.29136 −0.121075 −0.0605373 0.998166i \(-0.519281\pi\)
−0.0605373 + 0.998166i \(0.519281\pi\)
\(740\) 11.9507 0.439316
\(741\) 2.65717 0.0976136
\(742\) 12.6440 0.464176
\(743\) 34.4192 1.26272 0.631359 0.775491i \(-0.282498\pi\)
0.631359 + 0.775491i \(0.282498\pi\)
\(744\) −1.17630 −0.0431253
\(745\) 0.298095 0.0109214
\(746\) 17.4842 0.640143
\(747\) 0.703225 0.0257296
\(748\) 28.8357 1.05434
\(749\) −42.5020 −1.55299
\(750\) 2.12733 0.0776790
\(751\) −20.0122 −0.730256 −0.365128 0.930957i \(-0.618975\pi\)
−0.365128 + 0.930957i \(0.618975\pi\)
\(752\) −18.0784 −0.659252
\(753\) 31.1876 1.13654
\(754\) −1.46264 −0.0532661
\(755\) −7.36031 −0.267869
\(756\) 6.22613 0.226442
\(757\) 47.8177 1.73796 0.868981 0.494845i \(-0.164775\pi\)
0.868981 + 0.494845i \(0.164775\pi\)
\(758\) 3.84986 0.139833
\(759\) 0 0
\(760\) 5.63338 0.204344
\(761\) −30.0234 −1.08835 −0.544173 0.838973i \(-0.683157\pi\)
−0.544173 + 0.838973i \(0.683157\pi\)
\(762\) −42.4522 −1.53788
\(763\) 41.8503 1.51508
\(764\) 56.2219 2.03404
\(765\) −4.57109 −0.165268
\(766\) 61.2249 2.21214
\(767\) 0.789633 0.0285120
\(768\) −4.64428 −0.167586
\(769\) −10.0441 −0.362199 −0.181100 0.983465i \(-0.557966\pi\)
−0.181100 + 0.983465i \(0.557966\pi\)
\(770\) −13.0997 −0.472082
\(771\) −22.0231 −0.793141
\(772\) −12.0294 −0.432948
\(773\) −12.5260 −0.450531 −0.225265 0.974297i \(-0.572325\pi\)
−0.225265 + 0.974297i \(0.572325\pi\)
\(774\) −26.0450 −0.936169
\(775\) −1.05220 −0.0377962
\(776\) 3.71906 0.133507
\(777\) 11.6657 0.418504
\(778\) 28.3764 1.01734
\(779\) 12.4399 0.445705
\(780\) −1.33174 −0.0476840
\(781\) −7.06883 −0.252943
\(782\) 0 0
\(783\) −1.30386 −0.0465963
\(784\) 2.46526 0.0880449
\(785\) 14.3607 0.512554
\(786\) −45.4447 −1.62096
\(787\) −38.5204 −1.37311 −0.686553 0.727080i \(-0.740877\pi\)
−0.686553 + 0.727080i \(0.740877\pi\)
\(788\) −34.7313 −1.23725
\(789\) −23.4299 −0.834127
\(790\) −32.3457 −1.15081
\(791\) −13.2658 −0.471676
\(792\) 2.79242 0.0992243
\(793\) 3.40471 0.120905
\(794\) 54.4618 1.93278
\(795\) −2.41092 −0.0855066
\(796\) −6.72763 −0.238455
\(797\) 29.3631 1.04009 0.520047 0.854137i \(-0.325914\pi\)
0.520047 + 0.854137i \(0.325914\pi\)
\(798\) 26.4272 0.935513
\(799\) −30.9182 −1.09381
\(800\) 7.92181 0.280078
\(801\) 7.10193 0.250934
\(802\) −61.6315 −2.17629
\(803\) 37.1729 1.31180
\(804\) −22.5060 −0.793726
\(805\) 0 0
\(806\) 1.18033 0.0415753
\(807\) −12.3997 −0.436489
\(808\) 2.99329 0.105303
\(809\) −28.1983 −0.991401 −0.495700 0.868494i \(-0.665089\pi\)
−0.495700 + 0.868494i \(0.665089\pi\)
\(810\) −2.12733 −0.0747466
\(811\) −20.7518 −0.728696 −0.364348 0.931263i \(-0.618708\pi\)
−0.364348 + 0.931263i \(0.618708\pi\)
\(812\) −8.11802 −0.284887
\(813\) −25.3394 −0.888691
\(814\) 25.1442 0.881304
\(815\) 9.41408 0.329761
\(816\) −12.2176 −0.427702
\(817\) −61.6936 −2.15839
\(818\) 33.1620 1.15948
\(819\) −1.29998 −0.0454251
\(820\) −6.23472 −0.217726
\(821\) 20.0232 0.698815 0.349407 0.936971i \(-0.386383\pi\)
0.349407 + 0.936971i \(0.386383\pi\)
\(822\) 24.9203 0.869194
\(823\) −41.6999 −1.45357 −0.726784 0.686866i \(-0.758986\pi\)
−0.726784 + 0.686866i \(0.758986\pi\)
\(824\) −6.37000 −0.221909
\(825\) 2.49782 0.0869629
\(826\) 7.85339 0.273255
\(827\) 37.3800 1.29983 0.649914 0.760008i \(-0.274805\pi\)
0.649914 + 0.760008i \(0.274805\pi\)
\(828\) 0 0
\(829\) 6.16093 0.213978 0.106989 0.994260i \(-0.465879\pi\)
0.106989 + 0.994260i \(0.465879\pi\)
\(830\) −1.49599 −0.0519265
\(831\) 12.9940 0.450758
\(832\) −6.06763 −0.210357
\(833\) 4.21614 0.146081
\(834\) 12.7494 0.441474
\(835\) 20.1617 0.697725
\(836\) 31.7878 1.09940
\(837\) 1.05220 0.0363694
\(838\) 18.5392 0.640425
\(839\) −20.5683 −0.710097 −0.355048 0.934848i \(-0.615536\pi\)
−0.355048 + 0.934848i \(0.615536\pi\)
\(840\) −2.75605 −0.0950928
\(841\) −27.2999 −0.941377
\(842\) 56.9517 1.96268
\(843\) 8.95711 0.308499
\(844\) −4.29613 −0.147879
\(845\) −12.7219 −0.437648
\(846\) −14.3889 −0.494701
\(847\) 11.7370 0.403288
\(848\) −6.44392 −0.221285
\(849\) 15.5605 0.534034
\(850\) 9.72420 0.333537
\(851\) 0 0
\(852\) −7.14721 −0.244859
\(853\) 50.0948 1.71521 0.857607 0.514306i \(-0.171951\pi\)
0.857607 + 0.514306i \(0.171951\pi\)
\(854\) 33.8619 1.15873
\(855\) −5.03906 −0.172332
\(856\) −19.2735 −0.658755
\(857\) 16.0780 0.549215 0.274608 0.961556i \(-0.411452\pi\)
0.274608 + 0.961556i \(0.411452\pi\)
\(858\) −2.80198 −0.0956581
\(859\) −37.4584 −1.27806 −0.639032 0.769180i \(-0.720665\pi\)
−0.639032 + 0.769180i \(0.720665\pi\)
\(860\) 30.9201 1.05437
\(861\) −6.08604 −0.207412
\(862\) −30.1292 −1.02621
\(863\) 15.6579 0.533000 0.266500 0.963835i \(-0.414133\pi\)
0.266500 + 0.963835i \(0.414133\pi\)
\(864\) −7.92181 −0.269505
\(865\) −11.9949 −0.407840
\(866\) −27.7705 −0.943680
\(867\) −3.89487 −0.132277
\(868\) 6.55114 0.222360
\(869\) −37.9790 −1.28835
\(870\) 2.77374 0.0940387
\(871\) 4.69914 0.159224
\(872\) 18.9780 0.642676
\(873\) −3.32670 −0.112592
\(874\) 0 0
\(875\) −2.46529 −0.0833420
\(876\) 37.5851 1.26988
\(877\) −8.95707 −0.302459 −0.151229 0.988499i \(-0.548323\pi\)
−0.151229 + 0.988499i \(0.548323\pi\)
\(878\) 10.4730 0.353448
\(879\) 22.0424 0.743472
\(880\) 6.67618 0.225054
\(881\) 8.15075 0.274606 0.137303 0.990529i \(-0.456157\pi\)
0.137303 + 0.990529i \(0.456157\pi\)
\(882\) 1.96214 0.0660686
\(883\) −22.8366 −0.768513 −0.384257 0.923226i \(-0.625542\pi\)
−0.384257 + 0.923226i \(0.625542\pi\)
\(884\) −6.08751 −0.204745
\(885\) −1.49746 −0.0503366
\(886\) 64.5613 2.16898
\(887\) −48.1787 −1.61768 −0.808841 0.588028i \(-0.799905\pi\)
−0.808841 + 0.588028i \(0.799905\pi\)
\(888\) 5.29008 0.177523
\(889\) 49.1965 1.65000
\(890\) −15.1081 −0.506425
\(891\) −2.49782 −0.0836801
\(892\) −64.0467 −2.14444
\(893\) −34.0834 −1.14056
\(894\) 0.634145 0.0212090
\(895\) 4.08883 0.136674
\(896\) −21.2873 −0.711158
\(897\) 0 0
\(898\) −34.1710 −1.14030
\(899\) −1.37193 −0.0457564
\(900\) 2.52552 0.0841839
\(901\) −11.0205 −0.367148
\(902\) −13.1178 −0.436776
\(903\) 30.1827 1.00442
\(904\) −6.01567 −0.200078
\(905\) −15.6355 −0.519743
\(906\) −15.6578 −0.520195
\(907\) 10.0557 0.333893 0.166946 0.985966i \(-0.446609\pi\)
0.166946 + 0.985966i \(0.446609\pi\)
\(908\) 12.9617 0.430149
\(909\) −2.67750 −0.0888069
\(910\) 2.76549 0.0916751
\(911\) 48.6116 1.61057 0.805287 0.592885i \(-0.202011\pi\)
0.805287 + 0.592885i \(0.202011\pi\)
\(912\) −13.4684 −0.445983
\(913\) −1.75653 −0.0581326
\(914\) 21.6078 0.714722
\(915\) −6.45669 −0.213452
\(916\) −21.6319 −0.714739
\(917\) 52.6644 1.73913
\(918\) −9.72420 −0.320946
\(919\) −21.6332 −0.713613 −0.356806 0.934178i \(-0.616134\pi\)
−0.356806 + 0.934178i \(0.616134\pi\)
\(920\) 0 0
\(921\) 14.2470 0.469453
\(922\) 31.7042 1.04412
\(923\) 1.49230 0.0491197
\(924\) −15.5517 −0.511615
\(925\) 4.73198 0.155586
\(926\) 56.3617 1.85216
\(927\) 5.69796 0.187146
\(928\) 10.3290 0.339065
\(929\) −45.5745 −1.49525 −0.747626 0.664120i \(-0.768806\pi\)
−0.747626 + 0.664120i \(0.768806\pi\)
\(930\) −2.23838 −0.0733992
\(931\) 4.64777 0.152325
\(932\) −4.52465 −0.148210
\(933\) 11.0558 0.361952
\(934\) −75.0559 −2.45590
\(935\) 11.4178 0.373401
\(936\) −0.589508 −0.0192687
\(937\) 58.7410 1.91899 0.959493 0.281733i \(-0.0909093\pi\)
0.959493 + 0.281733i \(0.0909093\pi\)
\(938\) 46.7359 1.52598
\(939\) −18.0195 −0.588045
\(940\) 17.0822 0.557160
\(941\) −47.5586 −1.55037 −0.775183 0.631737i \(-0.782342\pi\)
−0.775183 + 0.631737i \(0.782342\pi\)
\(942\) 30.5498 0.995367
\(943\) 0 0
\(944\) −4.00242 −0.130268
\(945\) 2.46529 0.0801959
\(946\) 65.0558 2.11515
\(947\) 1.02706 0.0333749 0.0166875 0.999861i \(-0.494688\pi\)
0.0166875 + 0.999861i \(0.494688\pi\)
\(948\) −38.4001 −1.24718
\(949\) −7.84758 −0.254743
\(950\) 10.7197 0.347794
\(951\) 20.1547 0.653560
\(952\) −12.5982 −0.408309
\(953\) −37.6578 −1.21985 −0.609927 0.792457i \(-0.708801\pi\)
−0.609927 + 0.792457i \(0.708801\pi\)
\(954\) −5.12882 −0.166052
\(955\) 22.2616 0.720368
\(956\) 11.6757 0.377618
\(957\) 3.25682 0.105278
\(958\) 24.1745 0.781042
\(959\) −28.8793 −0.932561
\(960\) 11.5067 0.371376
\(961\) −29.8929 −0.964286
\(962\) −5.30819 −0.171143
\(963\) 17.2402 0.555556
\(964\) −53.3521 −1.71836
\(965\) −4.76315 −0.153331
\(966\) 0 0
\(967\) −54.8151 −1.76273 −0.881367 0.472433i \(-0.843376\pi\)
−0.881367 + 0.472433i \(0.843376\pi\)
\(968\) 5.32241 0.171069
\(969\) −23.0340 −0.739958
\(970\) 7.07698 0.227228
\(971\) −35.4205 −1.13670 −0.568349 0.822788i \(-0.692418\pi\)
−0.568349 + 0.822788i \(0.692418\pi\)
\(972\) −2.52552 −0.0810060
\(973\) −14.7748 −0.473659
\(974\) −68.2875 −2.18807
\(975\) −0.527315 −0.0168876
\(976\) −17.2575 −0.552398
\(977\) 3.63664 0.116347 0.0581733 0.998307i \(-0.481472\pi\)
0.0581733 + 0.998307i \(0.481472\pi\)
\(978\) 20.0268 0.640387
\(979\) −17.7393 −0.566952
\(980\) −2.32941 −0.0744102
\(981\) −16.9758 −0.541996
\(982\) −62.2792 −1.98741
\(983\) −60.3421 −1.92461 −0.962307 0.271965i \(-0.912326\pi\)
−0.962307 + 0.271965i \(0.912326\pi\)
\(984\) −2.75986 −0.0879810
\(985\) −13.7522 −0.438180
\(986\) 12.6790 0.403783
\(987\) 16.6748 0.530766
\(988\) −6.71072 −0.213497
\(989\) 0 0
\(990\) 5.31368 0.168880
\(991\) −28.5119 −0.905710 −0.452855 0.891584i \(-0.649594\pi\)
−0.452855 + 0.891584i \(0.649594\pi\)
\(992\) −8.33534 −0.264647
\(993\) 1.48597 0.0471557
\(994\) 14.8419 0.470755
\(995\) −2.66387 −0.0844502
\(996\) −1.77600 −0.0562749
\(997\) 4.71077 0.149192 0.0745959 0.997214i \(-0.476233\pi\)
0.0745959 + 0.997214i \(0.476233\pi\)
\(998\) −63.1764 −1.99981
\(999\) −4.73198 −0.149713
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bq.1.3 15
23.11 odd 22 345.2.m.a.121.1 30
23.21 odd 22 345.2.m.a.211.1 yes 30
23.22 odd 2 7935.2.a.bp.1.3 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.a.121.1 30 23.11 odd 22
345.2.m.a.211.1 yes 30 23.21 odd 22
7935.2.a.bp.1.3 15 23.22 odd 2
7935.2.a.bq.1.3 15 1.1 even 1 trivial