Properties

Label 7935.2.a.bp.1.7
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-15,12,-15,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 21x^{13} + 172x^{11} - 696x^{9} + 1466x^{7} - 1583x^{5} + 803x^{3} - 11x^{2} - 143x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-0.710736\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.710736 q^{2} -1.00000 q^{3} -1.49485 q^{4} -1.00000 q^{5} +0.710736 q^{6} -4.35754 q^{7} +2.48392 q^{8} +1.00000 q^{9} +0.710736 q^{10} +4.62137 q^{11} +1.49485 q^{12} +1.23026 q^{13} +3.09706 q^{14} +1.00000 q^{15} +1.22430 q^{16} -5.04149 q^{17} -0.710736 q^{18} -2.56771 q^{19} +1.49485 q^{20} +4.35754 q^{21} -3.28457 q^{22} -2.48392 q^{24} +1.00000 q^{25} -0.874388 q^{26} -1.00000 q^{27} +6.51389 q^{28} +1.63095 q^{29} -0.710736 q^{30} -9.36706 q^{31} -5.83799 q^{32} -4.62137 q^{33} +3.58317 q^{34} +4.35754 q^{35} -1.49485 q^{36} +7.73627 q^{37} +1.82497 q^{38} -1.23026 q^{39} -2.48392 q^{40} -6.01986 q^{41} -3.09706 q^{42} -1.39371 q^{43} -6.90828 q^{44} -1.00000 q^{45} -7.40920 q^{47} -1.22430 q^{48} +11.9882 q^{49} -0.710736 q^{50} +5.04149 q^{51} -1.83906 q^{52} +4.71764 q^{53} +0.710736 q^{54} -4.62137 q^{55} -10.8238 q^{56} +2.56771 q^{57} -1.15918 q^{58} +8.57843 q^{59} -1.49485 q^{60} -0.607358 q^{61} +6.65751 q^{62} -4.35754 q^{63} +1.70067 q^{64} -1.23026 q^{65} +3.28457 q^{66} +12.0384 q^{67} +7.53629 q^{68} -3.09706 q^{70} +7.68448 q^{71} +2.48392 q^{72} -12.2426 q^{73} -5.49844 q^{74} -1.00000 q^{75} +3.83836 q^{76} -20.1378 q^{77} +0.874388 q^{78} +14.0056 q^{79} -1.22430 q^{80} +1.00000 q^{81} +4.27853 q^{82} +2.54540 q^{83} -6.51389 q^{84} +5.04149 q^{85} +0.990562 q^{86} -1.63095 q^{87} +11.4791 q^{88} +0.225933 q^{89} +0.710736 q^{90} -5.36090 q^{91} +9.36706 q^{93} +5.26599 q^{94} +2.56771 q^{95} +5.83799 q^{96} +16.9069 q^{97} -8.52041 q^{98} +4.62137 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{3} + 12 q^{4} - 15 q^{5} - 5 q^{7} + 15 q^{9} + 13 q^{11} - 12 q^{12} - 24 q^{13} + 15 q^{14} + 15 q^{15} + 2 q^{16} + 2 q^{17} + 13 q^{19} - 12 q^{20} + 5 q^{21} - 9 q^{22} + 15 q^{25} - 9 q^{26}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.710736 −0.502566 −0.251283 0.967914i \(-0.580852\pi\)
−0.251283 + 0.967914i \(0.580852\pi\)
\(3\) −1.00000 −0.577350
\(4\) −1.49485 −0.747427
\(5\) −1.00000 −0.447214
\(6\) 0.710736 0.290157
\(7\) −4.35754 −1.64700 −0.823498 0.567320i \(-0.807980\pi\)
−0.823498 + 0.567320i \(0.807980\pi\)
\(8\) 2.48392 0.878198
\(9\) 1.00000 0.333333
\(10\) 0.710736 0.224754
\(11\) 4.62137 1.39340 0.696698 0.717365i \(-0.254652\pi\)
0.696698 + 0.717365i \(0.254652\pi\)
\(12\) 1.49485 0.431527
\(13\) 1.23026 0.341212 0.170606 0.985339i \(-0.445427\pi\)
0.170606 + 0.985339i \(0.445427\pi\)
\(14\) 3.09706 0.827724
\(15\) 1.00000 0.258199
\(16\) 1.22430 0.306075
\(17\) −5.04149 −1.22274 −0.611370 0.791345i \(-0.709381\pi\)
−0.611370 + 0.791345i \(0.709381\pi\)
\(18\) −0.710736 −0.167522
\(19\) −2.56771 −0.589074 −0.294537 0.955640i \(-0.595165\pi\)
−0.294537 + 0.955640i \(0.595165\pi\)
\(20\) 1.49485 0.334260
\(21\) 4.35754 0.950893
\(22\) −3.28457 −0.700273
\(23\) 0 0
\(24\) −2.48392 −0.507028
\(25\) 1.00000 0.200000
\(26\) −0.874388 −0.171482
\(27\) −1.00000 −0.192450
\(28\) 6.51389 1.23101
\(29\) 1.63095 0.302861 0.151430 0.988468i \(-0.451612\pi\)
0.151430 + 0.988468i \(0.451612\pi\)
\(30\) −0.710736 −0.129762
\(31\) −9.36706 −1.68237 −0.841187 0.540744i \(-0.818143\pi\)
−0.841187 + 0.540744i \(0.818143\pi\)
\(32\) −5.83799 −1.03202
\(33\) −4.62137 −0.804478
\(34\) 3.58317 0.614508
\(35\) 4.35754 0.736559
\(36\) −1.49485 −0.249142
\(37\) 7.73627 1.27183 0.635917 0.771757i \(-0.280622\pi\)
0.635917 + 0.771757i \(0.280622\pi\)
\(38\) 1.82497 0.296048
\(39\) −1.23026 −0.196999
\(40\) −2.48392 −0.392742
\(41\) −6.01986 −0.940145 −0.470072 0.882628i \(-0.655772\pi\)
−0.470072 + 0.882628i \(0.655772\pi\)
\(42\) −3.09706 −0.477887
\(43\) −1.39371 −0.212539 −0.106270 0.994337i \(-0.533891\pi\)
−0.106270 + 0.994337i \(0.533891\pi\)
\(44\) −6.90828 −1.04146
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −7.40920 −1.08074 −0.540372 0.841426i \(-0.681716\pi\)
−0.540372 + 0.841426i \(0.681716\pi\)
\(48\) −1.22430 −0.176713
\(49\) 11.9882 1.71259
\(50\) −0.710736 −0.100513
\(51\) 5.04149 0.705950
\(52\) −1.83906 −0.255031
\(53\) 4.71764 0.648018 0.324009 0.946054i \(-0.394969\pi\)
0.324009 + 0.946054i \(0.394969\pi\)
\(54\) 0.710736 0.0967189
\(55\) −4.62137 −0.623146
\(56\) −10.8238 −1.44639
\(57\) 2.56771 0.340102
\(58\) −1.15918 −0.152208
\(59\) 8.57843 1.11682 0.558408 0.829566i \(-0.311412\pi\)
0.558408 + 0.829566i \(0.311412\pi\)
\(60\) −1.49485 −0.192985
\(61\) −0.607358 −0.0777643 −0.0388821 0.999244i \(-0.512380\pi\)
−0.0388821 + 0.999244i \(0.512380\pi\)
\(62\) 6.65751 0.845504
\(63\) −4.35754 −0.548998
\(64\) 1.70067 0.212583
\(65\) −1.23026 −0.152595
\(66\) 3.28457 0.404303
\(67\) 12.0384 1.47073 0.735364 0.677672i \(-0.237011\pi\)
0.735364 + 0.677672i \(0.237011\pi\)
\(68\) 7.53629 0.913910
\(69\) 0 0
\(70\) −3.09706 −0.370169
\(71\) 7.68448 0.911980 0.455990 0.889985i \(-0.349285\pi\)
0.455990 + 0.889985i \(0.349285\pi\)
\(72\) 2.48392 0.292733
\(73\) −12.2426 −1.43289 −0.716444 0.697645i \(-0.754231\pi\)
−0.716444 + 0.697645i \(0.754231\pi\)
\(74\) −5.49844 −0.639181
\(75\) −1.00000 −0.115470
\(76\) 3.83836 0.440290
\(77\) −20.1378 −2.29492
\(78\) 0.874388 0.0990049
\(79\) 14.0056 1.57575 0.787874 0.615837i \(-0.211182\pi\)
0.787874 + 0.615837i \(0.211182\pi\)
\(80\) −1.22430 −0.136881
\(81\) 1.00000 0.111111
\(82\) 4.27853 0.472485
\(83\) 2.54540 0.279394 0.139697 0.990194i \(-0.455387\pi\)
0.139697 + 0.990194i \(0.455387\pi\)
\(84\) −6.51389 −0.710724
\(85\) 5.04149 0.546826
\(86\) 0.990562 0.106815
\(87\) −1.63095 −0.174857
\(88\) 11.4791 1.22368
\(89\) 0.225933 0.0239489 0.0119744 0.999928i \(-0.496188\pi\)
0.0119744 + 0.999928i \(0.496188\pi\)
\(90\) 0.710736 0.0749181
\(91\) −5.36090 −0.561975
\(92\) 0 0
\(93\) 9.36706 0.971319
\(94\) 5.26599 0.543145
\(95\) 2.56771 0.263442
\(96\) 5.83799 0.595837
\(97\) 16.9069 1.71664 0.858319 0.513117i \(-0.171509\pi\)
0.858319 + 0.513117i \(0.171509\pi\)
\(98\) −8.52041 −0.860692
\(99\) 4.62137 0.464465
\(100\) −1.49485 −0.149485
\(101\) −8.95130 −0.890687 −0.445344 0.895360i \(-0.646919\pi\)
−0.445344 + 0.895360i \(0.646919\pi\)
\(102\) −3.58317 −0.354786
\(103\) 9.12324 0.898939 0.449470 0.893296i \(-0.351613\pi\)
0.449470 + 0.893296i \(0.351613\pi\)
\(104\) 3.05586 0.299652
\(105\) −4.35754 −0.425252
\(106\) −3.35300 −0.325672
\(107\) −12.3639 −1.19527 −0.597634 0.801769i \(-0.703892\pi\)
−0.597634 + 0.801769i \(0.703892\pi\)
\(108\) 1.49485 0.143842
\(109\) 11.9404 1.14368 0.571839 0.820366i \(-0.306230\pi\)
0.571839 + 0.820366i \(0.306230\pi\)
\(110\) 3.28457 0.313172
\(111\) −7.73627 −0.734294
\(112\) −5.33494 −0.504104
\(113\) −7.67403 −0.721912 −0.360956 0.932583i \(-0.617550\pi\)
−0.360956 + 0.932583i \(0.617550\pi\)
\(114\) −1.82497 −0.170924
\(115\) 0 0
\(116\) −2.43804 −0.226366
\(117\) 1.23026 0.113737
\(118\) −6.09700 −0.561274
\(119\) 21.9685 2.01385
\(120\) 2.48392 0.226750
\(121\) 10.3571 0.941552
\(122\) 0.431671 0.0390817
\(123\) 6.01986 0.542793
\(124\) 14.0024 1.25745
\(125\) −1.00000 −0.0894427
\(126\) 3.09706 0.275908
\(127\) −10.4853 −0.930416 −0.465208 0.885201i \(-0.654021\pi\)
−0.465208 + 0.885201i \(0.654021\pi\)
\(128\) 10.4673 0.925183
\(129\) 1.39371 0.122710
\(130\) 0.874388 0.0766889
\(131\) 10.0872 0.881322 0.440661 0.897673i \(-0.354744\pi\)
0.440661 + 0.897673i \(0.354744\pi\)
\(132\) 6.90828 0.601289
\(133\) 11.1889 0.970202
\(134\) −8.55614 −0.739138
\(135\) 1.00000 0.0860663
\(136\) −12.5226 −1.07381
\(137\) 10.2521 0.875897 0.437948 0.899000i \(-0.355705\pi\)
0.437948 + 0.899000i \(0.355705\pi\)
\(138\) 0 0
\(139\) 13.5229 1.14699 0.573497 0.819208i \(-0.305586\pi\)
0.573497 + 0.819208i \(0.305586\pi\)
\(140\) −6.51389 −0.550524
\(141\) 7.40920 0.623968
\(142\) −5.46163 −0.458330
\(143\) 5.68548 0.475443
\(144\) 1.22430 0.102025
\(145\) −1.63095 −0.135443
\(146\) 8.70125 0.720121
\(147\) −11.9882 −0.988767
\(148\) −11.5646 −0.950604
\(149\) 18.7121 1.53296 0.766479 0.642269i \(-0.222007\pi\)
0.766479 + 0.642269i \(0.222007\pi\)
\(150\) 0.710736 0.0580313
\(151\) 0.520678 0.0423722 0.0211861 0.999776i \(-0.493256\pi\)
0.0211861 + 0.999776i \(0.493256\pi\)
\(152\) −6.37799 −0.517323
\(153\) −5.04149 −0.407580
\(154\) 14.3127 1.15335
\(155\) 9.36706 0.752381
\(156\) 1.83906 0.147242
\(157\) −18.6916 −1.49175 −0.745876 0.666085i \(-0.767969\pi\)
−0.745876 + 0.666085i \(0.767969\pi\)
\(158\) −9.95425 −0.791917
\(159\) −4.71764 −0.374134
\(160\) 5.83799 0.461534
\(161\) 0 0
\(162\) −0.710736 −0.0558407
\(163\) −1.13812 −0.0891448 −0.0445724 0.999006i \(-0.514193\pi\)
−0.0445724 + 0.999006i \(0.514193\pi\)
\(164\) 8.99882 0.702690
\(165\) 4.62137 0.359773
\(166\) −1.80911 −0.140414
\(167\) 10.6798 0.826425 0.413213 0.910635i \(-0.364407\pi\)
0.413213 + 0.910635i \(0.364407\pi\)
\(168\) 10.8238 0.835072
\(169\) −11.4865 −0.883574
\(170\) −3.58317 −0.274816
\(171\) −2.56771 −0.196358
\(172\) 2.08340 0.158858
\(173\) −13.1391 −0.998951 −0.499475 0.866328i \(-0.666474\pi\)
−0.499475 + 0.866328i \(0.666474\pi\)
\(174\) 1.15918 0.0878771
\(175\) −4.35754 −0.329399
\(176\) 5.65795 0.426484
\(177\) −8.57843 −0.644795
\(178\) −0.160579 −0.0120359
\(179\) 1.58809 0.118700 0.0593498 0.998237i \(-0.481097\pi\)
0.0593498 + 0.998237i \(0.481097\pi\)
\(180\) 1.49485 0.111420
\(181\) −14.6924 −1.09208 −0.546039 0.837760i \(-0.683865\pi\)
−0.546039 + 0.837760i \(0.683865\pi\)
\(182\) 3.81018 0.282429
\(183\) 0.607358 0.0448972
\(184\) 0 0
\(185\) −7.73627 −0.568782
\(186\) −6.65751 −0.488152
\(187\) −23.2986 −1.70376
\(188\) 11.0757 0.807777
\(189\) 4.35754 0.316964
\(190\) −1.82497 −0.132397
\(191\) −1.65098 −0.119460 −0.0597302 0.998215i \(-0.519024\pi\)
−0.0597302 + 0.998215i \(0.519024\pi\)
\(192\) −1.70067 −0.122735
\(193\) 3.82901 0.275618 0.137809 0.990459i \(-0.455994\pi\)
0.137809 + 0.990459i \(0.455994\pi\)
\(194\) −12.0164 −0.862724
\(195\) 1.23026 0.0881005
\(196\) −17.9206 −1.28004
\(197\) −17.0473 −1.21457 −0.607287 0.794483i \(-0.707742\pi\)
−0.607287 + 0.794483i \(0.707742\pi\)
\(198\) −3.28457 −0.233424
\(199\) 26.8408 1.90269 0.951346 0.308124i \(-0.0997013\pi\)
0.951346 + 0.308124i \(0.0997013\pi\)
\(200\) 2.48392 0.175640
\(201\) −12.0384 −0.849125
\(202\) 6.36201 0.447629
\(203\) −7.10695 −0.498810
\(204\) −7.53629 −0.527646
\(205\) 6.01986 0.420446
\(206\) −6.48421 −0.451776
\(207\) 0 0
\(208\) 1.50620 0.104436
\(209\) −11.8664 −0.820813
\(210\) 3.09706 0.213717
\(211\) 16.6549 1.14657 0.573286 0.819355i \(-0.305668\pi\)
0.573286 + 0.819355i \(0.305668\pi\)
\(212\) −7.05219 −0.484347
\(213\) −7.68448 −0.526532
\(214\) 8.78750 0.600701
\(215\) 1.39371 0.0950505
\(216\) −2.48392 −0.169009
\(217\) 40.8174 2.77086
\(218\) −8.48643 −0.574774
\(219\) 12.2426 0.827278
\(220\) 6.90828 0.465756
\(221\) −6.20233 −0.417214
\(222\) 5.49844 0.369031
\(223\) 25.1581 1.68471 0.842357 0.538920i \(-0.181167\pi\)
0.842357 + 0.538920i \(0.181167\pi\)
\(224\) 25.4393 1.69973
\(225\) 1.00000 0.0666667
\(226\) 5.45421 0.362808
\(227\) −6.16143 −0.408949 −0.204474 0.978872i \(-0.565548\pi\)
−0.204474 + 0.978872i \(0.565548\pi\)
\(228\) −3.83836 −0.254201
\(229\) −2.39666 −0.158376 −0.0791879 0.996860i \(-0.525233\pi\)
−0.0791879 + 0.996860i \(0.525233\pi\)
\(230\) 0 0
\(231\) 20.1378 1.32497
\(232\) 4.05116 0.265972
\(233\) −5.68435 −0.372394 −0.186197 0.982512i \(-0.559616\pi\)
−0.186197 + 0.982512i \(0.559616\pi\)
\(234\) −0.874388 −0.0571605
\(235\) 7.40920 0.483323
\(236\) −12.8235 −0.834740
\(237\) −14.0056 −0.909758
\(238\) −15.6138 −1.01209
\(239\) 27.2177 1.76057 0.880283 0.474450i \(-0.157353\pi\)
0.880283 + 0.474450i \(0.157353\pi\)
\(240\) 1.22430 0.0790282
\(241\) 0.251294 0.0161873 0.00809363 0.999967i \(-0.497424\pi\)
0.00809363 + 0.999967i \(0.497424\pi\)
\(242\) −7.36114 −0.473192
\(243\) −1.00000 −0.0641500
\(244\) 0.907912 0.0581231
\(245\) −11.9882 −0.765895
\(246\) −4.27853 −0.272789
\(247\) −3.15895 −0.200999
\(248\) −23.2670 −1.47746
\(249\) −2.54540 −0.161308
\(250\) 0.710736 0.0449509
\(251\) −3.41912 −0.215813 −0.107906 0.994161i \(-0.534415\pi\)
−0.107906 + 0.994161i \(0.534415\pi\)
\(252\) 6.51389 0.410336
\(253\) 0 0
\(254\) 7.45225 0.467596
\(255\) −5.04149 −0.315710
\(256\) −10.8408 −0.677549
\(257\) 9.42896 0.588162 0.294081 0.955780i \(-0.404986\pi\)
0.294081 + 0.955780i \(0.404986\pi\)
\(258\) −0.990562 −0.0616697
\(259\) −33.7111 −2.09471
\(260\) 1.83906 0.114053
\(261\) 1.63095 0.100954
\(262\) −7.16933 −0.442923
\(263\) −21.2501 −1.31034 −0.655170 0.755482i \(-0.727403\pi\)
−0.655170 + 0.755482i \(0.727403\pi\)
\(264\) −11.4791 −0.706490
\(265\) −4.71764 −0.289803
\(266\) −7.95236 −0.487590
\(267\) −0.225933 −0.0138269
\(268\) −17.9957 −1.09926
\(269\) −11.3667 −0.693042 −0.346521 0.938042i \(-0.612637\pi\)
−0.346521 + 0.938042i \(0.612637\pi\)
\(270\) −0.710736 −0.0432540
\(271\) −20.0189 −1.21606 −0.608030 0.793914i \(-0.708040\pi\)
−0.608030 + 0.793914i \(0.708040\pi\)
\(272\) −6.17229 −0.374250
\(273\) 5.36090 0.324456
\(274\) −7.28654 −0.440196
\(275\) 4.62137 0.278679
\(276\) 0 0
\(277\) −6.26539 −0.376451 −0.188225 0.982126i \(-0.560274\pi\)
−0.188225 + 0.982126i \(0.560274\pi\)
\(278\) −9.61118 −0.576440
\(279\) −9.36706 −0.560791
\(280\) 10.8238 0.646844
\(281\) −5.30226 −0.316306 −0.158153 0.987415i \(-0.550554\pi\)
−0.158153 + 0.987415i \(0.550554\pi\)
\(282\) −5.26599 −0.313585
\(283\) −9.41670 −0.559765 −0.279882 0.960034i \(-0.590295\pi\)
−0.279882 + 0.960034i \(0.590295\pi\)
\(284\) −11.4872 −0.681639
\(285\) −2.56771 −0.152098
\(286\) −4.04087 −0.238942
\(287\) 26.2318 1.54841
\(288\) −5.83799 −0.344007
\(289\) 8.41660 0.495094
\(290\) 1.15918 0.0680693
\(291\) −16.9069 −0.991101
\(292\) 18.3009 1.07098
\(293\) −12.1417 −0.709323 −0.354662 0.934995i \(-0.615404\pi\)
−0.354662 + 0.934995i \(0.615404\pi\)
\(294\) 8.52041 0.496920
\(295\) −8.57843 −0.499456
\(296\) 19.2163 1.11692
\(297\) −4.62137 −0.268159
\(298\) −13.2994 −0.770413
\(299\) 0 0
\(300\) 1.49485 0.0863055
\(301\) 6.07316 0.350051
\(302\) −0.370065 −0.0212948
\(303\) 8.95130 0.514239
\(304\) −3.14365 −0.180301
\(305\) 0.607358 0.0347772
\(306\) 3.58317 0.204836
\(307\) −12.9179 −0.737263 −0.368631 0.929576i \(-0.620174\pi\)
−0.368631 + 0.929576i \(0.620174\pi\)
\(308\) 30.1031 1.71528
\(309\) −9.12324 −0.519003
\(310\) −6.65751 −0.378121
\(311\) 20.5993 1.16808 0.584041 0.811724i \(-0.301471\pi\)
0.584041 + 0.811724i \(0.301471\pi\)
\(312\) −3.05586 −0.173004
\(313\) 3.99270 0.225681 0.112840 0.993613i \(-0.464005\pi\)
0.112840 + 0.993613i \(0.464005\pi\)
\(314\) 13.2848 0.749704
\(315\) 4.35754 0.245520
\(316\) −20.9363 −1.17776
\(317\) 17.0340 0.956722 0.478361 0.878163i \(-0.341231\pi\)
0.478361 + 0.878163i \(0.341231\pi\)
\(318\) 3.35300 0.188027
\(319\) 7.53725 0.422005
\(320\) −1.70067 −0.0950702
\(321\) 12.3639 0.690088
\(322\) 0 0
\(323\) 12.9451 0.720284
\(324\) −1.49485 −0.0830475
\(325\) 1.23026 0.0682424
\(326\) 0.808906 0.0448012
\(327\) −11.9404 −0.660303
\(328\) −14.9529 −0.825633
\(329\) 32.2859 1.77998
\(330\) −3.28457 −0.180810
\(331\) −6.50273 −0.357423 −0.178711 0.983902i \(-0.557193\pi\)
−0.178711 + 0.983902i \(0.557193\pi\)
\(332\) −3.80500 −0.208827
\(333\) 7.73627 0.423945
\(334\) −7.59049 −0.415333
\(335\) −12.0384 −0.657730
\(336\) 5.33494 0.291045
\(337\) −34.9557 −1.90416 −0.952079 0.305854i \(-0.901058\pi\)
−0.952079 + 0.305854i \(0.901058\pi\)
\(338\) 8.16384 0.444054
\(339\) 7.67403 0.416796
\(340\) −7.53629 −0.408713
\(341\) −43.2887 −2.34421
\(342\) 1.82497 0.0986828
\(343\) −21.7361 −1.17364
\(344\) −3.46187 −0.186652
\(345\) 0 0
\(346\) 9.33846 0.502039
\(347\) −29.5042 −1.58387 −0.791933 0.610608i \(-0.790925\pi\)
−0.791933 + 0.610608i \(0.790925\pi\)
\(348\) 2.43804 0.130693
\(349\) −24.4744 −1.31009 −0.655043 0.755591i \(-0.727350\pi\)
−0.655043 + 0.755591i \(0.727350\pi\)
\(350\) 3.09706 0.165545
\(351\) −1.23026 −0.0656663
\(352\) −26.9795 −1.43801
\(353\) −27.6347 −1.47084 −0.735422 0.677609i \(-0.763016\pi\)
−0.735422 + 0.677609i \(0.763016\pi\)
\(354\) 6.09700 0.324052
\(355\) −7.68448 −0.407850
\(356\) −0.337737 −0.0179000
\(357\) −21.9685 −1.16270
\(358\) −1.12871 −0.0596544
\(359\) 3.59097 0.189524 0.0947620 0.995500i \(-0.469791\pi\)
0.0947620 + 0.995500i \(0.469791\pi\)
\(360\) −2.48392 −0.130914
\(361\) −12.4069 −0.652992
\(362\) 10.4424 0.548841
\(363\) −10.3571 −0.543605
\(364\) 8.01376 0.420035
\(365\) 12.2426 0.640807
\(366\) −0.431671 −0.0225638
\(367\) −23.9262 −1.24894 −0.624468 0.781051i \(-0.714684\pi\)
−0.624468 + 0.781051i \(0.714684\pi\)
\(368\) 0 0
\(369\) −6.01986 −0.313382
\(370\) 5.49844 0.285850
\(371\) −20.5573 −1.06728
\(372\) −14.0024 −0.725990
\(373\) 12.0133 0.622026 0.311013 0.950406i \(-0.399332\pi\)
0.311013 + 0.950406i \(0.399332\pi\)
\(374\) 16.5591 0.856253
\(375\) 1.00000 0.0516398
\(376\) −18.4039 −0.949106
\(377\) 2.00649 0.103340
\(378\) −3.09706 −0.159296
\(379\) −25.5283 −1.31130 −0.655651 0.755064i \(-0.727606\pi\)
−0.655651 + 0.755064i \(0.727606\pi\)
\(380\) −3.83836 −0.196904
\(381\) 10.4853 0.537176
\(382\) 1.17341 0.0600367
\(383\) −8.05312 −0.411495 −0.205747 0.978605i \(-0.565963\pi\)
−0.205747 + 0.978605i \(0.565963\pi\)
\(384\) −10.4673 −0.534155
\(385\) 20.1378 1.02632
\(386\) −2.72141 −0.138516
\(387\) −1.39371 −0.0708465
\(388\) −25.2734 −1.28306
\(389\) 0.536041 0.0271784 0.0135892 0.999908i \(-0.495674\pi\)
0.0135892 + 0.999908i \(0.495674\pi\)
\(390\) −0.874388 −0.0442763
\(391\) 0 0
\(392\) 29.7776 1.50400
\(393\) −10.0872 −0.508832
\(394\) 12.1162 0.610403
\(395\) −14.0056 −0.704696
\(396\) −6.90828 −0.347154
\(397\) 3.81955 0.191698 0.0958490 0.995396i \(-0.469443\pi\)
0.0958490 + 0.995396i \(0.469443\pi\)
\(398\) −19.0767 −0.956228
\(399\) −11.1889 −0.560146
\(400\) 1.22430 0.0612150
\(401\) 26.2282 1.30977 0.654887 0.755727i \(-0.272716\pi\)
0.654887 + 0.755727i \(0.272716\pi\)
\(402\) 8.55614 0.426742
\(403\) −11.5239 −0.574046
\(404\) 13.3809 0.665724
\(405\) −1.00000 −0.0496904
\(406\) 5.05116 0.250685
\(407\) 35.7522 1.77217
\(408\) 12.5226 0.619963
\(409\) −28.4413 −1.40633 −0.703166 0.711026i \(-0.748231\pi\)
−0.703166 + 0.711026i \(0.748231\pi\)
\(410\) −4.27853 −0.211302
\(411\) −10.2521 −0.505699
\(412\) −13.6379 −0.671892
\(413\) −37.3809 −1.83939
\(414\) 0 0
\(415\) −2.54540 −0.124949
\(416\) −7.18223 −0.352138
\(417\) −13.5229 −0.662217
\(418\) 8.43384 0.412513
\(419\) 8.29949 0.405456 0.202728 0.979235i \(-0.435019\pi\)
0.202728 + 0.979235i \(0.435019\pi\)
\(420\) 6.51389 0.317845
\(421\) 1.98187 0.0965906 0.0482953 0.998833i \(-0.484621\pi\)
0.0482953 + 0.998833i \(0.484621\pi\)
\(422\) −11.8372 −0.576228
\(423\) −7.40920 −0.360248
\(424\) 11.7182 0.569088
\(425\) −5.04149 −0.244548
\(426\) 5.46163 0.264617
\(427\) 2.64659 0.128077
\(428\) 18.4823 0.893376
\(429\) −5.68548 −0.274497
\(430\) −0.990562 −0.0477692
\(431\) 21.4346 1.03247 0.516233 0.856448i \(-0.327334\pi\)
0.516233 + 0.856448i \(0.327334\pi\)
\(432\) −1.22430 −0.0589042
\(433\) 24.1689 1.16148 0.580741 0.814088i \(-0.302763\pi\)
0.580741 + 0.814088i \(0.302763\pi\)
\(434\) −29.0103 −1.39254
\(435\) 1.63095 0.0781983
\(436\) −17.8491 −0.854816
\(437\) 0 0
\(438\) −8.70125 −0.415762
\(439\) −18.7336 −0.894104 −0.447052 0.894508i \(-0.647526\pi\)
−0.447052 + 0.894508i \(0.647526\pi\)
\(440\) −11.4791 −0.547245
\(441\) 11.9882 0.570865
\(442\) 4.40822 0.209677
\(443\) −38.5934 −1.83363 −0.916814 0.399315i \(-0.869248\pi\)
−0.916814 + 0.399315i \(0.869248\pi\)
\(444\) 11.5646 0.548832
\(445\) −0.225933 −0.0107103
\(446\) −17.8808 −0.846680
\(447\) −18.7121 −0.885054
\(448\) −7.41073 −0.350124
\(449\) 8.03905 0.379386 0.189693 0.981843i \(-0.439251\pi\)
0.189693 + 0.981843i \(0.439251\pi\)
\(450\) −0.710736 −0.0335044
\(451\) −27.8200 −1.30999
\(452\) 11.4716 0.539577
\(453\) −0.520678 −0.0244636
\(454\) 4.37915 0.205524
\(455\) 5.36090 0.251323
\(456\) 6.37799 0.298677
\(457\) 14.8564 0.694953 0.347476 0.937689i \(-0.387039\pi\)
0.347476 + 0.937689i \(0.387039\pi\)
\(458\) 1.70339 0.0795943
\(459\) 5.04149 0.235317
\(460\) 0 0
\(461\) −19.0154 −0.885633 −0.442817 0.896612i \(-0.646021\pi\)
−0.442817 + 0.896612i \(0.646021\pi\)
\(462\) −14.3127 −0.665885
\(463\) 18.0640 0.839508 0.419754 0.907638i \(-0.362116\pi\)
0.419754 + 0.907638i \(0.362116\pi\)
\(464\) 1.99678 0.0926981
\(465\) −9.36706 −0.434387
\(466\) 4.04007 0.187153
\(467\) −0.787020 −0.0364190 −0.0182095 0.999834i \(-0.505797\pi\)
−0.0182095 + 0.999834i \(0.505797\pi\)
\(468\) −1.83906 −0.0850104
\(469\) −52.4579 −2.42228
\(470\) −5.26599 −0.242902
\(471\) 18.6916 0.861263
\(472\) 21.3081 0.980786
\(473\) −6.44087 −0.296152
\(474\) 9.95425 0.457214
\(475\) −2.56771 −0.117815
\(476\) −32.8397 −1.50521
\(477\) 4.71764 0.216006
\(478\) −19.3446 −0.884800
\(479\) −4.79857 −0.219252 −0.109626 0.993973i \(-0.534965\pi\)
−0.109626 + 0.993973i \(0.534965\pi\)
\(480\) −5.83799 −0.266467
\(481\) 9.51760 0.433965
\(482\) −0.178604 −0.00813517
\(483\) 0 0
\(484\) −15.4823 −0.703742
\(485\) −16.9069 −0.767704
\(486\) 0.710736 0.0322396
\(487\) 13.7237 0.621881 0.310940 0.950429i \(-0.399356\pi\)
0.310940 + 0.950429i \(0.399356\pi\)
\(488\) −1.50863 −0.0682924
\(489\) 1.13812 0.0514678
\(490\) 8.52041 0.384913
\(491\) 29.3919 1.32644 0.663218 0.748426i \(-0.269190\pi\)
0.663218 + 0.748426i \(0.269190\pi\)
\(492\) −8.99882 −0.405698
\(493\) −8.22244 −0.370320
\(494\) 2.24518 0.101015
\(495\) −4.62137 −0.207715
\(496\) −11.4681 −0.514933
\(497\) −33.4854 −1.50203
\(498\) 1.80911 0.0810679
\(499\) −28.8069 −1.28957 −0.644786 0.764363i \(-0.723054\pi\)
−0.644786 + 0.764363i \(0.723054\pi\)
\(500\) 1.49485 0.0668519
\(501\) −10.6798 −0.477137
\(502\) 2.43009 0.108460
\(503\) 35.7496 1.59400 0.796999 0.603981i \(-0.206420\pi\)
0.796999 + 0.603981i \(0.206420\pi\)
\(504\) −10.8238 −0.482129
\(505\) 8.95130 0.398328
\(506\) 0 0
\(507\) 11.4865 0.510132
\(508\) 15.6739 0.695419
\(509\) 27.9504 1.23888 0.619440 0.785044i \(-0.287360\pi\)
0.619440 + 0.785044i \(0.287360\pi\)
\(510\) 3.58317 0.158665
\(511\) 53.3476 2.35996
\(512\) −13.2296 −0.584670
\(513\) 2.56771 0.113367
\(514\) −6.70150 −0.295590
\(515\) −9.12324 −0.402018
\(516\) −2.08340 −0.0917166
\(517\) −34.2407 −1.50590
\(518\) 23.9597 1.05273
\(519\) 13.1391 0.576744
\(520\) −3.05586 −0.134008
\(521\) −11.5528 −0.506135 −0.253068 0.967449i \(-0.581440\pi\)
−0.253068 + 0.967449i \(0.581440\pi\)
\(522\) −1.15918 −0.0507358
\(523\) −4.81588 −0.210584 −0.105292 0.994441i \(-0.533578\pi\)
−0.105292 + 0.994441i \(0.533578\pi\)
\(524\) −15.0789 −0.658725
\(525\) 4.35754 0.190179
\(526\) 15.1032 0.658532
\(527\) 47.2239 2.05711
\(528\) −5.65795 −0.246230
\(529\) 0 0
\(530\) 3.35300 0.145645
\(531\) 8.57843 0.372272
\(532\) −16.7258 −0.725155
\(533\) −7.40598 −0.320789
\(534\) 0.160579 0.00694892
\(535\) 12.3639 0.534540
\(536\) 29.9025 1.29159
\(537\) −1.58809 −0.0685312
\(538\) 8.07874 0.348299
\(539\) 55.4017 2.38632
\(540\) −1.49485 −0.0643283
\(541\) 32.8792 1.41359 0.706794 0.707419i \(-0.250141\pi\)
0.706794 + 0.707419i \(0.250141\pi\)
\(542\) 14.2281 0.611150
\(543\) 14.6924 0.630511
\(544\) 29.4322 1.26189
\(545\) −11.9404 −0.511468
\(546\) −3.81018 −0.163061
\(547\) −19.4302 −0.830774 −0.415387 0.909645i \(-0.636354\pi\)
−0.415387 + 0.909645i \(0.636354\pi\)
\(548\) −15.3254 −0.654669
\(549\) −0.607358 −0.0259214
\(550\) −3.28457 −0.140055
\(551\) −4.18782 −0.178407
\(552\) 0 0
\(553\) −61.0298 −2.59525
\(554\) 4.45304 0.189191
\(555\) 7.73627 0.328386
\(556\) −20.2147 −0.857295
\(557\) 9.97514 0.422660 0.211330 0.977415i \(-0.432220\pi\)
0.211330 + 0.977415i \(0.432220\pi\)
\(558\) 6.65751 0.281835
\(559\) −1.71463 −0.0725210
\(560\) 5.33494 0.225442
\(561\) 23.2986 0.983667
\(562\) 3.76850 0.158965
\(563\) 43.6138 1.83810 0.919050 0.394140i \(-0.128957\pi\)
0.919050 + 0.394140i \(0.128957\pi\)
\(564\) −11.0757 −0.466370
\(565\) 7.67403 0.322849
\(566\) 6.69278 0.281319
\(567\) −4.35754 −0.182999
\(568\) 19.0876 0.800898
\(569\) −17.4593 −0.731930 −0.365965 0.930629i \(-0.619261\pi\)
−0.365965 + 0.930629i \(0.619261\pi\)
\(570\) 1.82497 0.0764394
\(571\) −27.1394 −1.13575 −0.567874 0.823116i \(-0.692234\pi\)
−0.567874 + 0.823116i \(0.692234\pi\)
\(572\) −8.49896 −0.355359
\(573\) 1.65098 0.0689705
\(574\) −18.6439 −0.778180
\(575\) 0 0
\(576\) 1.70067 0.0708612
\(577\) −11.4540 −0.476837 −0.238419 0.971162i \(-0.576629\pi\)
−0.238419 + 0.971162i \(0.576629\pi\)
\(578\) −5.98198 −0.248818
\(579\) −3.82901 −0.159128
\(580\) 2.43804 0.101234
\(581\) −11.0917 −0.460160
\(582\) 12.0164 0.498094
\(583\) 21.8020 0.902946
\(584\) −30.4096 −1.25836
\(585\) −1.23026 −0.0508649
\(586\) 8.62951 0.356482
\(587\) −0.407382 −0.0168145 −0.00840723 0.999965i \(-0.502676\pi\)
−0.00840723 + 0.999965i \(0.502676\pi\)
\(588\) 17.9206 0.739031
\(589\) 24.0519 0.991042
\(590\) 6.09700 0.251009
\(591\) 17.0473 0.701234
\(592\) 9.47152 0.389277
\(593\) 13.7698 0.565458 0.282729 0.959200i \(-0.408760\pi\)
0.282729 + 0.959200i \(0.408760\pi\)
\(594\) 3.28457 0.134768
\(595\) −21.9685 −0.900620
\(596\) −27.9719 −1.14578
\(597\) −26.8408 −1.09852
\(598\) 0 0
\(599\) −18.4867 −0.755348 −0.377674 0.925939i \(-0.623276\pi\)
−0.377674 + 0.925939i \(0.623276\pi\)
\(600\) −2.48392 −0.101406
\(601\) −2.70538 −0.110355 −0.0551775 0.998477i \(-0.517572\pi\)
−0.0551775 + 0.998477i \(0.517572\pi\)
\(602\) −4.31641 −0.175924
\(603\) 12.0384 0.490243
\(604\) −0.778339 −0.0316701
\(605\) −10.3571 −0.421075
\(606\) −6.36201 −0.258439
\(607\) −25.6085 −1.03942 −0.519708 0.854344i \(-0.673959\pi\)
−0.519708 + 0.854344i \(0.673959\pi\)
\(608\) 14.9903 0.607936
\(609\) 7.10695 0.287988
\(610\) −0.431671 −0.0174779
\(611\) −9.11523 −0.368763
\(612\) 7.53629 0.304637
\(613\) 20.4529 0.826085 0.413043 0.910712i \(-0.364466\pi\)
0.413043 + 0.910712i \(0.364466\pi\)
\(614\) 9.18121 0.370523
\(615\) −6.01986 −0.242744
\(616\) −50.0207 −2.01539
\(617\) 29.1790 1.17470 0.587351 0.809332i \(-0.300171\pi\)
0.587351 + 0.809332i \(0.300171\pi\)
\(618\) 6.48421 0.260833
\(619\) 30.1589 1.21219 0.606093 0.795393i \(-0.292736\pi\)
0.606093 + 0.795393i \(0.292736\pi\)
\(620\) −14.0024 −0.562350
\(621\) 0 0
\(622\) −14.6407 −0.587038
\(623\) −0.984512 −0.0394437
\(624\) −1.50620 −0.0602964
\(625\) 1.00000 0.0400000
\(626\) −2.83775 −0.113419
\(627\) 11.8664 0.473897
\(628\) 27.9412 1.11498
\(629\) −39.0023 −1.55512
\(630\) −3.09706 −0.123390
\(631\) −14.7710 −0.588023 −0.294011 0.955802i \(-0.594990\pi\)
−0.294011 + 0.955802i \(0.594990\pi\)
\(632\) 34.7886 1.38382
\(633\) −16.6549 −0.661974
\(634\) −12.1066 −0.480816
\(635\) 10.4853 0.416095
\(636\) 7.05219 0.279638
\(637\) 14.7485 0.584358
\(638\) −5.35699 −0.212085
\(639\) 7.68448 0.303993
\(640\) −10.4673 −0.413755
\(641\) 44.7372 1.76701 0.883506 0.468421i \(-0.155177\pi\)
0.883506 + 0.468421i \(0.155177\pi\)
\(642\) −8.78750 −0.346815
\(643\) −3.20427 −0.126364 −0.0631821 0.998002i \(-0.520125\pi\)
−0.0631821 + 0.998002i \(0.520125\pi\)
\(644\) 0 0
\(645\) −1.39371 −0.0548774
\(646\) −9.20054 −0.361990
\(647\) −12.5957 −0.495188 −0.247594 0.968864i \(-0.579640\pi\)
−0.247594 + 0.968864i \(0.579640\pi\)
\(648\) 2.48392 0.0975775
\(649\) 39.6441 1.55617
\(650\) −0.874388 −0.0342963
\(651\) −40.8174 −1.59976
\(652\) 1.70133 0.0666293
\(653\) 9.44203 0.369495 0.184748 0.982786i \(-0.440853\pi\)
0.184748 + 0.982786i \(0.440853\pi\)
\(654\) 8.48643 0.331846
\(655\) −10.0872 −0.394139
\(656\) −7.37012 −0.287755
\(657\) −12.2426 −0.477629
\(658\) −22.9467 −0.894557
\(659\) −39.3544 −1.53303 −0.766515 0.642226i \(-0.778011\pi\)
−0.766515 + 0.642226i \(0.778011\pi\)
\(660\) −6.90828 −0.268904
\(661\) −21.9285 −0.852919 −0.426459 0.904507i \(-0.640239\pi\)
−0.426459 + 0.904507i \(0.640239\pi\)
\(662\) 4.62172 0.179628
\(663\) 6.20233 0.240878
\(664\) 6.32256 0.245363
\(665\) −11.1889 −0.433887
\(666\) −5.49844 −0.213060
\(667\) 0 0
\(668\) −15.9647 −0.617693
\(669\) −25.1581 −0.972670
\(670\) 8.55614 0.330553
\(671\) −2.80683 −0.108356
\(672\) −25.4393 −0.981341
\(673\) −15.2650 −0.588422 −0.294211 0.955741i \(-0.595057\pi\)
−0.294211 + 0.955741i \(0.595057\pi\)
\(674\) 24.8442 0.956965
\(675\) −1.00000 −0.0384900
\(676\) 17.1706 0.660408
\(677\) 4.06918 0.156391 0.0781957 0.996938i \(-0.475084\pi\)
0.0781957 + 0.996938i \(0.475084\pi\)
\(678\) −5.45421 −0.209468
\(679\) −73.6726 −2.82729
\(680\) 12.5226 0.480221
\(681\) 6.16143 0.236107
\(682\) 30.7668 1.17812
\(683\) 14.1616 0.541877 0.270938 0.962597i \(-0.412666\pi\)
0.270938 + 0.962597i \(0.412666\pi\)
\(684\) 3.83836 0.146763
\(685\) −10.2521 −0.391713
\(686\) 15.4486 0.589831
\(687\) 2.39666 0.0914383
\(688\) −1.70632 −0.0650530
\(689\) 5.80392 0.221112
\(690\) 0 0
\(691\) −34.9938 −1.33123 −0.665614 0.746297i \(-0.731830\pi\)
−0.665614 + 0.746297i \(0.731830\pi\)
\(692\) 19.6411 0.746643
\(693\) −20.1378 −0.764972
\(694\) 20.9697 0.795997
\(695\) −13.5229 −0.512951
\(696\) −4.05116 −0.153559
\(697\) 30.3491 1.14955
\(698\) 17.3949 0.658405
\(699\) 5.68435 0.215002
\(700\) 6.51389 0.246202
\(701\) 26.9532 1.01801 0.509005 0.860764i \(-0.330014\pi\)
0.509005 + 0.860764i \(0.330014\pi\)
\(702\) 0.874388 0.0330016
\(703\) −19.8645 −0.749205
\(704\) 7.85942 0.296213
\(705\) −7.40920 −0.279047
\(706\) 19.6409 0.739197
\(707\) 39.0056 1.46696
\(708\) 12.8235 0.481937
\(709\) 14.5892 0.547907 0.273954 0.961743i \(-0.411669\pi\)
0.273954 + 0.961743i \(0.411669\pi\)
\(710\) 5.46163 0.204971
\(711\) 14.0056 0.525249
\(712\) 0.561199 0.0210318
\(713\) 0 0
\(714\) 15.6138 0.584331
\(715\) −5.68548 −0.212625
\(716\) −2.37397 −0.0887193
\(717\) −27.2177 −1.01646
\(718\) −2.55223 −0.0952484
\(719\) 28.3700 1.05802 0.529011 0.848615i \(-0.322563\pi\)
0.529011 + 0.848615i \(0.322563\pi\)
\(720\) −1.22430 −0.0456270
\(721\) −39.7549 −1.48055
\(722\) 8.81799 0.328172
\(723\) −0.251294 −0.00934572
\(724\) 21.9630 0.816248
\(725\) 1.63095 0.0605721
\(726\) 7.36114 0.273198
\(727\) 44.6184 1.65480 0.827402 0.561611i \(-0.189818\pi\)
0.827402 + 0.561611i \(0.189818\pi\)
\(728\) −13.3160 −0.493525
\(729\) 1.00000 0.0370370
\(730\) −8.70125 −0.322048
\(731\) 7.02639 0.259880
\(732\) −0.907912 −0.0335574
\(733\) 37.3118 1.37814 0.689072 0.724693i \(-0.258019\pi\)
0.689072 + 0.724693i \(0.258019\pi\)
\(734\) 17.0052 0.627672
\(735\) 11.9882 0.442190
\(736\) 0 0
\(737\) 55.6341 2.04931
\(738\) 4.27853 0.157495
\(739\) −4.98689 −0.183446 −0.0917228 0.995785i \(-0.529237\pi\)
−0.0917228 + 0.995785i \(0.529237\pi\)
\(740\) 11.5646 0.425123
\(741\) 3.15895 0.116047
\(742\) 14.6108 0.536380
\(743\) −50.4532 −1.85095 −0.925475 0.378809i \(-0.876334\pi\)
−0.925475 + 0.378809i \(0.876334\pi\)
\(744\) 23.2670 0.853010
\(745\) −18.7121 −0.685560
\(746\) −8.53829 −0.312609
\(747\) 2.54540 0.0931312
\(748\) 34.8280 1.27344
\(749\) 53.8764 1.96860
\(750\) −0.710736 −0.0259524
\(751\) −41.3189 −1.50775 −0.753874 0.657019i \(-0.771817\pi\)
−0.753874 + 0.657019i \(0.771817\pi\)
\(752\) −9.07109 −0.330789
\(753\) 3.41912 0.124600
\(754\) −1.42609 −0.0519350
\(755\) −0.520678 −0.0189494
\(756\) −6.51389 −0.236908
\(757\) −19.3708 −0.704042 −0.352021 0.935992i \(-0.614506\pi\)
−0.352021 + 0.935992i \(0.614506\pi\)
\(758\) 18.1439 0.659016
\(759\) 0 0
\(760\) 6.37799 0.231354
\(761\) 8.86082 0.321204 0.160602 0.987019i \(-0.448656\pi\)
0.160602 + 0.987019i \(0.448656\pi\)
\(762\) −7.45225 −0.269966
\(763\) −52.0306 −1.88363
\(764\) 2.46797 0.0892880
\(765\) 5.04149 0.182275
\(766\) 5.72364 0.206803
\(767\) 10.5537 0.381071
\(768\) 10.8408 0.391183
\(769\) −33.6989 −1.21521 −0.607607 0.794238i \(-0.707871\pi\)
−0.607607 + 0.794238i \(0.707871\pi\)
\(770\) −14.3127 −0.515793
\(771\) −9.42896 −0.339576
\(772\) −5.72381 −0.206004
\(773\) −36.3496 −1.30740 −0.653702 0.756752i \(-0.726785\pi\)
−0.653702 + 0.756752i \(0.726785\pi\)
\(774\) 0.990562 0.0356050
\(775\) −9.36706 −0.336475
\(776\) 41.9954 1.50755
\(777\) 33.7111 1.20938
\(778\) −0.380984 −0.0136589
\(779\) 15.4573 0.553815
\(780\) −1.83906 −0.0658488
\(781\) 35.5128 1.27075
\(782\) 0 0
\(783\) −1.63095 −0.0582856
\(784\) 14.6771 0.524182
\(785\) 18.6916 0.667132
\(786\) 7.16933 0.255722
\(787\) −23.7793 −0.847641 −0.423820 0.905746i \(-0.639311\pi\)
−0.423820 + 0.905746i \(0.639311\pi\)
\(788\) 25.4833 0.907805
\(789\) 21.2501 0.756525
\(790\) 9.95425 0.354156
\(791\) 33.4399 1.18899
\(792\) 11.4791 0.407892
\(793\) −0.747207 −0.0265341
\(794\) −2.71469 −0.0963409
\(795\) 4.71764 0.167318
\(796\) −40.1231 −1.42212
\(797\) −35.8378 −1.26944 −0.634720 0.772742i \(-0.718885\pi\)
−0.634720 + 0.772742i \(0.718885\pi\)
\(798\) 7.95236 0.281510
\(799\) 37.3534 1.32147
\(800\) −5.83799 −0.206404
\(801\) 0.225933 0.00798295
\(802\) −18.6413 −0.658248
\(803\) −56.5776 −1.99658
\(804\) 17.9957 0.634659
\(805\) 0 0
\(806\) 8.19044 0.288496
\(807\) 11.3667 0.400128
\(808\) −22.2343 −0.782200
\(809\) −18.5287 −0.651435 −0.325717 0.945467i \(-0.605606\pi\)
−0.325717 + 0.945467i \(0.605606\pi\)
\(810\) 0.710736 0.0249727
\(811\) −30.5749 −1.07363 −0.536815 0.843700i \(-0.680373\pi\)
−0.536815 + 0.843700i \(0.680373\pi\)
\(812\) 10.6239 0.372824
\(813\) 20.0189 0.702092
\(814\) −25.4103 −0.890632
\(815\) 1.13812 0.0398668
\(816\) 6.17229 0.216074
\(817\) 3.57866 0.125201
\(818\) 20.2142 0.706775
\(819\) −5.36090 −0.187325
\(820\) −8.99882 −0.314253
\(821\) 28.4203 0.991877 0.495938 0.868358i \(-0.334824\pi\)
0.495938 + 0.868358i \(0.334824\pi\)
\(822\) 7.28654 0.254147
\(823\) −31.0144 −1.08110 −0.540548 0.841313i \(-0.681783\pi\)
−0.540548 + 0.841313i \(0.681783\pi\)
\(824\) 22.6614 0.789446
\(825\) −4.62137 −0.160896
\(826\) 26.5679 0.924416
\(827\) 0.982592 0.0341681 0.0170840 0.999854i \(-0.494562\pi\)
0.0170840 + 0.999854i \(0.494562\pi\)
\(828\) 0 0
\(829\) −31.9397 −1.10931 −0.554656 0.832080i \(-0.687150\pi\)
−0.554656 + 0.832080i \(0.687150\pi\)
\(830\) 1.80911 0.0627950
\(831\) 6.26539 0.217344
\(832\) 2.09226 0.0725360
\(833\) −60.4381 −2.09406
\(834\) 9.61118 0.332808
\(835\) −10.6798 −0.369589
\(836\) 17.7385 0.613498
\(837\) 9.36706 0.323773
\(838\) −5.89874 −0.203769
\(839\) −32.3100 −1.11546 −0.557732 0.830021i \(-0.688328\pi\)
−0.557732 + 0.830021i \(0.688328\pi\)
\(840\) −10.8238 −0.373456
\(841\) −26.3400 −0.908275
\(842\) −1.40859 −0.0485431
\(843\) 5.30226 0.182619
\(844\) −24.8967 −0.856980
\(845\) 11.4865 0.395146
\(846\) 5.26599 0.181048
\(847\) −45.1314 −1.55073
\(848\) 5.77581 0.198342
\(849\) 9.41670 0.323180
\(850\) 3.58317 0.122902
\(851\) 0 0
\(852\) 11.4872 0.393544
\(853\) 20.1864 0.691168 0.345584 0.938388i \(-0.387681\pi\)
0.345584 + 0.938388i \(0.387681\pi\)
\(854\) −1.88102 −0.0643673
\(855\) 2.56771 0.0878139
\(856\) −30.7110 −1.04968
\(857\) −27.6286 −0.943774 −0.471887 0.881659i \(-0.656427\pi\)
−0.471887 + 0.881659i \(0.656427\pi\)
\(858\) 4.04087 0.137953
\(859\) 28.6578 0.977792 0.488896 0.872342i \(-0.337400\pi\)
0.488896 + 0.872342i \(0.337400\pi\)
\(860\) −2.08340 −0.0710433
\(861\) −26.2318 −0.893977
\(862\) −15.2343 −0.518883
\(863\) 10.2972 0.350520 0.175260 0.984522i \(-0.443923\pi\)
0.175260 + 0.984522i \(0.443923\pi\)
\(864\) 5.83799 0.198612
\(865\) 13.1391 0.446744
\(866\) −17.1777 −0.583722
\(867\) −8.41660 −0.285843
\(868\) −61.0160 −2.07102
\(869\) 64.7249 2.19564
\(870\) −1.15918 −0.0392998
\(871\) 14.8104 0.501830
\(872\) 29.6589 1.00438
\(873\) 16.9069 0.572213
\(874\) 0 0
\(875\) 4.35754 0.147312
\(876\) −18.3009 −0.618330
\(877\) −24.2742 −0.819683 −0.409842 0.912157i \(-0.634416\pi\)
−0.409842 + 0.912157i \(0.634416\pi\)
\(878\) 13.3146 0.449346
\(879\) 12.1417 0.409528
\(880\) −5.65795 −0.190729
\(881\) −0.586128 −0.0197471 −0.00987357 0.999951i \(-0.503143\pi\)
−0.00987357 + 0.999951i \(0.503143\pi\)
\(882\) −8.52041 −0.286897
\(883\) −34.9956 −1.17770 −0.588848 0.808244i \(-0.700418\pi\)
−0.588848 + 0.808244i \(0.700418\pi\)
\(884\) 9.27158 0.311837
\(885\) 8.57843 0.288361
\(886\) 27.4297 0.921519
\(887\) −7.29228 −0.244851 −0.122425 0.992478i \(-0.539067\pi\)
−0.122425 + 0.992478i \(0.539067\pi\)
\(888\) −19.2163 −0.644855
\(889\) 45.6899 1.53239
\(890\) 0.160579 0.00538261
\(891\) 4.62137 0.154822
\(892\) −37.6078 −1.25920
\(893\) 19.0247 0.636638
\(894\) 13.2994 0.444798
\(895\) −1.58809 −0.0530840
\(896\) −45.6115 −1.52377
\(897\) 0 0
\(898\) −5.71364 −0.190667
\(899\) −15.2773 −0.509525
\(900\) −1.49485 −0.0498285
\(901\) −23.7839 −0.792358
\(902\) 19.7727 0.658359
\(903\) −6.07316 −0.202102
\(904\) −19.0617 −0.633981
\(905\) 14.6924 0.488392
\(906\) 0.370065 0.0122946
\(907\) 5.23401 0.173792 0.0868962 0.996217i \(-0.472305\pi\)
0.0868962 + 0.996217i \(0.472305\pi\)
\(908\) 9.21045 0.305659
\(909\) −8.95130 −0.296896
\(910\) −3.81018 −0.126306
\(911\) 49.2471 1.63163 0.815815 0.578313i \(-0.196289\pi\)
0.815815 + 0.578313i \(0.196289\pi\)
\(912\) 3.14365 0.104097
\(913\) 11.7632 0.389306
\(914\) −10.5590 −0.349260
\(915\) −0.607358 −0.0200786
\(916\) 3.58266 0.118374
\(917\) −43.9554 −1.45153
\(918\) −3.58317 −0.118262
\(919\) 31.8816 1.05168 0.525838 0.850585i \(-0.323752\pi\)
0.525838 + 0.850585i \(0.323752\pi\)
\(920\) 0 0
\(921\) 12.9179 0.425659
\(922\) 13.5149 0.445089
\(923\) 9.45388 0.311178
\(924\) −30.1031 −0.990319
\(925\) 7.73627 0.254367
\(926\) −12.8388 −0.421908
\(927\) 9.12324 0.299646
\(928\) −9.52150 −0.312559
\(929\) −53.1883 −1.74505 −0.872525 0.488569i \(-0.837519\pi\)
−0.872525 + 0.488569i \(0.837519\pi\)
\(930\) 6.65751 0.218308
\(931\) −30.7821 −1.00884
\(932\) 8.49728 0.278338
\(933\) −20.5993 −0.674392
\(934\) 0.559364 0.0183029
\(935\) 23.2986 0.761945
\(936\) 3.05586 0.0998838
\(937\) −9.83038 −0.321145 −0.160572 0.987024i \(-0.551334\pi\)
−0.160572 + 0.987024i \(0.551334\pi\)
\(938\) 37.2837 1.21736
\(939\) −3.99270 −0.130297
\(940\) −11.0757 −0.361249
\(941\) −50.2189 −1.63709 −0.818544 0.574444i \(-0.805218\pi\)
−0.818544 + 0.574444i \(0.805218\pi\)
\(942\) −13.2848 −0.432842
\(943\) 0 0
\(944\) 10.5026 0.341830
\(945\) −4.35754 −0.141751
\(946\) 4.57776 0.148836
\(947\) 38.2604 1.24330 0.621648 0.783297i \(-0.286463\pi\)
0.621648 + 0.783297i \(0.286463\pi\)
\(948\) 20.9363 0.679978
\(949\) −15.0615 −0.488918
\(950\) 1.82497 0.0592097
\(951\) −17.0340 −0.552364
\(952\) 54.5679 1.76856
\(953\) −35.7573 −1.15829 −0.579146 0.815224i \(-0.696614\pi\)
−0.579146 + 0.815224i \(0.696614\pi\)
\(954\) −3.35300 −0.108557
\(955\) 1.65098 0.0534243
\(956\) −40.6865 −1.31589
\(957\) −7.53725 −0.243645
\(958\) 3.41051 0.110189
\(959\) −44.6740 −1.44260
\(960\) 1.70067 0.0548888
\(961\) 56.7419 1.83038
\(962\) −6.76450 −0.218096
\(963\) −12.3639 −0.398422
\(964\) −0.375648 −0.0120988
\(965\) −3.82901 −0.123260
\(966\) 0 0
\(967\) −49.2572 −1.58400 −0.792002 0.610518i \(-0.790961\pi\)
−0.792002 + 0.610518i \(0.790961\pi\)
\(968\) 25.7261 0.826869
\(969\) −12.9451 −0.415856
\(970\) 12.0164 0.385822
\(971\) 16.7731 0.538275 0.269137 0.963102i \(-0.413261\pi\)
0.269137 + 0.963102i \(0.413261\pi\)
\(972\) 1.49485 0.0479475
\(973\) −58.9264 −1.88909
\(974\) −9.75393 −0.312536
\(975\) −1.23026 −0.0393998
\(976\) −0.743589 −0.0238017
\(977\) −14.1872 −0.453887 −0.226944 0.973908i \(-0.572873\pi\)
−0.226944 + 0.973908i \(0.572873\pi\)
\(978\) −0.808906 −0.0258660
\(979\) 1.04412 0.0333702
\(980\) 17.9206 0.572451
\(981\) 11.9404 0.381226
\(982\) −20.8899 −0.666622
\(983\) −9.82377 −0.313329 −0.156665 0.987652i \(-0.550074\pi\)
−0.156665 + 0.987652i \(0.550074\pi\)
\(984\) 14.9529 0.476679
\(985\) 17.0473 0.543174
\(986\) 5.84398 0.186110
\(987\) −32.2859 −1.02767
\(988\) 4.72217 0.150232
\(989\) 0 0
\(990\) 3.28457 0.104391
\(991\) 44.9906 1.42917 0.714586 0.699548i \(-0.246615\pi\)
0.714586 + 0.699548i \(0.246615\pi\)
\(992\) 54.6848 1.73624
\(993\) 6.50273 0.206358
\(994\) 23.7993 0.754867
\(995\) −26.8408 −0.850910
\(996\) 3.80500 0.120566
\(997\) 47.3434 1.49938 0.749691 0.661788i \(-0.230202\pi\)
0.749691 + 0.661788i \(0.230202\pi\)
\(998\) 20.4741 0.648096
\(999\) −7.73627 −0.244765
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bp.1.7 15
23.13 even 11 345.2.m.a.31.3 30
23.16 even 11 345.2.m.a.256.3 yes 30
23.22 odd 2 7935.2.a.bq.1.7 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.a.31.3 30 23.13 even 11
345.2.m.a.256.3 yes 30 23.16 even 11
7935.2.a.bp.1.7 15 1.1 even 1 trivial
7935.2.a.bq.1.7 15 23.22 odd 2