Properties

Label 7935.2.a.bp.1.4
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-15,12,-15,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 21x^{13} + 172x^{11} - 696x^{9} + 1466x^{7} - 1583x^{5} + 803x^{3} - 11x^{2} - 143x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.52166\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.52166 q^{2} -1.00000 q^{3} +0.315440 q^{4} -1.00000 q^{5} +1.52166 q^{6} -2.43525 q^{7} +2.56332 q^{8} +1.00000 q^{9} +1.52166 q^{10} +0.157496 q^{11} -0.315440 q^{12} -3.63908 q^{13} +3.70561 q^{14} +1.00000 q^{15} -4.53138 q^{16} -2.69280 q^{17} -1.52166 q^{18} +3.54948 q^{19} -0.315440 q^{20} +2.43525 q^{21} -0.239655 q^{22} -2.56332 q^{24} +1.00000 q^{25} +5.53743 q^{26} -1.00000 q^{27} -0.768175 q^{28} -2.74281 q^{29} -1.52166 q^{30} +8.44443 q^{31} +1.76856 q^{32} -0.157496 q^{33} +4.09752 q^{34} +2.43525 q^{35} +0.315440 q^{36} -3.24935 q^{37} -5.40110 q^{38} +3.63908 q^{39} -2.56332 q^{40} +3.80531 q^{41} -3.70561 q^{42} -4.70101 q^{43} +0.0496807 q^{44} -1.00000 q^{45} -12.7257 q^{47} +4.53138 q^{48} -1.06958 q^{49} -1.52166 q^{50} +2.69280 q^{51} -1.14791 q^{52} +7.39111 q^{53} +1.52166 q^{54} -0.157496 q^{55} -6.24232 q^{56} -3.54948 q^{57} +4.17362 q^{58} +0.00696321 q^{59} +0.315440 q^{60} -5.05027 q^{61} -12.8495 q^{62} -2.43525 q^{63} +6.37162 q^{64} +3.63908 q^{65} +0.239655 q^{66} +8.05936 q^{67} -0.849417 q^{68} -3.70561 q^{70} +0.175802 q^{71} +2.56332 q^{72} +3.72382 q^{73} +4.94439 q^{74} -1.00000 q^{75} +1.11965 q^{76} -0.383542 q^{77} -5.53743 q^{78} +8.59875 q^{79} +4.53138 q^{80} +1.00000 q^{81} -5.79037 q^{82} +7.14020 q^{83} +0.768175 q^{84} +2.69280 q^{85} +7.15332 q^{86} +2.74281 q^{87} +0.403714 q^{88} +16.7431 q^{89} +1.52166 q^{90} +8.86204 q^{91} -8.44443 q^{93} +19.3641 q^{94} -3.54948 q^{95} -1.76856 q^{96} +14.0686 q^{97} +1.62754 q^{98} +0.157496 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{3} + 12 q^{4} - 15 q^{5} - 5 q^{7} + 15 q^{9} + 13 q^{11} - 12 q^{12} - 24 q^{13} + 15 q^{14} + 15 q^{15} + 2 q^{16} + 2 q^{17} + 13 q^{19} - 12 q^{20} + 5 q^{21} - 9 q^{22} + 15 q^{25} - 9 q^{26}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.52166 −1.07597 −0.537987 0.842953i \(-0.680815\pi\)
−0.537987 + 0.842953i \(0.680815\pi\)
\(3\) −1.00000 −0.577350
\(4\) 0.315440 0.157720
\(5\) −1.00000 −0.447214
\(6\) 1.52166 0.621214
\(7\) −2.43525 −0.920436 −0.460218 0.887806i \(-0.652229\pi\)
−0.460218 + 0.887806i \(0.652229\pi\)
\(8\) 2.56332 0.906271
\(9\) 1.00000 0.333333
\(10\) 1.52166 0.481190
\(11\) 0.157496 0.0474869 0.0237435 0.999718i \(-0.492442\pi\)
0.0237435 + 0.999718i \(0.492442\pi\)
\(12\) −0.315440 −0.0910598
\(13\) −3.63908 −1.00930 −0.504649 0.863325i \(-0.668378\pi\)
−0.504649 + 0.863325i \(0.668378\pi\)
\(14\) 3.70561 0.990365
\(15\) 1.00000 0.258199
\(16\) −4.53138 −1.13284
\(17\) −2.69280 −0.653100 −0.326550 0.945180i \(-0.605886\pi\)
−0.326550 + 0.945180i \(0.605886\pi\)
\(18\) −1.52166 −0.358658
\(19\) 3.54948 0.814307 0.407154 0.913360i \(-0.366521\pi\)
0.407154 + 0.913360i \(0.366521\pi\)
\(20\) −0.315440 −0.0705346
\(21\) 2.43525 0.531414
\(22\) −0.239655 −0.0510947
\(23\) 0 0
\(24\) −2.56332 −0.523236
\(25\) 1.00000 0.200000
\(26\) 5.53743 1.08598
\(27\) −1.00000 −0.192450
\(28\) −0.768175 −0.145171
\(29\) −2.74281 −0.509327 −0.254664 0.967030i \(-0.581965\pi\)
−0.254664 + 0.967030i \(0.581965\pi\)
\(30\) −1.52166 −0.277815
\(31\) 8.44443 1.51666 0.758332 0.651868i \(-0.226015\pi\)
0.758332 + 0.651868i \(0.226015\pi\)
\(32\) 1.76856 0.312640
\(33\) −0.157496 −0.0274166
\(34\) 4.09752 0.702718
\(35\) 2.43525 0.411632
\(36\) 0.315440 0.0525734
\(37\) −3.24935 −0.534190 −0.267095 0.963670i \(-0.586064\pi\)
−0.267095 + 0.963670i \(0.586064\pi\)
\(38\) −5.40110 −0.876174
\(39\) 3.63908 0.582719
\(40\) −2.56332 −0.405297
\(41\) 3.80531 0.594289 0.297144 0.954833i \(-0.403966\pi\)
0.297144 + 0.954833i \(0.403966\pi\)
\(42\) −3.70561 −0.571788
\(43\) −4.70101 −0.716897 −0.358448 0.933550i \(-0.616694\pi\)
−0.358448 + 0.933550i \(0.616694\pi\)
\(44\) 0.0496807 0.00748964
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) −12.7257 −1.85623 −0.928116 0.372292i \(-0.878572\pi\)
−0.928116 + 0.372292i \(0.878572\pi\)
\(48\) 4.53138 0.654048
\(49\) −1.06958 −0.152797
\(50\) −1.52166 −0.215195
\(51\) 2.69280 0.377067
\(52\) −1.14791 −0.159187
\(53\) 7.39111 1.01525 0.507623 0.861579i \(-0.330524\pi\)
0.507623 + 0.861579i \(0.330524\pi\)
\(54\) 1.52166 0.207071
\(55\) −0.157496 −0.0212368
\(56\) −6.24232 −0.834165
\(57\) −3.54948 −0.470141
\(58\) 4.17362 0.548023
\(59\) 0.00696321 0.000906532 0 0.000453266 1.00000i \(-0.499856\pi\)
0.000453266 1.00000i \(0.499856\pi\)
\(60\) 0.315440 0.0407232
\(61\) −5.05027 −0.646621 −0.323310 0.946293i \(-0.604796\pi\)
−0.323310 + 0.946293i \(0.604796\pi\)
\(62\) −12.8495 −1.63189
\(63\) −2.43525 −0.306812
\(64\) 6.37162 0.796452
\(65\) 3.63908 0.451372
\(66\) 0.239655 0.0294995
\(67\) 8.05936 0.984608 0.492304 0.870423i \(-0.336155\pi\)
0.492304 + 0.870423i \(0.336155\pi\)
\(68\) −0.849417 −0.103007
\(69\) 0 0
\(70\) −3.70561 −0.442905
\(71\) 0.175802 0.0208638 0.0104319 0.999946i \(-0.496679\pi\)
0.0104319 + 0.999946i \(0.496679\pi\)
\(72\) 2.56332 0.302090
\(73\) 3.72382 0.435841 0.217920 0.975967i \(-0.430073\pi\)
0.217920 + 0.975967i \(0.430073\pi\)
\(74\) 4.94439 0.574774
\(75\) −1.00000 −0.115470
\(76\) 1.11965 0.128433
\(77\) −0.383542 −0.0437087
\(78\) −5.53743 −0.626990
\(79\) 8.59875 0.967435 0.483717 0.875224i \(-0.339286\pi\)
0.483717 + 0.875224i \(0.339286\pi\)
\(80\) 4.53138 0.506623
\(81\) 1.00000 0.111111
\(82\) −5.79037 −0.639440
\(83\) 7.14020 0.783738 0.391869 0.920021i \(-0.371829\pi\)
0.391869 + 0.920021i \(0.371829\pi\)
\(84\) 0.768175 0.0838147
\(85\) 2.69280 0.292075
\(86\) 7.15332 0.771362
\(87\) 2.74281 0.294060
\(88\) 0.403714 0.0430360
\(89\) 16.7431 1.77477 0.887384 0.461032i \(-0.152521\pi\)
0.887384 + 0.461032i \(0.152521\pi\)
\(90\) 1.52166 0.160397
\(91\) 8.86204 0.928994
\(92\) 0 0
\(93\) −8.44443 −0.875646
\(94\) 19.3641 1.99726
\(95\) −3.54948 −0.364169
\(96\) −1.76856 −0.180503
\(97\) 14.0686 1.42845 0.714225 0.699917i \(-0.246779\pi\)
0.714225 + 0.699917i \(0.246779\pi\)
\(98\) 1.62754 0.164406
\(99\) 0.157496 0.0158290
\(100\) 0.315440 0.0315440
\(101\) 4.70030 0.467697 0.233849 0.972273i \(-0.424868\pi\)
0.233849 + 0.972273i \(0.424868\pi\)
\(102\) −4.09752 −0.405715
\(103\) −4.86693 −0.479553 −0.239776 0.970828i \(-0.577074\pi\)
−0.239776 + 0.970828i \(0.577074\pi\)
\(104\) −9.32812 −0.914698
\(105\) −2.43525 −0.237656
\(106\) −11.2467 −1.09238
\(107\) −14.8104 −1.43178 −0.715890 0.698213i \(-0.753979\pi\)
−0.715890 + 0.698213i \(0.753979\pi\)
\(108\) −0.315440 −0.0303533
\(109\) −4.98428 −0.477408 −0.238704 0.971092i \(-0.576723\pi\)
−0.238704 + 0.971092i \(0.576723\pi\)
\(110\) 0.239655 0.0228502
\(111\) 3.24935 0.308414
\(112\) 11.0350 1.04271
\(113\) 0.0293311 0.00275924 0.00137962 0.999999i \(-0.499561\pi\)
0.00137962 + 0.999999i \(0.499561\pi\)
\(114\) 5.40110 0.505859
\(115\) 0 0
\(116\) −0.865194 −0.0803312
\(117\) −3.63908 −0.336433
\(118\) −0.0105956 −0.000975405 0
\(119\) 6.55762 0.601136
\(120\) 2.56332 0.233998
\(121\) −10.9752 −0.997745
\(122\) 7.68478 0.695747
\(123\) −3.80531 −0.343113
\(124\) 2.66371 0.239209
\(125\) −1.00000 −0.0894427
\(126\) 3.70561 0.330122
\(127\) −13.8814 −1.23177 −0.615886 0.787835i \(-0.711202\pi\)
−0.615886 + 0.787835i \(0.711202\pi\)
\(128\) −13.2325 −1.16960
\(129\) 4.70101 0.413901
\(130\) −5.53743 −0.485664
\(131\) −5.91237 −0.516566 −0.258283 0.966069i \(-0.583157\pi\)
−0.258283 + 0.966069i \(0.583157\pi\)
\(132\) −0.0496807 −0.00432415
\(133\) −8.64386 −0.749518
\(134\) −12.2636 −1.05941
\(135\) 1.00000 0.0860663
\(136\) −6.90251 −0.591885
\(137\) −0.000207022 0 −1.76871e−5 0 −8.84354e−6 1.00000i \(-0.500003\pi\)
−8.84354e−6 1.00000i \(0.500003\pi\)
\(138\) 0 0
\(139\) −21.1954 −1.79777 −0.898886 0.438182i \(-0.855622\pi\)
−0.898886 + 0.438182i \(0.855622\pi\)
\(140\) 0.768175 0.0649226
\(141\) 12.7257 1.07170
\(142\) −0.267510 −0.0224489
\(143\) −0.573141 −0.0479285
\(144\) −4.53138 −0.377615
\(145\) 2.74281 0.227778
\(146\) −5.66638 −0.468953
\(147\) 1.06958 0.0882176
\(148\) −1.02498 −0.0842525
\(149\) −8.15494 −0.668079 −0.334039 0.942559i \(-0.608412\pi\)
−0.334039 + 0.942559i \(0.608412\pi\)
\(150\) 1.52166 0.124243
\(151\) −0.294881 −0.0239971 −0.0119985 0.999928i \(-0.503819\pi\)
−0.0119985 + 0.999928i \(0.503819\pi\)
\(152\) 9.09847 0.737983
\(153\) −2.69280 −0.217700
\(154\) 0.583619 0.0470294
\(155\) −8.44443 −0.678273
\(156\) 1.14791 0.0919065
\(157\) 18.2971 1.46027 0.730135 0.683302i \(-0.239457\pi\)
0.730135 + 0.683302i \(0.239457\pi\)
\(158\) −13.0843 −1.04093
\(159\) −7.39111 −0.586153
\(160\) −1.76856 −0.139817
\(161\) 0 0
\(162\) −1.52166 −0.119553
\(163\) 18.4174 1.44256 0.721280 0.692644i \(-0.243554\pi\)
0.721280 + 0.692644i \(0.243554\pi\)
\(164\) 1.20035 0.0937314
\(165\) 0.157496 0.0122611
\(166\) −10.8649 −0.843282
\(167\) 19.6815 1.52300 0.761501 0.648164i \(-0.224463\pi\)
0.761501 + 0.648164i \(0.224463\pi\)
\(168\) 6.24232 0.481605
\(169\) 0.242876 0.0186827
\(170\) −4.09752 −0.314265
\(171\) 3.54948 0.271436
\(172\) −1.48289 −0.113069
\(173\) 19.7802 1.50386 0.751930 0.659243i \(-0.229123\pi\)
0.751930 + 0.659243i \(0.229123\pi\)
\(174\) −4.17362 −0.316401
\(175\) −2.43525 −0.184087
\(176\) −0.713675 −0.0537953
\(177\) −0.00696321 −0.000523387 0
\(178\) −25.4773 −1.90960
\(179\) 25.7173 1.92220 0.961101 0.276199i \(-0.0890748\pi\)
0.961101 + 0.276199i \(0.0890748\pi\)
\(180\) −0.315440 −0.0235115
\(181\) 22.4990 1.67234 0.836170 0.548470i \(-0.184790\pi\)
0.836170 + 0.548470i \(0.184790\pi\)
\(182\) −13.4850 −0.999574
\(183\) 5.05027 0.373327
\(184\) 0 0
\(185\) 3.24935 0.238897
\(186\) 12.8495 0.942173
\(187\) −0.424106 −0.0310137
\(188\) −4.01419 −0.292765
\(189\) 2.43525 0.177138
\(190\) 5.40110 0.391837
\(191\) 14.0246 1.01478 0.507392 0.861715i \(-0.330609\pi\)
0.507392 + 0.861715i \(0.330609\pi\)
\(192\) −6.37162 −0.459832
\(193\) 5.28033 0.380086 0.190043 0.981776i \(-0.439137\pi\)
0.190043 + 0.981776i \(0.439137\pi\)
\(194\) −21.4076 −1.53697
\(195\) −3.63908 −0.260600
\(196\) −0.337389 −0.0240992
\(197\) 12.9518 0.922779 0.461390 0.887198i \(-0.347351\pi\)
0.461390 + 0.887198i \(0.347351\pi\)
\(198\) −0.239655 −0.0170316
\(199\) 0.932061 0.0660720 0.0330360 0.999454i \(-0.489482\pi\)
0.0330360 + 0.999454i \(0.489482\pi\)
\(200\) 2.56332 0.181254
\(201\) −8.05936 −0.568464
\(202\) −7.15224 −0.503230
\(203\) 6.67942 0.468803
\(204\) 0.849417 0.0594711
\(205\) −3.80531 −0.265774
\(206\) 7.40580 0.515986
\(207\) 0 0
\(208\) 16.4900 1.14338
\(209\) 0.559030 0.0386689
\(210\) 3.70561 0.255711
\(211\) 7.66135 0.527429 0.263715 0.964601i \(-0.415052\pi\)
0.263715 + 0.964601i \(0.415052\pi\)
\(212\) 2.33145 0.160125
\(213\) −0.175802 −0.0120457
\(214\) 22.5364 1.54056
\(215\) 4.70101 0.320606
\(216\) −2.56332 −0.174412
\(217\) −20.5643 −1.39599
\(218\) 7.58437 0.513678
\(219\) −3.72382 −0.251633
\(220\) −0.0496807 −0.00334947
\(221\) 9.79930 0.659172
\(222\) −4.94439 −0.331846
\(223\) −25.0563 −1.67789 −0.838946 0.544215i \(-0.816828\pi\)
−0.838946 + 0.544215i \(0.816828\pi\)
\(224\) −4.30688 −0.287765
\(225\) 1.00000 0.0666667
\(226\) −0.0446319 −0.00296887
\(227\) −14.9400 −0.991605 −0.495802 0.868435i \(-0.665126\pi\)
−0.495802 + 0.868435i \(0.665126\pi\)
\(228\) −1.11965 −0.0741507
\(229\) 15.4474 1.02079 0.510397 0.859939i \(-0.329498\pi\)
0.510397 + 0.859939i \(0.329498\pi\)
\(230\) 0 0
\(231\) 0.383542 0.0252352
\(232\) −7.03071 −0.461589
\(233\) 11.4173 0.747971 0.373985 0.927435i \(-0.377991\pi\)
0.373985 + 0.927435i \(0.377991\pi\)
\(234\) 5.53743 0.361993
\(235\) 12.7257 0.830132
\(236\) 0.00219648 0.000142978 0
\(237\) −8.59875 −0.558549
\(238\) −9.97846 −0.646807
\(239\) −6.47716 −0.418973 −0.209486 0.977812i \(-0.567179\pi\)
−0.209486 + 0.977812i \(0.567179\pi\)
\(240\) −4.53138 −0.292499
\(241\) −8.82085 −0.568201 −0.284101 0.958794i \(-0.591695\pi\)
−0.284101 + 0.958794i \(0.591695\pi\)
\(242\) 16.7005 1.07355
\(243\) −1.00000 −0.0641500
\(244\) −1.59306 −0.101985
\(245\) 1.06958 0.0683331
\(246\) 5.79037 0.369181
\(247\) −12.9168 −0.821879
\(248\) 21.6458 1.37451
\(249\) −7.14020 −0.452492
\(250\) 1.52166 0.0962380
\(251\) 6.93562 0.437773 0.218886 0.975750i \(-0.429758\pi\)
0.218886 + 0.975750i \(0.429758\pi\)
\(252\) −0.768175 −0.0483904
\(253\) 0 0
\(254\) 21.1227 1.32536
\(255\) −2.69280 −0.168630
\(256\) 7.39215 0.462009
\(257\) −22.6644 −1.41377 −0.706884 0.707329i \(-0.749900\pi\)
−0.706884 + 0.707329i \(0.749900\pi\)
\(258\) −7.15332 −0.445346
\(259\) 7.91296 0.491687
\(260\) 1.14791 0.0711904
\(261\) −2.74281 −0.169776
\(262\) 8.99659 0.555811
\(263\) −9.87610 −0.608986 −0.304493 0.952515i \(-0.598487\pi\)
−0.304493 + 0.952515i \(0.598487\pi\)
\(264\) −0.403714 −0.0248469
\(265\) −7.39111 −0.454032
\(266\) 13.1530 0.806462
\(267\) −16.7431 −1.02466
\(268\) 2.54225 0.155293
\(269\) 7.09430 0.432547 0.216274 0.976333i \(-0.430610\pi\)
0.216274 + 0.976333i \(0.430610\pi\)
\(270\) −1.52166 −0.0926051
\(271\) 14.2178 0.863670 0.431835 0.901953i \(-0.357866\pi\)
0.431835 + 0.901953i \(0.357866\pi\)
\(272\) 12.2021 0.739860
\(273\) −8.86204 −0.536355
\(274\) 0.000315017 0 1.90308e−5 0
\(275\) 0.157496 0.00949738
\(276\) 0 0
\(277\) −16.7847 −1.00849 −0.504246 0.863560i \(-0.668230\pi\)
−0.504246 + 0.863560i \(0.668230\pi\)
\(278\) 32.2522 1.93436
\(279\) 8.44443 0.505555
\(280\) 6.24232 0.373050
\(281\) −0.607504 −0.0362406 −0.0181203 0.999836i \(-0.505768\pi\)
−0.0181203 + 0.999836i \(0.505768\pi\)
\(282\) −19.3641 −1.15312
\(283\) −21.2552 −1.26349 −0.631746 0.775175i \(-0.717662\pi\)
−0.631746 + 0.775175i \(0.717662\pi\)
\(284\) 0.0554550 0.00329065
\(285\) 3.54948 0.210253
\(286\) 0.872124 0.0515698
\(287\) −9.26685 −0.547005
\(288\) 1.76856 0.104213
\(289\) −9.74884 −0.573461
\(290\) −4.17362 −0.245083
\(291\) −14.0686 −0.824716
\(292\) 1.17464 0.0687409
\(293\) 0.621553 0.0363115 0.0181557 0.999835i \(-0.494221\pi\)
0.0181557 + 0.999835i \(0.494221\pi\)
\(294\) −1.62754 −0.0949198
\(295\) −0.00696321 −0.000405414 0
\(296\) −8.32913 −0.484121
\(297\) −0.157496 −0.00913886
\(298\) 12.4090 0.718836
\(299\) 0 0
\(300\) −0.315440 −0.0182120
\(301\) 11.4481 0.659858
\(302\) 0.448708 0.0258203
\(303\) −4.70030 −0.270025
\(304\) −16.0841 −0.922484
\(305\) 5.05027 0.289178
\(306\) 4.09752 0.234239
\(307\) −11.1010 −0.633569 −0.316785 0.948498i \(-0.602603\pi\)
−0.316785 + 0.948498i \(0.602603\pi\)
\(308\) −0.120985 −0.00689374
\(309\) 4.86693 0.276870
\(310\) 12.8495 0.729804
\(311\) −1.84851 −0.104819 −0.0524096 0.998626i \(-0.516690\pi\)
−0.0524096 + 0.998626i \(0.516690\pi\)
\(312\) 9.32812 0.528101
\(313\) 12.9195 0.730253 0.365127 0.930958i \(-0.381026\pi\)
0.365127 + 0.930958i \(0.381026\pi\)
\(314\) −27.8420 −1.57121
\(315\) 2.43525 0.137211
\(316\) 2.71239 0.152584
\(317\) 24.1757 1.35784 0.678922 0.734211i \(-0.262448\pi\)
0.678922 + 0.734211i \(0.262448\pi\)
\(318\) 11.2467 0.630685
\(319\) −0.431983 −0.0241864
\(320\) −6.37162 −0.356184
\(321\) 14.8104 0.826639
\(322\) 0 0
\(323\) −9.55804 −0.531824
\(324\) 0.315440 0.0175245
\(325\) −3.63908 −0.201860
\(326\) −28.0249 −1.55216
\(327\) 4.98428 0.275631
\(328\) 9.75423 0.538587
\(329\) 30.9901 1.70854
\(330\) −0.239655 −0.0131926
\(331\) −9.41880 −0.517704 −0.258852 0.965917i \(-0.583344\pi\)
−0.258852 + 0.965917i \(0.583344\pi\)
\(332\) 2.25231 0.123611
\(333\) −3.24935 −0.178063
\(334\) −29.9485 −1.63871
\(335\) −8.05936 −0.440330
\(336\) −11.0350 −0.602009
\(337\) −29.1059 −1.58550 −0.792750 0.609547i \(-0.791351\pi\)
−0.792750 + 0.609547i \(0.791351\pi\)
\(338\) −0.369573 −0.0201021
\(339\) −0.0293311 −0.00159305
\(340\) 0.849417 0.0460661
\(341\) 1.32997 0.0720217
\(342\) −5.40110 −0.292058
\(343\) 19.6514 1.06108
\(344\) −12.0502 −0.649703
\(345\) 0 0
\(346\) −30.0987 −1.61812
\(347\) 12.6705 0.680189 0.340094 0.940391i \(-0.389541\pi\)
0.340094 + 0.940391i \(0.389541\pi\)
\(348\) 0.865194 0.0463792
\(349\) 4.06847 0.217780 0.108890 0.994054i \(-0.465270\pi\)
0.108890 + 0.994054i \(0.465270\pi\)
\(350\) 3.70561 0.198073
\(351\) 3.63908 0.194240
\(352\) 0.278542 0.0148463
\(353\) 10.0195 0.533284 0.266642 0.963796i \(-0.414086\pi\)
0.266642 + 0.963796i \(0.414086\pi\)
\(354\) 0.0105956 0.000563151 0
\(355\) −0.175802 −0.00933059
\(356\) 5.28146 0.279917
\(357\) −6.55762 −0.347066
\(358\) −39.1329 −2.06824
\(359\) 36.3213 1.91697 0.958483 0.285151i \(-0.0920437\pi\)
0.958483 + 0.285151i \(0.0920437\pi\)
\(360\) −2.56332 −0.135099
\(361\) −6.40116 −0.336903
\(362\) −34.2358 −1.79939
\(363\) 10.9752 0.576048
\(364\) 2.79545 0.146521
\(365\) −3.72382 −0.194914
\(366\) −7.68478 −0.401690
\(367\) 3.48523 0.181927 0.0909637 0.995854i \(-0.471005\pi\)
0.0909637 + 0.995854i \(0.471005\pi\)
\(368\) 0 0
\(369\) 3.80531 0.198096
\(370\) −4.94439 −0.257047
\(371\) −17.9992 −0.934470
\(372\) −2.66371 −0.138107
\(373\) −6.75585 −0.349805 −0.174902 0.984586i \(-0.555961\pi\)
−0.174902 + 0.984586i \(0.555961\pi\)
\(374\) 0.645343 0.0333699
\(375\) 1.00000 0.0516398
\(376\) −32.6200 −1.68225
\(377\) 9.98130 0.514063
\(378\) −3.70561 −0.190596
\(379\) 24.2905 1.24772 0.623861 0.781536i \(-0.285563\pi\)
0.623861 + 0.781536i \(0.285563\pi\)
\(380\) −1.11965 −0.0574369
\(381\) 13.8814 0.711164
\(382\) −21.3406 −1.09188
\(383\) 35.3345 1.80551 0.902755 0.430155i \(-0.141541\pi\)
0.902755 + 0.430155i \(0.141541\pi\)
\(384\) 13.2325 0.675270
\(385\) 0.383542 0.0195471
\(386\) −8.03485 −0.408963
\(387\) −4.70101 −0.238966
\(388\) 4.43780 0.225295
\(389\) −0.133524 −0.00676996 −0.00338498 0.999994i \(-0.501077\pi\)
−0.00338498 + 0.999994i \(0.501077\pi\)
\(390\) 5.53743 0.280398
\(391\) 0 0
\(392\) −2.74168 −0.138476
\(393\) 5.91237 0.298239
\(394\) −19.7082 −0.992887
\(395\) −8.59875 −0.432650
\(396\) 0.0496807 0.00249655
\(397\) −0.398921 −0.0200213 −0.0100106 0.999950i \(-0.503187\pi\)
−0.0100106 + 0.999950i \(0.503187\pi\)
\(398\) −1.41828 −0.0710918
\(399\) 8.64386 0.432734
\(400\) −4.53138 −0.226569
\(401\) 2.97295 0.148462 0.0742310 0.997241i \(-0.476350\pi\)
0.0742310 + 0.997241i \(0.476350\pi\)
\(402\) 12.2636 0.611652
\(403\) −30.7299 −1.53077
\(404\) 1.48266 0.0737653
\(405\) −1.00000 −0.0496904
\(406\) −10.1638 −0.504420
\(407\) −0.511760 −0.0253670
\(408\) 6.90251 0.341725
\(409\) −36.2392 −1.79191 −0.895957 0.444140i \(-0.853509\pi\)
−0.895957 + 0.444140i \(0.853509\pi\)
\(410\) 5.79037 0.285966
\(411\) 0.000207022 0 1.02116e−5 0
\(412\) −1.53523 −0.0756351
\(413\) −0.0169571 −0.000834405 0
\(414\) 0 0
\(415\) −7.14020 −0.350498
\(416\) −6.43592 −0.315547
\(417\) 21.1954 1.03794
\(418\) −0.850653 −0.0416068
\(419\) −17.9066 −0.874796 −0.437398 0.899268i \(-0.644100\pi\)
−0.437398 + 0.899268i \(0.644100\pi\)
\(420\) −0.768175 −0.0374831
\(421\) −10.7826 −0.525513 −0.262756 0.964862i \(-0.584632\pi\)
−0.262756 + 0.964862i \(0.584632\pi\)
\(422\) −11.6580 −0.567500
\(423\) −12.7257 −0.618744
\(424\) 18.9458 0.920089
\(425\) −2.69280 −0.130620
\(426\) 0.267510 0.0129609
\(427\) 12.2986 0.595173
\(428\) −4.67181 −0.225821
\(429\) 0.573141 0.0276715
\(430\) −7.15332 −0.344964
\(431\) −25.4829 −1.22747 −0.613734 0.789513i \(-0.710333\pi\)
−0.613734 + 0.789513i \(0.710333\pi\)
\(432\) 4.53138 0.218016
\(433\) −29.6835 −1.42650 −0.713248 0.700911i \(-0.752777\pi\)
−0.713248 + 0.700911i \(0.752777\pi\)
\(434\) 31.2917 1.50205
\(435\) −2.74281 −0.131508
\(436\) −1.57224 −0.0752968
\(437\) 0 0
\(438\) 5.66638 0.270750
\(439\) −10.9447 −0.522362 −0.261181 0.965290i \(-0.584112\pi\)
−0.261181 + 0.965290i \(0.584112\pi\)
\(440\) −0.403714 −0.0192463
\(441\) −1.06958 −0.0509324
\(442\) −14.9112 −0.709252
\(443\) −14.9356 −0.709612 −0.354806 0.934940i \(-0.615453\pi\)
−0.354806 + 0.934940i \(0.615453\pi\)
\(444\) 1.02498 0.0486432
\(445\) −16.7431 −0.793700
\(446\) 38.1270 1.80537
\(447\) 8.15494 0.385716
\(448\) −15.5164 −0.733083
\(449\) −28.3077 −1.33592 −0.667961 0.744196i \(-0.732833\pi\)
−0.667961 + 0.744196i \(0.732833\pi\)
\(450\) −1.52166 −0.0717316
\(451\) 0.599322 0.0282209
\(452\) 0.00925223 0.000435188 0
\(453\) 0.294881 0.0138547
\(454\) 22.7336 1.06694
\(455\) −8.86204 −0.415459
\(456\) −9.09847 −0.426075
\(457\) −23.1510 −1.08296 −0.541478 0.840715i \(-0.682135\pi\)
−0.541478 + 0.840715i \(0.682135\pi\)
\(458\) −23.5057 −1.09835
\(459\) 2.69280 0.125689
\(460\) 0 0
\(461\) −7.63289 −0.355499 −0.177749 0.984076i \(-0.556882\pi\)
−0.177749 + 0.984076i \(0.556882\pi\)
\(462\) −0.583619 −0.0271524
\(463\) 24.4129 1.13456 0.567281 0.823524i \(-0.307995\pi\)
0.567281 + 0.823524i \(0.307995\pi\)
\(464\) 12.4287 0.576989
\(465\) 8.44443 0.391601
\(466\) −17.3732 −0.804797
\(467\) −38.1912 −1.76728 −0.883639 0.468168i \(-0.844914\pi\)
−0.883639 + 0.468168i \(0.844914\pi\)
\(468\) −1.14791 −0.0530622
\(469\) −19.6265 −0.906269
\(470\) −19.3641 −0.893200
\(471\) −18.2971 −0.843088
\(472\) 0.0178489 0.000821564 0
\(473\) −0.740391 −0.0340432
\(474\) 13.0843 0.600984
\(475\) 3.54948 0.162861
\(476\) 2.06854 0.0948113
\(477\) 7.39111 0.338416
\(478\) 9.85602 0.450804
\(479\) 34.4555 1.57431 0.787157 0.616753i \(-0.211552\pi\)
0.787157 + 0.616753i \(0.211552\pi\)
\(480\) 1.76856 0.0807233
\(481\) 11.8246 0.539156
\(482\) 13.4223 0.611370
\(483\) 0 0
\(484\) −3.46202 −0.157365
\(485\) −14.0686 −0.638822
\(486\) 1.52166 0.0690238
\(487\) −31.8297 −1.44234 −0.721171 0.692757i \(-0.756396\pi\)
−0.721171 + 0.692757i \(0.756396\pi\)
\(488\) −12.9455 −0.586014
\(489\) −18.4174 −0.832862
\(490\) −1.62754 −0.0735246
\(491\) 3.67963 0.166059 0.0830296 0.996547i \(-0.473540\pi\)
0.0830296 + 0.996547i \(0.473540\pi\)
\(492\) −1.20035 −0.0541158
\(493\) 7.38584 0.332642
\(494\) 19.6550 0.884320
\(495\) −0.157496 −0.00707893
\(496\) −38.2649 −1.71814
\(497\) −0.428120 −0.0192038
\(498\) 10.8649 0.486869
\(499\) 3.39898 0.152159 0.0760796 0.997102i \(-0.475760\pi\)
0.0760796 + 0.997102i \(0.475760\pi\)
\(500\) −0.315440 −0.0141069
\(501\) −19.6815 −0.879306
\(502\) −10.5536 −0.471032
\(503\) 0.797217 0.0355461 0.0177731 0.999842i \(-0.494342\pi\)
0.0177731 + 0.999842i \(0.494342\pi\)
\(504\) −6.24232 −0.278055
\(505\) −4.70030 −0.209160
\(506\) 0 0
\(507\) −0.242876 −0.0107865
\(508\) −4.37875 −0.194275
\(509\) 16.5995 0.735759 0.367880 0.929873i \(-0.380084\pi\)
0.367880 + 0.929873i \(0.380084\pi\)
\(510\) 4.09752 0.181441
\(511\) −9.06842 −0.401163
\(512\) 15.2168 0.672492
\(513\) −3.54948 −0.156714
\(514\) 34.4875 1.52118
\(515\) 4.86693 0.214463
\(516\) 1.48289 0.0652805
\(517\) −2.00425 −0.0881467
\(518\) −12.0408 −0.529043
\(519\) −19.7802 −0.868254
\(520\) 9.32812 0.409065
\(521\) 27.9606 1.22497 0.612487 0.790481i \(-0.290169\pi\)
0.612487 + 0.790481i \(0.290169\pi\)
\(522\) 4.17362 0.182674
\(523\) −21.3739 −0.934614 −0.467307 0.884095i \(-0.654776\pi\)
−0.467307 + 0.884095i \(0.654776\pi\)
\(524\) −1.86500 −0.0814729
\(525\) 2.43525 0.106283
\(526\) 15.0280 0.655253
\(527\) −22.7391 −0.990533
\(528\) 0.713675 0.0310587
\(529\) 0 0
\(530\) 11.2467 0.488527
\(531\) 0.00696321 0.000302177 0
\(532\) −2.72662 −0.118214
\(533\) −13.8478 −0.599815
\(534\) 25.4773 1.10251
\(535\) 14.8104 0.640311
\(536\) 20.6587 0.892322
\(537\) −25.7173 −1.10978
\(538\) −10.7951 −0.465410
\(539\) −0.168455 −0.00725587
\(540\) 0.315440 0.0135744
\(541\) −9.59174 −0.412381 −0.206190 0.978512i \(-0.566107\pi\)
−0.206190 + 0.978512i \(0.566107\pi\)
\(542\) −21.6346 −0.929286
\(543\) −22.4990 −0.965526
\(544\) −4.76237 −0.204185
\(545\) 4.98428 0.213503
\(546\) 13.4850 0.577104
\(547\) −40.7349 −1.74170 −0.870848 0.491552i \(-0.836430\pi\)
−0.870848 + 0.491552i \(0.836430\pi\)
\(548\) −6.53031e−5 0 −2.78961e−6 0
\(549\) −5.05027 −0.215540
\(550\) −0.239655 −0.0102189
\(551\) −9.73557 −0.414749
\(552\) 0 0
\(553\) −20.9401 −0.890462
\(554\) 25.5405 1.08511
\(555\) −3.24935 −0.137927
\(556\) −6.68589 −0.283545
\(557\) 42.4372 1.79812 0.899061 0.437823i \(-0.144250\pi\)
0.899061 + 0.437823i \(0.144250\pi\)
\(558\) −12.8495 −0.543964
\(559\) 17.1073 0.723563
\(560\) −11.0350 −0.466315
\(561\) 0.424106 0.0179058
\(562\) 0.924412 0.0389940
\(563\) 31.3766 1.32237 0.661184 0.750224i \(-0.270054\pi\)
0.661184 + 0.750224i \(0.270054\pi\)
\(564\) 4.01419 0.169028
\(565\) −0.0293311 −0.00123397
\(566\) 32.3432 1.35949
\(567\) −2.43525 −0.102271
\(568\) 0.450637 0.0189083
\(569\) −12.8164 −0.537291 −0.268645 0.963239i \(-0.586576\pi\)
−0.268645 + 0.963239i \(0.586576\pi\)
\(570\) −5.40110 −0.226227
\(571\) −6.53822 −0.273616 −0.136808 0.990598i \(-0.543684\pi\)
−0.136808 + 0.990598i \(0.543684\pi\)
\(572\) −0.180792 −0.00755928
\(573\) −14.0246 −0.585886
\(574\) 14.1010 0.588563
\(575\) 0 0
\(576\) 6.37162 0.265484
\(577\) −47.1474 −1.96277 −0.981386 0.192045i \(-0.938488\pi\)
−0.981386 + 0.192045i \(0.938488\pi\)
\(578\) 14.8344 0.617029
\(579\) −5.28033 −0.219443
\(580\) 0.865194 0.0359252
\(581\) −17.3881 −0.721381
\(582\) 21.4076 0.887373
\(583\) 1.16407 0.0482109
\(584\) 9.54536 0.394990
\(585\) 3.63908 0.150457
\(586\) −0.945790 −0.0390702
\(587\) 22.2552 0.918568 0.459284 0.888289i \(-0.348106\pi\)
0.459284 + 0.888289i \(0.348106\pi\)
\(588\) 0.337389 0.0139137
\(589\) 29.9734 1.23503
\(590\) 0.0105956 0.000436215 0
\(591\) −12.9518 −0.532767
\(592\) 14.7240 0.605154
\(593\) −12.2083 −0.501334 −0.250667 0.968073i \(-0.580650\pi\)
−0.250667 + 0.968073i \(0.580650\pi\)
\(594\) 0.239655 0.00983318
\(595\) −6.55762 −0.268836
\(596\) −2.57240 −0.105370
\(597\) −0.932061 −0.0381467
\(598\) 0 0
\(599\) −18.0130 −0.735993 −0.367996 0.929827i \(-0.619956\pi\)
−0.367996 + 0.929827i \(0.619956\pi\)
\(600\) −2.56332 −0.104647
\(601\) −43.6266 −1.77957 −0.889783 0.456384i \(-0.849144\pi\)
−0.889783 + 0.456384i \(0.849144\pi\)
\(602\) −17.4201 −0.709990
\(603\) 8.05936 0.328203
\(604\) −0.0930174 −0.00378483
\(605\) 10.9752 0.446205
\(606\) 7.15224 0.290540
\(607\) 22.4241 0.910164 0.455082 0.890449i \(-0.349610\pi\)
0.455082 + 0.890449i \(0.349610\pi\)
\(608\) 6.27747 0.254585
\(609\) −6.67942 −0.270664
\(610\) −7.68478 −0.311148
\(611\) 46.3097 1.87349
\(612\) −0.849417 −0.0343357
\(613\) 7.18234 0.290092 0.145046 0.989425i \(-0.453667\pi\)
0.145046 + 0.989425i \(0.453667\pi\)
\(614\) 16.8920 0.681704
\(615\) 3.80531 0.153445
\(616\) −0.983142 −0.0396119
\(617\) 7.74481 0.311794 0.155897 0.987773i \(-0.450173\pi\)
0.155897 + 0.987773i \(0.450173\pi\)
\(618\) −7.40580 −0.297905
\(619\) 40.5541 1.63001 0.815004 0.579455i \(-0.196735\pi\)
0.815004 + 0.579455i \(0.196735\pi\)
\(620\) −2.66371 −0.106977
\(621\) 0 0
\(622\) 2.81279 0.112783
\(623\) −40.7736 −1.63356
\(624\) −16.4900 −0.660130
\(625\) 1.00000 0.0400000
\(626\) −19.6590 −0.785733
\(627\) −0.559030 −0.0223255
\(628\) 5.77166 0.230314
\(629\) 8.74984 0.348879
\(630\) −3.70561 −0.147635
\(631\) 8.44572 0.336219 0.168109 0.985768i \(-0.446234\pi\)
0.168109 + 0.985768i \(0.446234\pi\)
\(632\) 22.0414 0.876758
\(633\) −7.66135 −0.304512
\(634\) −36.7871 −1.46100
\(635\) 13.8814 0.550866
\(636\) −2.33145 −0.0924482
\(637\) 3.89229 0.154218
\(638\) 0.657330 0.0260239
\(639\) 0.175802 0.00695461
\(640\) 13.2325 0.523062
\(641\) −44.1783 −1.74494 −0.872468 0.488671i \(-0.837482\pi\)
−0.872468 + 0.488671i \(0.837482\pi\)
\(642\) −22.5364 −0.889442
\(643\) −42.6078 −1.68029 −0.840144 0.542363i \(-0.817530\pi\)
−0.840144 + 0.542363i \(0.817530\pi\)
\(644\) 0 0
\(645\) −4.70101 −0.185102
\(646\) 14.5441 0.572229
\(647\) −24.3515 −0.957355 −0.478677 0.877991i \(-0.658884\pi\)
−0.478677 + 0.877991i \(0.658884\pi\)
\(648\) 2.56332 0.100697
\(649\) 0.00109668 4.30484e−5 0
\(650\) 5.53743 0.217196
\(651\) 20.5643 0.805977
\(652\) 5.80958 0.227521
\(653\) 16.2424 0.635613 0.317806 0.948156i \(-0.397054\pi\)
0.317806 + 0.948156i \(0.397054\pi\)
\(654\) −7.58437 −0.296572
\(655\) 5.91237 0.231015
\(656\) −17.2433 −0.673237
\(657\) 3.72382 0.145280
\(658\) −47.1564 −1.83835
\(659\) 33.2244 1.29424 0.647120 0.762388i \(-0.275973\pi\)
0.647120 + 0.762388i \(0.275973\pi\)
\(660\) 0.0496807 0.00193382
\(661\) −42.3167 −1.64593 −0.822965 0.568092i \(-0.807682\pi\)
−0.822965 + 0.568092i \(0.807682\pi\)
\(662\) 14.3322 0.557036
\(663\) −9.79930 −0.380573
\(664\) 18.3026 0.710279
\(665\) 8.64386 0.335195
\(666\) 4.94439 0.191591
\(667\) 0 0
\(668\) 6.20835 0.240208
\(669\) 25.0563 0.968731
\(670\) 12.2636 0.473784
\(671\) −0.795398 −0.0307060
\(672\) 4.30688 0.166141
\(673\) −41.9872 −1.61849 −0.809244 0.587472i \(-0.800123\pi\)
−0.809244 + 0.587472i \(0.800123\pi\)
\(674\) 44.2892 1.70596
\(675\) −1.00000 −0.0384900
\(676\) 0.0766127 0.00294664
\(677\) −41.5658 −1.59750 −0.798751 0.601661i \(-0.794506\pi\)
−0.798751 + 0.601661i \(0.794506\pi\)
\(678\) 0.0446319 0.00171408
\(679\) −34.2605 −1.31480
\(680\) 6.90251 0.264699
\(681\) 14.9400 0.572503
\(682\) −2.02375 −0.0774935
\(683\) −51.5327 −1.97184 −0.985922 0.167203i \(-0.946526\pi\)
−0.985922 + 0.167203i \(0.946526\pi\)
\(684\) 1.11965 0.0428109
\(685\) 0.000207022 0 7.90991e−6 0
\(686\) −29.9027 −1.14169
\(687\) −15.4474 −0.589356
\(688\) 21.3020 0.812133
\(689\) −26.8968 −1.02469
\(690\) 0 0
\(691\) −29.7608 −1.13215 −0.566077 0.824352i \(-0.691540\pi\)
−0.566077 + 0.824352i \(0.691540\pi\)
\(692\) 6.23947 0.237189
\(693\) −0.383542 −0.0145696
\(694\) −19.2802 −0.731866
\(695\) 21.1954 0.803988
\(696\) 7.03071 0.266498
\(697\) −10.2469 −0.388130
\(698\) −6.19082 −0.234326
\(699\) −11.4173 −0.431841
\(700\) −0.768175 −0.0290343
\(701\) −31.8878 −1.20438 −0.602192 0.798351i \(-0.705706\pi\)
−0.602192 + 0.798351i \(0.705706\pi\)
\(702\) −5.53743 −0.208997
\(703\) −11.5335 −0.434995
\(704\) 1.00351 0.0378210
\(705\) −12.7257 −0.479277
\(706\) −15.2462 −0.573800
\(707\) −11.4464 −0.430485
\(708\) −0.00219648 −8.25486e−5 0
\(709\) 25.0272 0.939915 0.469957 0.882689i \(-0.344269\pi\)
0.469957 + 0.882689i \(0.344269\pi\)
\(710\) 0.267510 0.0100395
\(711\) 8.59875 0.322478
\(712\) 42.9180 1.60842
\(713\) 0 0
\(714\) 9.97846 0.373434
\(715\) 0.573141 0.0214343
\(716\) 8.11227 0.303170
\(717\) 6.47716 0.241894
\(718\) −55.2686 −2.06260
\(719\) −19.8536 −0.740413 −0.370206 0.928950i \(-0.620713\pi\)
−0.370206 + 0.928950i \(0.620713\pi\)
\(720\) 4.53138 0.168874
\(721\) 11.8522 0.441398
\(722\) 9.74038 0.362499
\(723\) 8.82085 0.328051
\(724\) 7.09710 0.263762
\(725\) −2.74281 −0.101865
\(726\) −16.7005 −0.619813
\(727\) −12.5712 −0.466240 −0.233120 0.972448i \(-0.574894\pi\)
−0.233120 + 0.972448i \(0.574894\pi\)
\(728\) 22.7163 0.841921
\(729\) 1.00000 0.0370370
\(730\) 5.66638 0.209722
\(731\) 12.6589 0.468205
\(732\) 1.59306 0.0588811
\(733\) −36.9438 −1.36455 −0.682276 0.731095i \(-0.739010\pi\)
−0.682276 + 0.731095i \(0.739010\pi\)
\(734\) −5.30332 −0.195749
\(735\) −1.06958 −0.0394521
\(736\) 0 0
\(737\) 1.26932 0.0467560
\(738\) −5.79037 −0.213147
\(739\) 11.7160 0.430978 0.215489 0.976506i \(-0.430865\pi\)
0.215489 + 0.976506i \(0.430865\pi\)
\(740\) 1.02498 0.0376788
\(741\) 12.9168 0.474512
\(742\) 27.3885 1.00547
\(743\) 31.3983 1.15189 0.575945 0.817488i \(-0.304634\pi\)
0.575945 + 0.817488i \(0.304634\pi\)
\(744\) −21.6458 −0.793573
\(745\) 8.15494 0.298774
\(746\) 10.2801 0.376381
\(747\) 7.14020 0.261246
\(748\) −0.133780 −0.00489148
\(749\) 36.0671 1.31786
\(750\) −1.52166 −0.0555631
\(751\) 25.0180 0.912919 0.456460 0.889744i \(-0.349117\pi\)
0.456460 + 0.889744i \(0.349117\pi\)
\(752\) 57.6649 2.10282
\(753\) −6.93562 −0.252748
\(754\) −15.1881 −0.553119
\(755\) 0.294881 0.0107318
\(756\) 0.768175 0.0279382
\(757\) 25.2872 0.919079 0.459540 0.888157i \(-0.348014\pi\)
0.459540 + 0.888157i \(0.348014\pi\)
\(758\) −36.9619 −1.34252
\(759\) 0 0
\(760\) −9.09847 −0.330036
\(761\) −20.5818 −0.746088 −0.373044 0.927814i \(-0.621686\pi\)
−0.373044 + 0.927814i \(0.621686\pi\)
\(762\) −21.1227 −0.765194
\(763\) 12.1380 0.439423
\(764\) 4.42393 0.160052
\(765\) 2.69280 0.0973583
\(766\) −53.7670 −1.94268
\(767\) −0.0253396 −0.000914961 0
\(768\) −7.39215 −0.266741
\(769\) 14.5430 0.524433 0.262216 0.965009i \(-0.415547\pi\)
0.262216 + 0.965009i \(0.415547\pi\)
\(770\) −0.583619 −0.0210322
\(771\) 22.6644 0.816240
\(772\) 1.66563 0.0599473
\(773\) −22.1136 −0.795372 −0.397686 0.917522i \(-0.630187\pi\)
−0.397686 + 0.917522i \(0.630187\pi\)
\(774\) 7.15332 0.257121
\(775\) 8.44443 0.303333
\(776\) 36.0623 1.29456
\(777\) −7.91296 −0.283876
\(778\) 0.203178 0.00728430
\(779\) 13.5069 0.483934
\(780\) −1.14791 −0.0411018
\(781\) 0.0276881 0.000990759 0
\(782\) 0 0
\(783\) 2.74281 0.0980201
\(784\) 4.84668 0.173096
\(785\) −18.2971 −0.653053
\(786\) −8.99659 −0.320898
\(787\) −32.0415 −1.14216 −0.571079 0.820895i \(-0.693475\pi\)
−0.571079 + 0.820895i \(0.693475\pi\)
\(788\) 4.08553 0.145541
\(789\) 9.87610 0.351598
\(790\) 13.0843 0.465520
\(791\) −0.0714285 −0.00253971
\(792\) 0.403714 0.0143453
\(793\) 18.3783 0.652633
\(794\) 0.607021 0.0215424
\(795\) 7.39111 0.262136
\(796\) 0.294010 0.0104209
\(797\) 16.4004 0.580931 0.290465 0.956886i \(-0.406190\pi\)
0.290465 + 0.956886i \(0.406190\pi\)
\(798\) −13.1530 −0.465611
\(799\) 34.2677 1.21230
\(800\) 1.76856 0.0625280
\(801\) 16.7431 0.591589
\(802\) −4.52381 −0.159741
\(803\) 0.586488 0.0206967
\(804\) −2.54225 −0.0896582
\(805\) 0 0
\(806\) 46.7604 1.64706
\(807\) −7.09430 −0.249731
\(808\) 12.0484 0.423860
\(809\) −24.2277 −0.851800 −0.425900 0.904770i \(-0.640042\pi\)
−0.425900 + 0.904770i \(0.640042\pi\)
\(810\) 1.52166 0.0534656
\(811\) −6.97340 −0.244869 −0.122435 0.992477i \(-0.539070\pi\)
−0.122435 + 0.992477i \(0.539070\pi\)
\(812\) 2.10696 0.0739398
\(813\) −14.2178 −0.498640
\(814\) 0.778724 0.0272942
\(815\) −18.4174 −0.645132
\(816\) −12.2021 −0.427159
\(817\) −16.6861 −0.583774
\(818\) 55.1437 1.92805
\(819\) 8.86204 0.309665
\(820\) −1.20035 −0.0419179
\(821\) −23.9944 −0.837412 −0.418706 0.908122i \(-0.637516\pi\)
−0.418706 + 0.908122i \(0.637516\pi\)
\(822\) −0.000315017 0 −1.09875e−5 0
\(823\) −7.14292 −0.248987 −0.124493 0.992220i \(-0.539731\pi\)
−0.124493 + 0.992220i \(0.539731\pi\)
\(824\) −12.4755 −0.434605
\(825\) −0.157496 −0.00548332
\(826\) 0.0258029 0.000897798 0
\(827\) −25.7772 −0.896360 −0.448180 0.893943i \(-0.647928\pi\)
−0.448180 + 0.893943i \(0.647928\pi\)
\(828\) 0 0
\(829\) 31.3952 1.09040 0.545200 0.838306i \(-0.316454\pi\)
0.545200 + 0.838306i \(0.316454\pi\)
\(830\) 10.8649 0.377127
\(831\) 16.7847 0.582254
\(832\) −23.1868 −0.803857
\(833\) 2.88017 0.0997919
\(834\) −32.2522 −1.11680
\(835\) −19.6815 −0.681107
\(836\) 0.176341 0.00609887
\(837\) −8.44443 −0.291882
\(838\) 27.2477 0.941257
\(839\) −40.1381 −1.38572 −0.692860 0.721072i \(-0.743650\pi\)
−0.692860 + 0.721072i \(0.743650\pi\)
\(840\) −6.24232 −0.215380
\(841\) −21.4770 −0.740586
\(842\) 16.4075 0.565438
\(843\) 0.607504 0.0209235
\(844\) 2.41670 0.0831863
\(845\) −0.242876 −0.00835517
\(846\) 19.3641 0.665752
\(847\) 26.7273 0.918361
\(848\) −33.4919 −1.15012
\(849\) 21.2552 0.729478
\(850\) 4.09752 0.140544
\(851\) 0 0
\(852\) −0.0554550 −0.00189986
\(853\) −26.1529 −0.895458 −0.447729 0.894169i \(-0.647767\pi\)
−0.447729 + 0.894169i \(0.647767\pi\)
\(854\) −18.7143 −0.640391
\(855\) −3.54948 −0.121390
\(856\) −37.9639 −1.29758
\(857\) −20.4093 −0.697168 −0.348584 0.937278i \(-0.613337\pi\)
−0.348584 + 0.937278i \(0.613337\pi\)
\(858\) −0.872124 −0.0297738
\(859\) 35.1123 1.19802 0.599008 0.800743i \(-0.295562\pi\)
0.599008 + 0.800743i \(0.295562\pi\)
\(860\) 1.48289 0.0505660
\(861\) 9.26685 0.315814
\(862\) 38.7763 1.32072
\(863\) 32.3970 1.10281 0.551403 0.834239i \(-0.314093\pi\)
0.551403 + 0.834239i \(0.314093\pi\)
\(864\) −1.76856 −0.0601676
\(865\) −19.7802 −0.672547
\(866\) 45.1681 1.53487
\(867\) 9.74884 0.331088
\(868\) −6.48680 −0.220176
\(869\) 1.35427 0.0459405
\(870\) 4.17362 0.141499
\(871\) −29.3286 −0.993763
\(872\) −12.7763 −0.432661
\(873\) 14.0686 0.476150
\(874\) 0 0
\(875\) 2.43525 0.0823263
\(876\) −1.17464 −0.0396876
\(877\) 7.27420 0.245632 0.122816 0.992429i \(-0.460807\pi\)
0.122816 + 0.992429i \(0.460807\pi\)
\(878\) 16.6541 0.562048
\(879\) −0.621553 −0.0209645
\(880\) 0.713675 0.0240580
\(881\) −15.3987 −0.518795 −0.259398 0.965771i \(-0.583524\pi\)
−0.259398 + 0.965771i \(0.583524\pi\)
\(882\) 1.62754 0.0548020
\(883\) 8.36662 0.281559 0.140780 0.990041i \(-0.455039\pi\)
0.140780 + 0.990041i \(0.455039\pi\)
\(884\) 3.09109 0.103965
\(885\) 0.00696321 0.000234066 0
\(886\) 22.7269 0.763524
\(887\) 6.69161 0.224682 0.112341 0.993670i \(-0.464165\pi\)
0.112341 + 0.993670i \(0.464165\pi\)
\(888\) 8.32913 0.279507
\(889\) 33.8046 1.13377
\(890\) 25.4773 0.854001
\(891\) 0.157496 0.00527632
\(892\) −7.90376 −0.264637
\(893\) −45.1696 −1.51154
\(894\) −12.4090 −0.415020
\(895\) −25.7173 −0.859634
\(896\) 32.2245 1.07654
\(897\) 0 0
\(898\) 43.0746 1.43742
\(899\) −23.1615 −0.772479
\(900\) 0.315440 0.0105147
\(901\) −19.9028 −0.663057
\(902\) −0.911962 −0.0303650
\(903\) −11.4481 −0.380969
\(904\) 0.0751852 0.00250062
\(905\) −22.4990 −0.747893
\(906\) −0.448708 −0.0149073
\(907\) −23.1663 −0.769223 −0.384611 0.923079i \(-0.625665\pi\)
−0.384611 + 0.923079i \(0.625665\pi\)
\(908\) −4.71269 −0.156396
\(909\) 4.70030 0.155899
\(910\) 13.4850 0.447023
\(911\) −44.4071 −1.47127 −0.735637 0.677376i \(-0.763117\pi\)
−0.735637 + 0.677376i \(0.763117\pi\)
\(912\) 16.0841 0.532596
\(913\) 1.12455 0.0372173
\(914\) 35.2278 1.16523
\(915\) −5.05027 −0.166957
\(916\) 4.87274 0.161000
\(917\) 14.3981 0.475466
\(918\) −4.09752 −0.135238
\(919\) −28.0150 −0.924130 −0.462065 0.886846i \(-0.652891\pi\)
−0.462065 + 0.886846i \(0.652891\pi\)
\(920\) 0 0
\(921\) 11.1010 0.365791
\(922\) 11.6146 0.382508
\(923\) −0.639756 −0.0210578
\(924\) 0.120985 0.00398010
\(925\) −3.24935 −0.106838
\(926\) −37.1480 −1.22076
\(927\) −4.86693 −0.159851
\(928\) −4.85083 −0.159236
\(929\) −56.4774 −1.85296 −0.926482 0.376339i \(-0.877183\pi\)
−0.926482 + 0.376339i \(0.877183\pi\)
\(930\) −12.8495 −0.421353
\(931\) −3.79646 −0.124424
\(932\) 3.60147 0.117970
\(933\) 1.84851 0.0605174
\(934\) 58.1139 1.90155
\(935\) 0.424106 0.0138697
\(936\) −9.32812 −0.304899
\(937\) 8.17235 0.266979 0.133489 0.991050i \(-0.457382\pi\)
0.133489 + 0.991050i \(0.457382\pi\)
\(938\) 29.8648 0.975122
\(939\) −12.9195 −0.421612
\(940\) 4.01419 0.130929
\(941\) −11.2938 −0.368168 −0.184084 0.982911i \(-0.558932\pi\)
−0.184084 + 0.982911i \(0.558932\pi\)
\(942\) 27.8420 0.907141
\(943\) 0 0
\(944\) −0.0315529 −0.00102696
\(945\) −2.43525 −0.0792185
\(946\) 1.12662 0.0366296
\(947\) 15.7080 0.510442 0.255221 0.966883i \(-0.417852\pi\)
0.255221 + 0.966883i \(0.417852\pi\)
\(948\) −2.71239 −0.0880944
\(949\) −13.5513 −0.439893
\(950\) −5.40110 −0.175235
\(951\) −24.1757 −0.783951
\(952\) 16.8093 0.544793
\(953\) 10.8638 0.351912 0.175956 0.984398i \(-0.443698\pi\)
0.175956 + 0.984398i \(0.443698\pi\)
\(954\) −11.2467 −0.364126
\(955\) −14.0246 −0.453826
\(956\) −2.04316 −0.0660805
\(957\) 0.431983 0.0139640
\(958\) −52.4295 −1.69392
\(959\) 0.000504149 0 1.62798e−5 0
\(960\) 6.37162 0.205643
\(961\) 40.3084 1.30027
\(962\) −17.9930 −0.580118
\(963\) −14.8104 −0.477260
\(964\) −2.78245 −0.0896168
\(965\) −5.28033 −0.169980
\(966\) 0 0
\(967\) 42.2130 1.35748 0.678740 0.734379i \(-0.262526\pi\)
0.678740 + 0.734379i \(0.262526\pi\)
\(968\) −28.1330 −0.904228
\(969\) 9.55804 0.307049
\(970\) 21.4076 0.687356
\(971\) −6.43699 −0.206573 −0.103286 0.994652i \(-0.532936\pi\)
−0.103286 + 0.994652i \(0.532936\pi\)
\(972\) −0.315440 −0.0101178
\(973\) 51.6160 1.65473
\(974\) 48.4339 1.55192
\(975\) 3.63908 0.116544
\(976\) 22.8847 0.732521
\(977\) −27.4184 −0.877192 −0.438596 0.898684i \(-0.644524\pi\)
−0.438596 + 0.898684i \(0.644524\pi\)
\(978\) 28.0249 0.896138
\(979\) 2.63698 0.0842782
\(980\) 0.337389 0.0107775
\(981\) −4.98428 −0.159136
\(982\) −5.59913 −0.178675
\(983\) −9.62397 −0.306957 −0.153478 0.988152i \(-0.549048\pi\)
−0.153478 + 0.988152i \(0.549048\pi\)
\(984\) −9.75423 −0.310953
\(985\) −12.9518 −0.412679
\(986\) −11.2387 −0.357914
\(987\) −30.9901 −0.986427
\(988\) −4.07449 −0.129627
\(989\) 0 0
\(990\) 0.239655 0.00761675
\(991\) −24.7842 −0.787296 −0.393648 0.919261i \(-0.628787\pi\)
−0.393648 + 0.919261i \(0.628787\pi\)
\(992\) 14.9345 0.474170
\(993\) 9.41880 0.298897
\(994\) 0.651452 0.0206628
\(995\) −0.932061 −0.0295483
\(996\) −2.25231 −0.0713670
\(997\) −60.2847 −1.90924 −0.954618 0.297832i \(-0.903736\pi\)
−0.954618 + 0.297832i \(0.903736\pi\)
\(998\) −5.17208 −0.163719
\(999\) 3.24935 0.102805
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bp.1.4 15
23.4 even 11 345.2.m.a.16.3 30
23.6 even 11 345.2.m.a.151.3 yes 30
23.22 odd 2 7935.2.a.bq.1.4 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.a.16.3 30 23.4 even 11
345.2.m.a.151.3 yes 30 23.6 even 11
7935.2.a.bp.1.4 15 1.1 even 1 trivial
7935.2.a.bq.1.4 15 23.22 odd 2