Properties

Label 7935.2.a.bp.1.2
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $1$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [15,0,-15,12,-15,0,-5] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(1\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 21x^{13} + 172x^{11} - 696x^{9} + 1466x^{7} - 1583x^{5} + 803x^{3} - 11x^{2} - 143x + 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 345)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.38025\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.38025 q^{2} -1.00000 q^{3} +3.66560 q^{4} -1.00000 q^{5} +2.38025 q^{6} -3.58597 q^{7} -3.96455 q^{8} +1.00000 q^{9} +2.38025 q^{10} -3.63349 q^{11} -3.66560 q^{12} -2.93707 q^{13} +8.53551 q^{14} +1.00000 q^{15} +2.10543 q^{16} +4.41210 q^{17} -2.38025 q^{18} +5.72464 q^{19} -3.66560 q^{20} +3.58597 q^{21} +8.64862 q^{22} +3.96455 q^{24} +1.00000 q^{25} +6.99097 q^{26} -1.00000 q^{27} -13.1447 q^{28} -1.14829 q^{29} -2.38025 q^{30} -5.61839 q^{31} +2.91765 q^{32} +3.63349 q^{33} -10.5019 q^{34} +3.58597 q^{35} +3.66560 q^{36} -5.52584 q^{37} -13.6261 q^{38} +2.93707 q^{39} +3.96455 q^{40} -2.65154 q^{41} -8.53551 q^{42} -3.19321 q^{43} -13.3189 q^{44} -1.00000 q^{45} +5.24866 q^{47} -2.10543 q^{48} +5.85917 q^{49} -2.38025 q^{50} -4.41210 q^{51} -10.7661 q^{52} -12.2199 q^{53} +2.38025 q^{54} +3.63349 q^{55} +14.2168 q^{56} -5.72464 q^{57} +2.73322 q^{58} -6.96614 q^{59} +3.66560 q^{60} +12.2913 q^{61} +13.3732 q^{62} -3.58597 q^{63} -11.1556 q^{64} +2.93707 q^{65} -8.64862 q^{66} -9.68589 q^{67} +16.1730 q^{68} -8.53551 q^{70} +13.3823 q^{71} -3.96455 q^{72} -5.72287 q^{73} +13.1529 q^{74} -1.00000 q^{75} +20.9842 q^{76} +13.0296 q^{77} -6.99097 q^{78} +11.7785 q^{79} -2.10543 q^{80} +1.00000 q^{81} +6.31133 q^{82} +15.9126 q^{83} +13.1447 q^{84} -4.41210 q^{85} +7.60065 q^{86} +1.14829 q^{87} +14.4052 q^{88} +9.75994 q^{89} +2.38025 q^{90} +10.5322 q^{91} +5.61839 q^{93} -12.4931 q^{94} -5.72464 q^{95} -2.91765 q^{96} +4.06707 q^{97} -13.9463 q^{98} -3.63349 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 15 q^{3} + 12 q^{4} - 15 q^{5} - 5 q^{7} + 15 q^{9} + 13 q^{11} - 12 q^{12} - 24 q^{13} + 15 q^{14} + 15 q^{15} + 2 q^{16} + 2 q^{17} + 13 q^{19} - 12 q^{20} + 5 q^{21} - 9 q^{22} + 15 q^{25} - 9 q^{26}+ \cdots + 13 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.38025 −1.68309 −0.841546 0.540185i \(-0.818354\pi\)
−0.841546 + 0.540185i \(0.818354\pi\)
\(3\) −1.00000 −0.577350
\(4\) 3.66560 1.83280
\(5\) −1.00000 −0.447214
\(6\) 2.38025 0.971734
\(7\) −3.58597 −1.35537 −0.677684 0.735353i \(-0.737016\pi\)
−0.677684 + 0.735353i \(0.737016\pi\)
\(8\) −3.96455 −1.40168
\(9\) 1.00000 0.333333
\(10\) 2.38025 0.752702
\(11\) −3.63349 −1.09554 −0.547769 0.836630i \(-0.684523\pi\)
−0.547769 + 0.836630i \(0.684523\pi\)
\(12\) −3.66560 −1.05817
\(13\) −2.93707 −0.814597 −0.407298 0.913295i \(-0.633529\pi\)
−0.407298 + 0.913295i \(0.633529\pi\)
\(14\) 8.53551 2.28121
\(15\) 1.00000 0.258199
\(16\) 2.10543 0.526358
\(17\) 4.41210 1.07009 0.535045 0.844823i \(-0.320295\pi\)
0.535045 + 0.844823i \(0.320295\pi\)
\(18\) −2.38025 −0.561031
\(19\) 5.72464 1.31332 0.656661 0.754186i \(-0.271968\pi\)
0.656661 + 0.754186i \(0.271968\pi\)
\(20\) −3.66560 −0.819653
\(21\) 3.58597 0.782522
\(22\) 8.64862 1.84389
\(23\) 0 0
\(24\) 3.96455 0.809261
\(25\) 1.00000 0.200000
\(26\) 6.99097 1.37104
\(27\) −1.00000 −0.192450
\(28\) −13.1447 −2.48412
\(29\) −1.14829 −0.213232 −0.106616 0.994300i \(-0.534002\pi\)
−0.106616 + 0.994300i \(0.534002\pi\)
\(30\) −2.38025 −0.434573
\(31\) −5.61839 −1.00909 −0.504546 0.863385i \(-0.668340\pi\)
−0.504546 + 0.863385i \(0.668340\pi\)
\(32\) 2.91765 0.515772
\(33\) 3.63349 0.632509
\(34\) −10.5019 −1.80106
\(35\) 3.58597 0.606139
\(36\) 3.66560 0.610934
\(37\) −5.52584 −0.908443 −0.454222 0.890889i \(-0.650083\pi\)
−0.454222 + 0.890889i \(0.650083\pi\)
\(38\) −13.6261 −2.21044
\(39\) 2.93707 0.470308
\(40\) 3.96455 0.626851
\(41\) −2.65154 −0.414101 −0.207050 0.978330i \(-0.566386\pi\)
−0.207050 + 0.978330i \(0.566386\pi\)
\(42\) −8.53551 −1.31706
\(43\) −3.19321 −0.486960 −0.243480 0.969906i \(-0.578289\pi\)
−0.243480 + 0.969906i \(0.578289\pi\)
\(44\) −13.3189 −2.00790
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 5.24866 0.765595 0.382798 0.923832i \(-0.374961\pi\)
0.382798 + 0.923832i \(0.374961\pi\)
\(48\) −2.10543 −0.303893
\(49\) 5.85917 0.837024
\(50\) −2.38025 −0.336619
\(51\) −4.41210 −0.617817
\(52\) −10.7661 −1.49299
\(53\) −12.2199 −1.67854 −0.839269 0.543716i \(-0.817017\pi\)
−0.839269 + 0.543716i \(0.817017\pi\)
\(54\) 2.38025 0.323911
\(55\) 3.63349 0.489940
\(56\) 14.2168 1.89979
\(57\) −5.72464 −0.758247
\(58\) 2.73322 0.358890
\(59\) −6.96614 −0.906914 −0.453457 0.891278i \(-0.649809\pi\)
−0.453457 + 0.891278i \(0.649809\pi\)
\(60\) 3.66560 0.473227
\(61\) 12.2913 1.57374 0.786870 0.617119i \(-0.211700\pi\)
0.786870 + 0.617119i \(0.211700\pi\)
\(62\) 13.3732 1.69840
\(63\) −3.58597 −0.451790
\(64\) −11.1556 −1.39445
\(65\) 2.93707 0.364299
\(66\) −8.64862 −1.06457
\(67\) −9.68589 −1.18332 −0.591660 0.806187i \(-0.701527\pi\)
−0.591660 + 0.806187i \(0.701527\pi\)
\(68\) 16.1730 1.96126
\(69\) 0 0
\(70\) −8.53551 −1.02019
\(71\) 13.3823 1.58819 0.794094 0.607794i \(-0.207945\pi\)
0.794094 + 0.607794i \(0.207945\pi\)
\(72\) −3.96455 −0.467227
\(73\) −5.72287 −0.669811 −0.334905 0.942252i \(-0.608704\pi\)
−0.334905 + 0.942252i \(0.608704\pi\)
\(74\) 13.1529 1.52899
\(75\) −1.00000 −0.115470
\(76\) 20.9842 2.40706
\(77\) 13.0296 1.48486
\(78\) −6.99097 −0.791571
\(79\) 11.7785 1.32519 0.662594 0.748979i \(-0.269456\pi\)
0.662594 + 0.748979i \(0.269456\pi\)
\(80\) −2.10543 −0.235394
\(81\) 1.00000 0.111111
\(82\) 6.31133 0.696970
\(83\) 15.9126 1.74664 0.873320 0.487148i \(-0.161963\pi\)
0.873320 + 0.487148i \(0.161963\pi\)
\(84\) 13.1447 1.43421
\(85\) −4.41210 −0.478559
\(86\) 7.60065 0.819599
\(87\) 1.14829 0.123110
\(88\) 14.4052 1.53559
\(89\) 9.75994 1.03455 0.517276 0.855819i \(-0.326946\pi\)
0.517276 + 0.855819i \(0.326946\pi\)
\(90\) 2.38025 0.250901
\(91\) 10.5322 1.10408
\(92\) 0 0
\(93\) 5.61839 0.582600
\(94\) −12.4931 −1.28857
\(95\) −5.72464 −0.587336
\(96\) −2.91765 −0.297781
\(97\) 4.06707 0.412949 0.206474 0.978452i \(-0.433801\pi\)
0.206474 + 0.978452i \(0.433801\pi\)
\(98\) −13.9463 −1.40879
\(99\) −3.63349 −0.365179
\(100\) 3.66560 0.366560
\(101\) 8.24732 0.820639 0.410320 0.911942i \(-0.365417\pi\)
0.410320 + 0.911942i \(0.365417\pi\)
\(102\) 10.5019 1.03984
\(103\) −1.74169 −0.171614 −0.0858071 0.996312i \(-0.527347\pi\)
−0.0858071 + 0.996312i \(0.527347\pi\)
\(104\) 11.6442 1.14180
\(105\) −3.58597 −0.349955
\(106\) 29.0865 2.82513
\(107\) 11.4479 1.10671 0.553353 0.832947i \(-0.313348\pi\)
0.553353 + 0.832947i \(0.313348\pi\)
\(108\) −3.66560 −0.352723
\(109\) −0.811222 −0.0777010 −0.0388505 0.999245i \(-0.512370\pi\)
−0.0388505 + 0.999245i \(0.512370\pi\)
\(110\) −8.64862 −0.824614
\(111\) 5.52584 0.524490
\(112\) −7.55001 −0.713409
\(113\) −18.0028 −1.69356 −0.846778 0.531946i \(-0.821461\pi\)
−0.846778 + 0.531946i \(0.821461\pi\)
\(114\) 13.6261 1.27620
\(115\) 0 0
\(116\) −4.20918 −0.390812
\(117\) −2.93707 −0.271532
\(118\) 16.5812 1.52642
\(119\) −15.8216 −1.45037
\(120\) −3.96455 −0.361912
\(121\) 2.20224 0.200204
\(122\) −29.2564 −2.64875
\(123\) 2.65154 0.239081
\(124\) −20.5948 −1.84947
\(125\) −1.00000 −0.0894427
\(126\) 8.53551 0.760404
\(127\) −11.6887 −1.03720 −0.518600 0.855017i \(-0.673547\pi\)
−0.518600 + 0.855017i \(0.673547\pi\)
\(128\) 20.7178 1.83122
\(129\) 3.19321 0.281146
\(130\) −6.99097 −0.613149
\(131\) 11.2344 0.981550 0.490775 0.871286i \(-0.336714\pi\)
0.490775 + 0.871286i \(0.336714\pi\)
\(132\) 13.3189 1.15926
\(133\) −20.5284 −1.78004
\(134\) 23.0549 1.99164
\(135\) 1.00000 0.0860663
\(136\) −17.4920 −1.49993
\(137\) 2.53113 0.216249 0.108124 0.994137i \(-0.465516\pi\)
0.108124 + 0.994137i \(0.465516\pi\)
\(138\) 0 0
\(139\) −1.91330 −0.162284 −0.0811420 0.996703i \(-0.525857\pi\)
−0.0811420 + 0.996703i \(0.525857\pi\)
\(140\) 13.1447 1.11093
\(141\) −5.24866 −0.442017
\(142\) −31.8533 −2.67307
\(143\) 10.6718 0.892422
\(144\) 2.10543 0.175453
\(145\) 1.14829 0.0953604
\(146\) 13.6219 1.12735
\(147\) −5.85917 −0.483256
\(148\) −20.2555 −1.66499
\(149\) 15.6701 1.28374 0.641871 0.766813i \(-0.278158\pi\)
0.641871 + 0.766813i \(0.278158\pi\)
\(150\) 2.38025 0.194347
\(151\) 16.5747 1.34883 0.674416 0.738352i \(-0.264395\pi\)
0.674416 + 0.738352i \(0.264395\pi\)
\(152\) −22.6956 −1.84086
\(153\) 4.41210 0.356697
\(154\) −31.0137 −2.49915
\(155\) 5.61839 0.451280
\(156\) 10.7661 0.861980
\(157\) −0.909266 −0.0725673 −0.0362836 0.999342i \(-0.511552\pi\)
−0.0362836 + 0.999342i \(0.511552\pi\)
\(158\) −28.0359 −2.23041
\(159\) 12.2199 0.969104
\(160\) −2.91765 −0.230660
\(161\) 0 0
\(162\) −2.38025 −0.187010
\(163\) −18.4287 −1.44345 −0.721723 0.692182i \(-0.756649\pi\)
−0.721723 + 0.692182i \(0.756649\pi\)
\(164\) −9.71949 −0.758964
\(165\) −3.63349 −0.282867
\(166\) −37.8761 −2.93976
\(167\) 3.57771 0.276852 0.138426 0.990373i \(-0.455796\pi\)
0.138426 + 0.990373i \(0.455796\pi\)
\(168\) −14.2168 −1.09685
\(169\) −4.37361 −0.336432
\(170\) 10.5019 0.805459
\(171\) 5.72464 0.437774
\(172\) −11.7050 −0.892501
\(173\) 14.4080 1.09542 0.547710 0.836668i \(-0.315500\pi\)
0.547710 + 0.836668i \(0.315500\pi\)
\(174\) −2.73322 −0.207205
\(175\) −3.58597 −0.271074
\(176\) −7.65006 −0.576645
\(177\) 6.96614 0.523607
\(178\) −23.2311 −1.74125
\(179\) 14.9968 1.12092 0.560458 0.828183i \(-0.310625\pi\)
0.560458 + 0.828183i \(0.310625\pi\)
\(180\) −3.66560 −0.273218
\(181\) 19.9742 1.48467 0.742335 0.670029i \(-0.233718\pi\)
0.742335 + 0.670029i \(0.233718\pi\)
\(182\) −25.0694 −1.85827
\(183\) −12.2913 −0.908599
\(184\) 0 0
\(185\) 5.52584 0.406268
\(186\) −13.3732 −0.980570
\(187\) −16.0313 −1.17233
\(188\) 19.2395 1.40318
\(189\) 3.58597 0.260841
\(190\) 13.6261 0.988540
\(191\) 13.0360 0.943249 0.471624 0.881800i \(-0.343668\pi\)
0.471624 + 0.881800i \(0.343668\pi\)
\(192\) 11.1556 0.805086
\(193\) −17.8715 −1.28642 −0.643209 0.765690i \(-0.722397\pi\)
−0.643209 + 0.765690i \(0.722397\pi\)
\(194\) −9.68066 −0.695031
\(195\) −2.93707 −0.210328
\(196\) 21.4774 1.53410
\(197\) −6.21319 −0.442671 −0.221336 0.975198i \(-0.571042\pi\)
−0.221336 + 0.975198i \(0.571042\pi\)
\(198\) 8.64862 0.614631
\(199\) 14.8319 1.05140 0.525701 0.850669i \(-0.323803\pi\)
0.525701 + 0.850669i \(0.323803\pi\)
\(200\) −3.96455 −0.280336
\(201\) 9.68589 0.683190
\(202\) −19.6307 −1.38121
\(203\) 4.11773 0.289008
\(204\) −16.1730 −1.13234
\(205\) 2.65154 0.185192
\(206\) 4.14567 0.288843
\(207\) 0 0
\(208\) −6.18380 −0.428769
\(209\) −20.8004 −1.43879
\(210\) 8.53551 0.589006
\(211\) 3.02940 0.208553 0.104276 0.994548i \(-0.466747\pi\)
0.104276 + 0.994548i \(0.466747\pi\)
\(212\) −44.7934 −3.07643
\(213\) −13.3823 −0.916941
\(214\) −27.2488 −1.86269
\(215\) 3.19321 0.217775
\(216\) 3.96455 0.269754
\(217\) 20.1474 1.36769
\(218\) 1.93091 0.130778
\(219\) 5.72287 0.386715
\(220\) 13.3189 0.897962
\(221\) −12.9586 −0.871692
\(222\) −13.1529 −0.882765
\(223\) 22.6453 1.51644 0.758221 0.651997i \(-0.226069\pi\)
0.758221 + 0.651997i \(0.226069\pi\)
\(224\) −10.4626 −0.699061
\(225\) 1.00000 0.0666667
\(226\) 42.8511 2.85041
\(227\) 16.5074 1.09563 0.547816 0.836599i \(-0.315460\pi\)
0.547816 + 0.836599i \(0.315460\pi\)
\(228\) −20.9842 −1.38972
\(229\) −12.5550 −0.829660 −0.414830 0.909899i \(-0.636159\pi\)
−0.414830 + 0.909899i \(0.636159\pi\)
\(230\) 0 0
\(231\) −13.0296 −0.857283
\(232\) 4.55246 0.298884
\(233\) 11.4665 0.751194 0.375597 0.926783i \(-0.377438\pi\)
0.375597 + 0.926783i \(0.377438\pi\)
\(234\) 6.99097 0.457014
\(235\) −5.24866 −0.342385
\(236\) −25.5351 −1.66219
\(237\) −11.7785 −0.765097
\(238\) 37.6595 2.44110
\(239\) −24.4642 −1.58246 −0.791230 0.611518i \(-0.790559\pi\)
−0.791230 + 0.611518i \(0.790559\pi\)
\(240\) 2.10543 0.135905
\(241\) −8.74326 −0.563203 −0.281602 0.959531i \(-0.590866\pi\)
−0.281602 + 0.959531i \(0.590866\pi\)
\(242\) −5.24190 −0.336962
\(243\) −1.00000 −0.0641500
\(244\) 45.0550 2.88435
\(245\) −5.85917 −0.374328
\(246\) −6.31133 −0.402396
\(247\) −16.8137 −1.06983
\(248\) 22.2744 1.41443
\(249\) −15.9126 −1.00842
\(250\) 2.38025 0.150540
\(251\) −7.66078 −0.483544 −0.241772 0.970333i \(-0.577729\pi\)
−0.241772 + 0.970333i \(0.577729\pi\)
\(252\) −13.1447 −0.828040
\(253\) 0 0
\(254\) 27.8220 1.74571
\(255\) 4.41210 0.276296
\(256\) −27.0025 −1.68766
\(257\) 11.0444 0.688930 0.344465 0.938799i \(-0.388060\pi\)
0.344465 + 0.938799i \(0.388060\pi\)
\(258\) −7.60065 −0.473196
\(259\) 19.8155 1.23128
\(260\) 10.7661 0.667687
\(261\) −1.14829 −0.0710774
\(262\) −26.7406 −1.65204
\(263\) −2.93105 −0.180736 −0.0903681 0.995908i \(-0.528804\pi\)
−0.0903681 + 0.995908i \(0.528804\pi\)
\(264\) −14.4052 −0.886576
\(265\) 12.2199 0.750665
\(266\) 48.8627 2.99597
\(267\) −9.75994 −0.597299
\(268\) −35.5046 −2.16879
\(269\) 15.4122 0.939701 0.469850 0.882746i \(-0.344308\pi\)
0.469850 + 0.882746i \(0.344308\pi\)
\(270\) −2.38025 −0.144858
\(271\) −30.0420 −1.82492 −0.912461 0.409164i \(-0.865821\pi\)
−0.912461 + 0.409164i \(0.865821\pi\)
\(272\) 9.28936 0.563250
\(273\) −10.5322 −0.637440
\(274\) −6.02472 −0.363967
\(275\) −3.63349 −0.219108
\(276\) 0 0
\(277\) −30.8208 −1.85184 −0.925920 0.377720i \(-0.876708\pi\)
−0.925920 + 0.377720i \(0.876708\pi\)
\(278\) 4.55414 0.273139
\(279\) −5.61839 −0.336364
\(280\) −14.2168 −0.849614
\(281\) −15.5785 −0.929335 −0.464667 0.885485i \(-0.653826\pi\)
−0.464667 + 0.885485i \(0.653826\pi\)
\(282\) 12.4931 0.743955
\(283\) 28.0832 1.66937 0.834686 0.550726i \(-0.185649\pi\)
0.834686 + 0.550726i \(0.185649\pi\)
\(284\) 49.0542 2.91083
\(285\) 5.72464 0.339098
\(286\) −25.4016 −1.50203
\(287\) 9.50834 0.561259
\(288\) 2.91765 0.171924
\(289\) 2.46659 0.145094
\(290\) −2.73322 −0.160500
\(291\) −4.06707 −0.238416
\(292\) −20.9777 −1.22763
\(293\) 19.3355 1.12959 0.564797 0.825230i \(-0.308955\pi\)
0.564797 + 0.825230i \(0.308955\pi\)
\(294\) 13.9463 0.813365
\(295\) 6.96614 0.405584
\(296\) 21.9075 1.27335
\(297\) 3.63349 0.210836
\(298\) −37.2987 −2.16066
\(299\) 0 0
\(300\) −3.66560 −0.211634
\(301\) 11.4508 0.660010
\(302\) −39.4520 −2.27021
\(303\) −8.24732 −0.473796
\(304\) 12.0528 0.691277
\(305\) −12.2913 −0.703798
\(306\) −10.5019 −0.600354
\(307\) 16.2209 0.925774 0.462887 0.886417i \(-0.346814\pi\)
0.462887 + 0.886417i \(0.346814\pi\)
\(308\) 47.7612 2.72145
\(309\) 1.74169 0.0990815
\(310\) −13.3732 −0.759546
\(311\) −19.6405 −1.11371 −0.556856 0.830609i \(-0.687993\pi\)
−0.556856 + 0.830609i \(0.687993\pi\)
\(312\) −11.6442 −0.659221
\(313\) −18.8540 −1.06569 −0.532846 0.846212i \(-0.678878\pi\)
−0.532846 + 0.846212i \(0.678878\pi\)
\(314\) 2.16428 0.122137
\(315\) 3.58597 0.202046
\(316\) 43.1754 2.42880
\(317\) 10.4645 0.587744 0.293872 0.955845i \(-0.405056\pi\)
0.293872 + 0.955845i \(0.405056\pi\)
\(318\) −29.0865 −1.63109
\(319\) 4.17230 0.233604
\(320\) 11.1556 0.623617
\(321\) −11.4479 −0.638957
\(322\) 0 0
\(323\) 25.2577 1.40537
\(324\) 3.66560 0.203645
\(325\) −2.93707 −0.162919
\(326\) 43.8649 2.42945
\(327\) 0.811222 0.0448607
\(328\) 10.5122 0.580437
\(329\) −18.8215 −1.03766
\(330\) 8.64862 0.476091
\(331\) −20.7116 −1.13841 −0.569207 0.822194i \(-0.692750\pi\)
−0.569207 + 0.822194i \(0.692750\pi\)
\(332\) 58.3294 3.20124
\(333\) −5.52584 −0.302814
\(334\) −8.51586 −0.465967
\(335\) 9.68589 0.529197
\(336\) 7.55001 0.411887
\(337\) −11.1566 −0.607739 −0.303869 0.952714i \(-0.598279\pi\)
−0.303869 + 0.952714i \(0.598279\pi\)
\(338\) 10.4103 0.566246
\(339\) 18.0028 0.977775
\(340\) −16.1730 −0.877103
\(341\) 20.4144 1.10550
\(342\) −13.6261 −0.736814
\(343\) 4.09099 0.220893
\(344\) 12.6596 0.682562
\(345\) 0 0
\(346\) −34.2947 −1.84369
\(347\) 2.71634 0.145821 0.0729103 0.997338i \(-0.476771\pi\)
0.0729103 + 0.997338i \(0.476771\pi\)
\(348\) 4.20918 0.225636
\(349\) 10.3190 0.552365 0.276182 0.961105i \(-0.410931\pi\)
0.276182 + 0.961105i \(0.410931\pi\)
\(350\) 8.53551 0.456242
\(351\) 2.93707 0.156769
\(352\) −10.6012 −0.565048
\(353\) −25.6033 −1.36273 −0.681363 0.731945i \(-0.738613\pi\)
−0.681363 + 0.731945i \(0.738613\pi\)
\(354\) −16.5812 −0.881279
\(355\) −13.3823 −0.710260
\(356\) 35.7760 1.89613
\(357\) 15.8216 0.837370
\(358\) −35.6963 −1.88661
\(359\) 35.3977 1.86822 0.934109 0.356987i \(-0.116196\pi\)
0.934109 + 0.356987i \(0.116196\pi\)
\(360\) 3.96455 0.208950
\(361\) 13.7715 0.724816
\(362\) −47.5436 −2.49884
\(363\) −2.20224 −0.115588
\(364\) 38.6070 2.02356
\(365\) 5.72287 0.299548
\(366\) 29.2564 1.52926
\(367\) 20.5613 1.07329 0.536645 0.843808i \(-0.319691\pi\)
0.536645 + 0.843808i \(0.319691\pi\)
\(368\) 0 0
\(369\) −2.65154 −0.138034
\(370\) −13.1529 −0.683787
\(371\) 43.8203 2.27504
\(372\) 20.5948 1.06779
\(373\) 27.3218 1.41467 0.707334 0.706879i \(-0.249897\pi\)
0.707334 + 0.706879i \(0.249897\pi\)
\(374\) 38.1586 1.97313
\(375\) 1.00000 0.0516398
\(376\) −20.8086 −1.07312
\(377\) 3.37261 0.173698
\(378\) −8.53551 −0.439019
\(379\) 22.6686 1.16441 0.582203 0.813043i \(-0.302191\pi\)
0.582203 + 0.813043i \(0.302191\pi\)
\(380\) −20.9842 −1.07647
\(381\) 11.6887 0.598828
\(382\) −31.0289 −1.58758
\(383\) −27.8115 −1.42110 −0.710551 0.703646i \(-0.751554\pi\)
−0.710551 + 0.703646i \(0.751554\pi\)
\(384\) −20.7178 −1.05725
\(385\) −13.0296 −0.664049
\(386\) 42.5387 2.16516
\(387\) −3.19321 −0.162320
\(388\) 14.9083 0.756853
\(389\) 7.90037 0.400565 0.200282 0.979738i \(-0.435814\pi\)
0.200282 + 0.979738i \(0.435814\pi\)
\(390\) 6.99097 0.354002
\(391\) 0 0
\(392\) −23.2290 −1.17324
\(393\) −11.2344 −0.566698
\(394\) 14.7890 0.745057
\(395\) −11.7785 −0.592642
\(396\) −13.3189 −0.669301
\(397\) 18.4083 0.923886 0.461943 0.886910i \(-0.347153\pi\)
0.461943 + 0.886910i \(0.347153\pi\)
\(398\) −35.3036 −1.76961
\(399\) 20.5284 1.02770
\(400\) 2.10543 0.105272
\(401\) −8.97443 −0.448162 −0.224081 0.974571i \(-0.571938\pi\)
−0.224081 + 0.974571i \(0.571938\pi\)
\(402\) −23.0549 −1.14987
\(403\) 16.5016 0.822004
\(404\) 30.2314 1.50407
\(405\) −1.00000 −0.0496904
\(406\) −9.80125 −0.486428
\(407\) 20.0781 0.995234
\(408\) 17.4920 0.865982
\(409\) 11.6137 0.574258 0.287129 0.957892i \(-0.407299\pi\)
0.287129 + 0.957892i \(0.407299\pi\)
\(410\) −6.31133 −0.311695
\(411\) −2.53113 −0.124851
\(412\) −6.38436 −0.314535
\(413\) 24.9803 1.22920
\(414\) 0 0
\(415\) −15.9126 −0.781121
\(416\) −8.56934 −0.420146
\(417\) 1.91330 0.0936947
\(418\) 49.5102 2.42163
\(419\) −11.9648 −0.584520 −0.292260 0.956339i \(-0.594407\pi\)
−0.292260 + 0.956339i \(0.594407\pi\)
\(420\) −13.1447 −0.641397
\(421\) −24.8002 −1.20869 −0.604344 0.796724i \(-0.706565\pi\)
−0.604344 + 0.796724i \(0.706565\pi\)
\(422\) −7.21075 −0.351014
\(423\) 5.24866 0.255198
\(424\) 48.4466 2.35277
\(425\) 4.41210 0.214018
\(426\) 31.8533 1.54330
\(427\) −44.0762 −2.13300
\(428\) 41.9633 2.02837
\(429\) −10.6718 −0.515240
\(430\) −7.60065 −0.366536
\(431\) 2.14074 0.103116 0.0515580 0.998670i \(-0.483581\pi\)
0.0515580 + 0.998670i \(0.483581\pi\)
\(432\) −2.10543 −0.101298
\(433\) 5.29063 0.254251 0.127126 0.991887i \(-0.459425\pi\)
0.127126 + 0.991887i \(0.459425\pi\)
\(434\) −47.9558 −2.30195
\(435\) −1.14829 −0.0550563
\(436\) −2.97362 −0.142410
\(437\) 0 0
\(438\) −13.6219 −0.650878
\(439\) −29.2822 −1.39756 −0.698782 0.715335i \(-0.746274\pi\)
−0.698782 + 0.715335i \(0.746274\pi\)
\(440\) −14.4052 −0.686739
\(441\) 5.85917 0.279008
\(442\) 30.8448 1.46714
\(443\) −6.46498 −0.307160 −0.153580 0.988136i \(-0.549080\pi\)
−0.153580 + 0.988136i \(0.549080\pi\)
\(444\) 20.2555 0.961285
\(445\) −9.75994 −0.462665
\(446\) −53.9016 −2.55231
\(447\) −15.6701 −0.741169
\(448\) 40.0036 1.88999
\(449\) −30.2072 −1.42557 −0.712784 0.701384i \(-0.752566\pi\)
−0.712784 + 0.701384i \(0.752566\pi\)
\(450\) −2.38025 −0.112206
\(451\) 9.63434 0.453663
\(452\) −65.9909 −3.10395
\(453\) −16.5747 −0.778748
\(454\) −39.2917 −1.84405
\(455\) −10.5322 −0.493759
\(456\) 22.6956 1.06282
\(457\) −16.3135 −0.763115 −0.381558 0.924345i \(-0.624612\pi\)
−0.381558 + 0.924345i \(0.624612\pi\)
\(458\) 29.8842 1.39639
\(459\) −4.41210 −0.205939
\(460\) 0 0
\(461\) −29.2881 −1.36408 −0.682041 0.731314i \(-0.738908\pi\)
−0.682041 + 0.731314i \(0.738908\pi\)
\(462\) 31.0137 1.44289
\(463\) 17.8260 0.828447 0.414223 0.910175i \(-0.364053\pi\)
0.414223 + 0.910175i \(0.364053\pi\)
\(464\) −2.41765 −0.112236
\(465\) −5.61839 −0.260547
\(466\) −27.2931 −1.26433
\(467\) 3.34540 0.154807 0.0774034 0.997000i \(-0.475337\pi\)
0.0774034 + 0.997000i \(0.475337\pi\)
\(468\) −10.7661 −0.497665
\(469\) 34.7333 1.60384
\(470\) 12.4931 0.576265
\(471\) 0.909266 0.0418967
\(472\) 27.6176 1.27120
\(473\) 11.6025 0.533483
\(474\) 28.0359 1.28773
\(475\) 5.72464 0.262664
\(476\) −57.9958 −2.65823
\(477\) −12.2199 −0.559513
\(478\) 58.2311 2.66343
\(479\) −7.77932 −0.355446 −0.177723 0.984081i \(-0.556873\pi\)
−0.177723 + 0.984081i \(0.556873\pi\)
\(480\) 2.91765 0.133172
\(481\) 16.2298 0.740015
\(482\) 20.8112 0.947923
\(483\) 0 0
\(484\) 8.07255 0.366934
\(485\) −4.06707 −0.184676
\(486\) 2.38025 0.107970
\(487\) 14.6546 0.664063 0.332031 0.943268i \(-0.392266\pi\)
0.332031 + 0.943268i \(0.392266\pi\)
\(488\) −48.7295 −2.20588
\(489\) 18.4287 0.833374
\(490\) 13.9463 0.630029
\(491\) 19.1331 0.863465 0.431732 0.902002i \(-0.357903\pi\)
0.431732 + 0.902002i \(0.357903\pi\)
\(492\) 9.71949 0.438188
\(493\) −5.06637 −0.228178
\(494\) 40.0208 1.80062
\(495\) 3.63349 0.163313
\(496\) −11.8291 −0.531144
\(497\) −47.9886 −2.15258
\(498\) 37.8761 1.69727
\(499\) 13.2692 0.594009 0.297005 0.954876i \(-0.404012\pi\)
0.297005 + 0.954876i \(0.404012\pi\)
\(500\) −3.66560 −0.163931
\(501\) −3.57771 −0.159840
\(502\) 18.2346 0.813849
\(503\) 7.24929 0.323230 0.161615 0.986854i \(-0.448330\pi\)
0.161615 + 0.986854i \(0.448330\pi\)
\(504\) 14.2168 0.633265
\(505\) −8.24732 −0.367001
\(506\) 0 0
\(507\) 4.37361 0.194239
\(508\) −42.8460 −1.90098
\(509\) −0.978533 −0.0433727 −0.0216864 0.999765i \(-0.506904\pi\)
−0.0216864 + 0.999765i \(0.506904\pi\)
\(510\) −10.5019 −0.465032
\(511\) 20.5220 0.907840
\(512\) 22.8371 1.00927
\(513\) −5.72464 −0.252749
\(514\) −26.2884 −1.15953
\(515\) 1.74169 0.0767482
\(516\) 11.7050 0.515285
\(517\) −19.0709 −0.838739
\(518\) −47.1659 −2.07235
\(519\) −14.4080 −0.632441
\(520\) −11.6442 −0.510631
\(521\) 21.7844 0.954391 0.477196 0.878797i \(-0.341653\pi\)
0.477196 + 0.878797i \(0.341653\pi\)
\(522\) 2.73322 0.119630
\(523\) −13.0832 −0.572087 −0.286043 0.958217i \(-0.592340\pi\)
−0.286043 + 0.958217i \(0.592340\pi\)
\(524\) 41.1807 1.79899
\(525\) 3.58597 0.156504
\(526\) 6.97664 0.304196
\(527\) −24.7889 −1.07982
\(528\) 7.65006 0.332926
\(529\) 0 0
\(530\) −29.0865 −1.26344
\(531\) −6.96614 −0.302305
\(532\) −75.2488 −3.26245
\(533\) 7.78776 0.337325
\(534\) 23.2311 1.00531
\(535\) −11.4479 −0.494934
\(536\) 38.4002 1.65864
\(537\) −14.9968 −0.647161
\(538\) −36.6850 −1.58160
\(539\) −21.2892 −0.916992
\(540\) 3.66560 0.157742
\(541\) −18.2621 −0.785150 −0.392575 0.919720i \(-0.628416\pi\)
−0.392575 + 0.919720i \(0.628416\pi\)
\(542\) 71.5076 3.07151
\(543\) −19.9742 −0.857175
\(544\) 12.8729 0.551923
\(545\) 0.811222 0.0347489
\(546\) 25.0694 1.07287
\(547\) −23.4198 −1.00136 −0.500679 0.865633i \(-0.666916\pi\)
−0.500679 + 0.865633i \(0.666916\pi\)
\(548\) 9.27810 0.396341
\(549\) 12.2913 0.524580
\(550\) 8.64862 0.368778
\(551\) −6.57355 −0.280043
\(552\) 0 0
\(553\) −42.2374 −1.79612
\(554\) 73.3612 3.11682
\(555\) −5.52584 −0.234559
\(556\) −7.01340 −0.297434
\(557\) −8.40016 −0.355926 −0.177963 0.984037i \(-0.556951\pi\)
−0.177963 + 0.984037i \(0.556951\pi\)
\(558\) 13.3732 0.566132
\(559\) 9.37868 0.396676
\(560\) 7.55001 0.319046
\(561\) 16.0313 0.676842
\(562\) 37.0807 1.56416
\(563\) 6.75021 0.284487 0.142244 0.989832i \(-0.454568\pi\)
0.142244 + 0.989832i \(0.454568\pi\)
\(564\) −19.2395 −0.810129
\(565\) 18.0028 0.757382
\(566\) −66.8451 −2.80971
\(567\) −3.58597 −0.150597
\(568\) −53.0549 −2.22613
\(569\) 4.37193 0.183281 0.0916403 0.995792i \(-0.470789\pi\)
0.0916403 + 0.995792i \(0.470789\pi\)
\(570\) −13.6261 −0.570734
\(571\) −42.8773 −1.79436 −0.897179 0.441667i \(-0.854387\pi\)
−0.897179 + 0.441667i \(0.854387\pi\)
\(572\) 39.1186 1.63563
\(573\) −13.0360 −0.544585
\(574\) −22.6322 −0.944651
\(575\) 0 0
\(576\) −11.1556 −0.464817
\(577\) 2.84454 0.118420 0.0592099 0.998246i \(-0.481142\pi\)
0.0592099 + 0.998246i \(0.481142\pi\)
\(578\) −5.87112 −0.244206
\(579\) 17.8715 0.742714
\(580\) 4.20918 0.174777
\(581\) −57.0622 −2.36734
\(582\) 9.68066 0.401276
\(583\) 44.4010 1.83890
\(584\) 22.6886 0.938861
\(585\) 2.93707 0.121433
\(586\) −46.0234 −1.90121
\(587\) 11.8741 0.490097 0.245048 0.969511i \(-0.421196\pi\)
0.245048 + 0.969511i \(0.421196\pi\)
\(588\) −21.4774 −0.885712
\(589\) −32.1633 −1.32526
\(590\) −16.5812 −0.682636
\(591\) 6.21319 0.255576
\(592\) −11.6343 −0.478166
\(593\) −40.2544 −1.65305 −0.826524 0.562901i \(-0.809685\pi\)
−0.826524 + 0.562901i \(0.809685\pi\)
\(594\) −8.64862 −0.354857
\(595\) 15.8216 0.648624
\(596\) 57.4402 2.35284
\(597\) −14.8319 −0.607027
\(598\) 0 0
\(599\) −24.7275 −1.01034 −0.505168 0.863021i \(-0.668570\pi\)
−0.505168 + 0.863021i \(0.668570\pi\)
\(600\) 3.96455 0.161852
\(601\) −10.3375 −0.421675 −0.210837 0.977521i \(-0.567619\pi\)
−0.210837 + 0.977521i \(0.567619\pi\)
\(602\) −27.2557 −1.11086
\(603\) −9.68589 −0.394440
\(604\) 60.7563 2.47214
\(605\) −2.20224 −0.0895340
\(606\) 19.6307 0.797443
\(607\) 8.74395 0.354906 0.177453 0.984129i \(-0.443214\pi\)
0.177453 + 0.984129i \(0.443214\pi\)
\(608\) 16.7025 0.677375
\(609\) −4.11773 −0.166859
\(610\) 29.2564 1.18456
\(611\) −15.4157 −0.623652
\(612\) 16.1730 0.653754
\(613\) −18.7613 −0.757762 −0.378881 0.925445i \(-0.623691\pi\)
−0.378881 + 0.925445i \(0.623691\pi\)
\(614\) −38.6098 −1.55816
\(615\) −2.65154 −0.106920
\(616\) −51.6564 −2.08130
\(617\) −39.0264 −1.57114 −0.785571 0.618772i \(-0.787631\pi\)
−0.785571 + 0.618772i \(0.787631\pi\)
\(618\) −4.14567 −0.166763
\(619\) −5.12363 −0.205936 −0.102968 0.994685i \(-0.532834\pi\)
−0.102968 + 0.994685i \(0.532834\pi\)
\(620\) 20.5948 0.827106
\(621\) 0 0
\(622\) 46.7494 1.87448
\(623\) −34.9988 −1.40220
\(624\) 6.18380 0.247550
\(625\) 1.00000 0.0400000
\(626\) 44.8773 1.79366
\(627\) 20.8004 0.830689
\(628\) −3.33301 −0.133001
\(629\) −24.3806 −0.972116
\(630\) −8.53551 −0.340063
\(631\) −25.6571 −1.02139 −0.510697 0.859761i \(-0.670612\pi\)
−0.510697 + 0.859761i \(0.670612\pi\)
\(632\) −46.6966 −1.85749
\(633\) −3.02940 −0.120408
\(634\) −24.9081 −0.989228
\(635\) 11.6887 0.463850
\(636\) 44.7934 1.77618
\(637\) −17.2088 −0.681837
\(638\) −9.93113 −0.393177
\(639\) 13.3823 0.529396
\(640\) −20.7178 −0.818945
\(641\) 14.1150 0.557509 0.278754 0.960362i \(-0.410078\pi\)
0.278754 + 0.960362i \(0.410078\pi\)
\(642\) 27.2488 1.07542
\(643\) 50.0605 1.97420 0.987098 0.160120i \(-0.0511880\pi\)
0.987098 + 0.160120i \(0.0511880\pi\)
\(644\) 0 0
\(645\) −3.19321 −0.125733
\(646\) −60.1196 −2.36537
\(647\) 22.4669 0.883265 0.441632 0.897196i \(-0.354400\pi\)
0.441632 + 0.897196i \(0.354400\pi\)
\(648\) −3.96455 −0.155742
\(649\) 25.3114 0.993559
\(650\) 6.99097 0.274208
\(651\) −20.1474 −0.789638
\(652\) −67.5522 −2.64555
\(653\) 8.53473 0.333990 0.166995 0.985958i \(-0.446594\pi\)
0.166995 + 0.985958i \(0.446594\pi\)
\(654\) −1.93091 −0.0755047
\(655\) −11.2344 −0.438963
\(656\) −5.58263 −0.217965
\(657\) −5.72287 −0.223270
\(658\) 44.8000 1.74648
\(659\) −22.9183 −0.892772 −0.446386 0.894841i \(-0.647289\pi\)
−0.446386 + 0.894841i \(0.647289\pi\)
\(660\) −13.3189 −0.518438
\(661\) 37.0411 1.44073 0.720365 0.693595i \(-0.243974\pi\)
0.720365 + 0.693595i \(0.243974\pi\)
\(662\) 49.2989 1.91606
\(663\) 12.9586 0.503272
\(664\) −63.0865 −2.44823
\(665\) 20.5284 0.796056
\(666\) 13.1529 0.509665
\(667\) 0 0
\(668\) 13.1145 0.507414
\(669\) −22.6453 −0.875519
\(670\) −23.0549 −0.890687
\(671\) −44.6603 −1.72409
\(672\) 10.4626 0.403603
\(673\) −4.38512 −0.169034 −0.0845169 0.996422i \(-0.526935\pi\)
−0.0845169 + 0.996422i \(0.526935\pi\)
\(674\) 26.5555 1.02288
\(675\) −1.00000 −0.0384900
\(676\) −16.0319 −0.616613
\(677\) 32.6379 1.25438 0.627188 0.778868i \(-0.284206\pi\)
0.627188 + 0.778868i \(0.284206\pi\)
\(678\) −42.8511 −1.64569
\(679\) −14.5844 −0.559698
\(680\) 17.4920 0.670787
\(681\) −16.5074 −0.632563
\(682\) −48.5913 −1.86066
\(683\) 43.4624 1.66304 0.831522 0.555493i \(-0.187470\pi\)
0.831522 + 0.555493i \(0.187470\pi\)
\(684\) 20.9842 0.802353
\(685\) −2.53113 −0.0967093
\(686\) −9.73759 −0.371783
\(687\) 12.5550 0.479005
\(688\) −6.72308 −0.256315
\(689\) 35.8908 1.36733
\(690\) 0 0
\(691\) −8.02389 −0.305243 −0.152622 0.988285i \(-0.548772\pi\)
−0.152622 + 0.988285i \(0.548772\pi\)
\(692\) 52.8140 2.00769
\(693\) 13.0296 0.494953
\(694\) −6.46557 −0.245430
\(695\) 1.91330 0.0725756
\(696\) −4.55246 −0.172561
\(697\) −11.6988 −0.443125
\(698\) −24.5619 −0.929681
\(699\) −11.4665 −0.433702
\(700\) −13.1447 −0.496824
\(701\) −12.6846 −0.479092 −0.239546 0.970885i \(-0.576999\pi\)
−0.239546 + 0.970885i \(0.576999\pi\)
\(702\) −6.99097 −0.263857
\(703\) −31.6335 −1.19308
\(704\) 40.5337 1.52767
\(705\) 5.24866 0.197676
\(706\) 60.9423 2.29360
\(707\) −29.5746 −1.11227
\(708\) 25.5351 0.959667
\(709\) −2.31097 −0.0867901 −0.0433951 0.999058i \(-0.513817\pi\)
−0.0433951 + 0.999058i \(0.513817\pi\)
\(710\) 31.8533 1.19543
\(711\) 11.7785 0.441729
\(712\) −38.6938 −1.45011
\(713\) 0 0
\(714\) −37.6595 −1.40937
\(715\) −10.6718 −0.399103
\(716\) 54.9724 2.05442
\(717\) 24.4642 0.913634
\(718\) −84.2554 −3.14439
\(719\) −30.3933 −1.13348 −0.566740 0.823897i \(-0.691796\pi\)
−0.566740 + 0.823897i \(0.691796\pi\)
\(720\) −2.10543 −0.0784648
\(721\) 6.24566 0.232600
\(722\) −32.7797 −1.21993
\(723\) 8.74326 0.325166
\(724\) 73.2174 2.72110
\(725\) −1.14829 −0.0426465
\(726\) 5.24190 0.194545
\(727\) −53.0907 −1.96903 −0.984513 0.175310i \(-0.943907\pi\)
−0.984513 + 0.175310i \(0.943907\pi\)
\(728\) −41.7556 −1.54757
\(729\) 1.00000 0.0370370
\(730\) −13.6219 −0.504168
\(731\) −14.0888 −0.521091
\(732\) −45.0550 −1.66528
\(733\) −7.32557 −0.270576 −0.135288 0.990806i \(-0.543196\pi\)
−0.135288 + 0.990806i \(0.543196\pi\)
\(734\) −48.9411 −1.80645
\(735\) 5.85917 0.216119
\(736\) 0 0
\(737\) 35.1936 1.29637
\(738\) 6.31133 0.232323
\(739\) −23.0475 −0.847815 −0.423907 0.905705i \(-0.639342\pi\)
−0.423907 + 0.905705i \(0.639342\pi\)
\(740\) 20.2555 0.744608
\(741\) 16.8137 0.617666
\(742\) −104.303 −3.82910
\(743\) 24.1990 0.887775 0.443888 0.896082i \(-0.353599\pi\)
0.443888 + 0.896082i \(0.353599\pi\)
\(744\) −22.2744 −0.816619
\(745\) −15.6701 −0.574107
\(746\) −65.0328 −2.38102
\(747\) 15.9126 0.582213
\(748\) −58.7644 −2.14864
\(749\) −41.0517 −1.49999
\(750\) −2.38025 −0.0869145
\(751\) −17.2941 −0.631070 −0.315535 0.948914i \(-0.602184\pi\)
−0.315535 + 0.948914i \(0.602184\pi\)
\(752\) 11.0507 0.402977
\(753\) 7.66078 0.279174
\(754\) −8.02767 −0.292350
\(755\) −16.5747 −0.603216
\(756\) 13.1447 0.478069
\(757\) 35.8735 1.30384 0.651922 0.758286i \(-0.273963\pi\)
0.651922 + 0.758286i \(0.273963\pi\)
\(758\) −53.9569 −1.95980
\(759\) 0 0
\(760\) 22.6956 0.823257
\(761\) −2.82917 −0.102557 −0.0512786 0.998684i \(-0.516330\pi\)
−0.0512786 + 0.998684i \(0.516330\pi\)
\(762\) −27.8220 −1.00788
\(763\) 2.90902 0.105313
\(764\) 47.7846 1.72879
\(765\) −4.41210 −0.159520
\(766\) 66.1984 2.39185
\(767\) 20.4600 0.738769
\(768\) 27.0025 0.974369
\(769\) −43.6469 −1.57395 −0.786974 0.616986i \(-0.788353\pi\)
−0.786974 + 0.616986i \(0.788353\pi\)
\(770\) 31.0137 1.11766
\(771\) −11.0444 −0.397754
\(772\) −65.5098 −2.35775
\(773\) −5.95708 −0.214261 −0.107131 0.994245i \(-0.534166\pi\)
−0.107131 + 0.994245i \(0.534166\pi\)
\(774\) 7.60065 0.273200
\(775\) −5.61839 −0.201819
\(776\) −16.1241 −0.578822
\(777\) −19.8155 −0.710877
\(778\) −18.8049 −0.674187
\(779\) −15.1791 −0.543848
\(780\) −10.7661 −0.385489
\(781\) −48.6245 −1.73992
\(782\) 0 0
\(783\) 1.14829 0.0410366
\(784\) 12.3361 0.440574
\(785\) 0.909266 0.0324531
\(786\) 26.7406 0.953806
\(787\) −0.336463 −0.0119936 −0.00599680 0.999982i \(-0.501909\pi\)
−0.00599680 + 0.999982i \(0.501909\pi\)
\(788\) −22.7751 −0.811329
\(789\) 2.93105 0.104348
\(790\) 28.0359 0.997471
\(791\) 64.5573 2.29539
\(792\) 14.4052 0.511865
\(793\) −36.1004 −1.28196
\(794\) −43.8164 −1.55498
\(795\) −12.2199 −0.433397
\(796\) 54.3677 1.92701
\(797\) 17.7832 0.629914 0.314957 0.949106i \(-0.398010\pi\)
0.314957 + 0.949106i \(0.398010\pi\)
\(798\) −48.8627 −1.72972
\(799\) 23.1576 0.819256
\(800\) 2.91765 0.103154
\(801\) 9.75994 0.344850
\(802\) 21.3614 0.754298
\(803\) 20.7940 0.733803
\(804\) 35.5046 1.25215
\(805\) 0 0
\(806\) −39.2780 −1.38351
\(807\) −15.4122 −0.542536
\(808\) −32.6969 −1.15027
\(809\) 1.66209 0.0584361 0.0292180 0.999573i \(-0.490698\pi\)
0.0292180 + 0.999573i \(0.490698\pi\)
\(810\) 2.38025 0.0836335
\(811\) 29.4020 1.03244 0.516222 0.856455i \(-0.327338\pi\)
0.516222 + 0.856455i \(0.327338\pi\)
\(812\) 15.0940 0.529695
\(813\) 30.0420 1.05362
\(814\) −47.7909 −1.67507
\(815\) 18.4287 0.645529
\(816\) −9.28936 −0.325193
\(817\) −18.2800 −0.639536
\(818\) −27.6434 −0.966530
\(819\) 10.5322 0.368026
\(820\) 9.71949 0.339419
\(821\) −21.3203 −0.744085 −0.372042 0.928216i \(-0.621342\pi\)
−0.372042 + 0.928216i \(0.621342\pi\)
\(822\) 6.02472 0.210136
\(823\) 45.7702 1.59545 0.797725 0.603022i \(-0.206037\pi\)
0.797725 + 0.603022i \(0.206037\pi\)
\(824\) 6.90504 0.240548
\(825\) 3.63349 0.126502
\(826\) −59.4595 −2.06886
\(827\) −22.9208 −0.797036 −0.398518 0.917161i \(-0.630475\pi\)
−0.398518 + 0.917161i \(0.630475\pi\)
\(828\) 0 0
\(829\) 41.1449 1.42902 0.714512 0.699624i \(-0.246649\pi\)
0.714512 + 0.699624i \(0.246649\pi\)
\(830\) 37.8761 1.31470
\(831\) 30.8208 1.06916
\(832\) 32.7648 1.13591
\(833\) 25.8512 0.895691
\(834\) −4.55414 −0.157697
\(835\) −3.57771 −0.123812
\(836\) −76.2460 −2.63702
\(837\) 5.61839 0.194200
\(838\) 28.4793 0.983801
\(839\) 32.6345 1.12667 0.563334 0.826229i \(-0.309518\pi\)
0.563334 + 0.826229i \(0.309518\pi\)
\(840\) 14.2168 0.490525
\(841\) −27.6814 −0.954532
\(842\) 59.0307 2.03433
\(843\) 15.5785 0.536552
\(844\) 11.1046 0.382236
\(845\) 4.37361 0.150457
\(846\) −12.4931 −0.429523
\(847\) −7.89718 −0.271350
\(848\) −25.7282 −0.883511
\(849\) −28.0832 −0.963813
\(850\) −10.5019 −0.360212
\(851\) 0 0
\(852\) −49.0542 −1.68057
\(853\) −38.9675 −1.33422 −0.667111 0.744958i \(-0.732470\pi\)
−0.667111 + 0.744958i \(0.732470\pi\)
\(854\) 104.913 3.59003
\(855\) −5.72464 −0.195779
\(856\) −45.3856 −1.55125
\(857\) −50.4424 −1.72308 −0.861539 0.507692i \(-0.830499\pi\)
−0.861539 + 0.507692i \(0.830499\pi\)
\(858\) 25.4016 0.867197
\(859\) −39.2113 −1.33787 −0.668937 0.743319i \(-0.733250\pi\)
−0.668937 + 0.743319i \(0.733250\pi\)
\(860\) 11.7050 0.399138
\(861\) −9.50834 −0.324043
\(862\) −5.09551 −0.173554
\(863\) −44.4673 −1.51369 −0.756843 0.653597i \(-0.773259\pi\)
−0.756843 + 0.653597i \(0.773259\pi\)
\(864\) −2.91765 −0.0992604
\(865\) −14.4080 −0.489887
\(866\) −12.5930 −0.427928
\(867\) −2.46659 −0.0837699
\(868\) 73.8522 2.50671
\(869\) −42.7971 −1.45179
\(870\) 2.73322 0.0926649
\(871\) 28.4482 0.963929
\(872\) 3.21613 0.108912
\(873\) 4.06707 0.137650
\(874\) 0 0
\(875\) 3.58597 0.121228
\(876\) 20.9777 0.708772
\(877\) −50.3971 −1.70179 −0.850895 0.525336i \(-0.823940\pi\)
−0.850895 + 0.525336i \(0.823940\pi\)
\(878\) 69.6990 2.35223
\(879\) −19.3355 −0.652171
\(880\) 7.65006 0.257883
\(881\) 13.6569 0.460112 0.230056 0.973177i \(-0.426109\pi\)
0.230056 + 0.973177i \(0.426109\pi\)
\(882\) −13.9463 −0.469596
\(883\) −36.2215 −1.21895 −0.609475 0.792806i \(-0.708620\pi\)
−0.609475 + 0.792806i \(0.708620\pi\)
\(884\) −47.5012 −1.59764
\(885\) −6.96614 −0.234164
\(886\) 15.3883 0.516979
\(887\) 4.84300 0.162612 0.0813060 0.996689i \(-0.474091\pi\)
0.0813060 + 0.996689i \(0.474091\pi\)
\(888\) −21.9075 −0.735167
\(889\) 41.9152 1.40579
\(890\) 23.2311 0.778709
\(891\) −3.63349 −0.121726
\(892\) 83.0087 2.77934
\(893\) 30.0467 1.00547
\(894\) 37.2987 1.24746
\(895\) −14.9968 −0.501289
\(896\) −74.2935 −2.48197
\(897\) 0 0
\(898\) 71.9009 2.39936
\(899\) 6.45155 0.215171
\(900\) 3.66560 0.122187
\(901\) −53.9156 −1.79619
\(902\) −22.9322 −0.763557
\(903\) −11.4508 −0.381057
\(904\) 71.3728 2.37383
\(905\) −19.9742 −0.663965
\(906\) 39.4520 1.31071
\(907\) 49.3404 1.63832 0.819161 0.573563i \(-0.194439\pi\)
0.819161 + 0.573563i \(0.194439\pi\)
\(908\) 60.5094 2.00807
\(909\) 8.24732 0.273546
\(910\) 25.0694 0.831042
\(911\) 10.3345 0.342398 0.171199 0.985236i \(-0.445236\pi\)
0.171199 + 0.985236i \(0.445236\pi\)
\(912\) −12.0528 −0.399109
\(913\) −57.8184 −1.91351
\(914\) 38.8304 1.28439
\(915\) 12.2913 0.406338
\(916\) −46.0218 −1.52060
\(917\) −40.2860 −1.33036
\(918\) 10.5019 0.346614
\(919\) −12.2091 −0.402739 −0.201370 0.979515i \(-0.564539\pi\)
−0.201370 + 0.979515i \(0.564539\pi\)
\(920\) 0 0
\(921\) −16.2209 −0.534496
\(922\) 69.7130 2.29588
\(923\) −39.3048 −1.29373
\(924\) −47.7612 −1.57123
\(925\) −5.52584 −0.181689
\(926\) −42.4305 −1.39435
\(927\) −1.74169 −0.0572047
\(928\) −3.35031 −0.109979
\(929\) −5.26773 −0.172829 −0.0864144 0.996259i \(-0.527541\pi\)
−0.0864144 + 0.996259i \(0.527541\pi\)
\(930\) 13.3732 0.438524
\(931\) 33.5416 1.09928
\(932\) 42.0315 1.37679
\(933\) 19.6405 0.643002
\(934\) −7.96290 −0.260554
\(935\) 16.0313 0.524280
\(936\) 11.6442 0.380602
\(937\) −0.358566 −0.0117138 −0.00585692 0.999983i \(-0.501864\pi\)
−0.00585692 + 0.999983i \(0.501864\pi\)
\(938\) −82.6740 −2.69940
\(939\) 18.8540 0.615278
\(940\) −19.2395 −0.627523
\(941\) −49.3538 −1.60889 −0.804444 0.594029i \(-0.797537\pi\)
−0.804444 + 0.594029i \(0.797537\pi\)
\(942\) −2.16428 −0.0705161
\(943\) 0 0
\(944\) −14.6667 −0.477361
\(945\) −3.58597 −0.116652
\(946\) −27.6169 −0.897902
\(947\) −14.2553 −0.463234 −0.231617 0.972807i \(-0.574402\pi\)
−0.231617 + 0.972807i \(0.574402\pi\)
\(948\) −43.1754 −1.40227
\(949\) 16.8085 0.545626
\(950\) −13.6261 −0.442089
\(951\) −10.4645 −0.339334
\(952\) 62.7257 2.03295
\(953\) −26.9773 −0.873882 −0.436941 0.899490i \(-0.643938\pi\)
−0.436941 + 0.899490i \(0.643938\pi\)
\(954\) 29.0865 0.941712
\(955\) −13.0360 −0.421834
\(956\) −89.6762 −2.90033
\(957\) −4.17230 −0.134871
\(958\) 18.5168 0.598249
\(959\) −9.07654 −0.293097
\(960\) −11.1556 −0.360045
\(961\) 0.566312 0.0182681
\(962\) −38.6310 −1.24551
\(963\) 11.4479 0.368902
\(964\) −32.0493 −1.03224
\(965\) 17.8715 0.575304
\(966\) 0 0
\(967\) −13.7176 −0.441129 −0.220564 0.975372i \(-0.570790\pi\)
−0.220564 + 0.975372i \(0.570790\pi\)
\(968\) −8.73091 −0.280622
\(969\) −25.2577 −0.811393
\(970\) 9.68066 0.310827
\(971\) −2.66371 −0.0854826 −0.0427413 0.999086i \(-0.513609\pi\)
−0.0427413 + 0.999086i \(0.513609\pi\)
\(972\) −3.66560 −0.117574
\(973\) 6.86103 0.219955
\(974\) −34.8816 −1.11768
\(975\) 2.93707 0.0940615
\(976\) 25.8785 0.828350
\(977\) −26.8051 −0.857570 −0.428785 0.903406i \(-0.641058\pi\)
−0.428785 + 0.903406i \(0.641058\pi\)
\(978\) −43.8649 −1.40265
\(979\) −35.4626 −1.13339
\(980\) −21.4774 −0.686069
\(981\) −0.811222 −0.0259003
\(982\) −45.5416 −1.45329
\(983\) 37.7012 1.20248 0.601240 0.799068i \(-0.294673\pi\)
0.601240 + 0.799068i \(0.294673\pi\)
\(984\) −10.5122 −0.335116
\(985\) 6.21319 0.197969
\(986\) 12.0592 0.384044
\(987\) 18.8215 0.599096
\(988\) −61.6322 −1.96078
\(989\) 0 0
\(990\) −8.64862 −0.274871
\(991\) 42.5042 1.35019 0.675095 0.737731i \(-0.264103\pi\)
0.675095 + 0.737731i \(0.264103\pi\)
\(992\) −16.3925 −0.520462
\(993\) 20.7116 0.657264
\(994\) 114.225 3.62299
\(995\) −14.8319 −0.470201
\(996\) −58.3294 −1.84824
\(997\) 24.4453 0.774190 0.387095 0.922040i \(-0.373479\pi\)
0.387095 + 0.922040i \(0.373479\pi\)
\(998\) −31.5840 −0.999773
\(999\) 5.52584 0.174830
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bp.1.2 15
23.9 even 11 345.2.m.a.196.1 30
23.18 even 11 345.2.m.a.301.1 yes 30
23.22 odd 2 7935.2.a.bq.1.2 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
345.2.m.a.196.1 30 23.9 even 11
345.2.m.a.301.1 yes 30 23.18 even 11
7935.2.a.bp.1.2 15 1.1 even 1 trivial
7935.2.a.bq.1.2 15 23.22 odd 2