Properties

Label 7935.2.a.bl.1.6
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,12,8,-12,0,4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 16x^{10} + 92x^{8} - 4x^{7} - 234x^{6} + 32x^{5} + 252x^{4} - 68x^{3} - 76x^{2} + 32x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(0.0774485\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.0774485 q^{2} +1.00000 q^{3} -1.99400 q^{4} -1.00000 q^{5} +0.0774485 q^{6} +3.48186 q^{7} -0.309330 q^{8} +1.00000 q^{9} -0.0774485 q^{10} +0.122543 q^{11} -1.99400 q^{12} -0.150161 q^{13} +0.269665 q^{14} -1.00000 q^{15} +3.96405 q^{16} +2.68990 q^{17} +0.0774485 q^{18} -3.20531 q^{19} +1.99400 q^{20} +3.48186 q^{21} +0.00949077 q^{22} -0.309330 q^{24} +1.00000 q^{25} -0.0116298 q^{26} +1.00000 q^{27} -6.94284 q^{28} -0.318838 q^{29} -0.0774485 q^{30} +4.15015 q^{31} +0.925669 q^{32} +0.122543 q^{33} +0.208329 q^{34} -3.48186 q^{35} -1.99400 q^{36} -2.32524 q^{37} -0.248246 q^{38} -0.150161 q^{39} +0.309330 q^{40} +0.522379 q^{41} +0.269665 q^{42} +3.64461 q^{43} -0.244351 q^{44} -1.00000 q^{45} +2.89806 q^{47} +3.96405 q^{48} +5.12336 q^{49} +0.0774485 q^{50} +2.68990 q^{51} +0.299422 q^{52} +13.5930 q^{53} +0.0774485 q^{54} -0.122543 q^{55} -1.07704 q^{56} -3.20531 q^{57} -0.0246935 q^{58} -11.7230 q^{59} +1.99400 q^{60} -1.19839 q^{61} +0.321423 q^{62} +3.48186 q^{63} -7.85640 q^{64} +0.150161 q^{65} +0.00949077 q^{66} -14.3576 q^{67} -5.36366 q^{68} -0.269665 q^{70} +10.7769 q^{71} -0.309330 q^{72} +7.64963 q^{73} -0.180086 q^{74} +1.00000 q^{75} +6.39139 q^{76} +0.426677 q^{77} -0.0116298 q^{78} +13.8162 q^{79} -3.96405 q^{80} +1.00000 q^{81} +0.0404575 q^{82} +0.151610 q^{83} -6.94284 q^{84} -2.68990 q^{85} +0.282269 q^{86} -0.318838 q^{87} -0.0379061 q^{88} -3.87082 q^{89} -0.0774485 q^{90} -0.522841 q^{91} +4.15015 q^{93} +0.224451 q^{94} +3.20531 q^{95} +0.925669 q^{96} -15.7821 q^{97} +0.396797 q^{98} +0.122543 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 12 q^{3} + 8 q^{4} - 12 q^{5} + 4 q^{7} + 12 q^{9} + 24 q^{11} + 8 q^{12} - 8 q^{13} + 16 q^{14} - 12 q^{15} + 28 q^{17} + 16 q^{19} - 8 q^{20} + 4 q^{21} + 12 q^{25} - 36 q^{26} + 12 q^{27} + 8 q^{28}+ \cdots + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0774485 0.0547644 0.0273822 0.999625i \(-0.491283\pi\)
0.0273822 + 0.999625i \(0.491283\pi\)
\(3\) 1.00000 0.577350
\(4\) −1.99400 −0.997001
\(5\) −1.00000 −0.447214
\(6\) 0.0774485 0.0316182
\(7\) 3.48186 1.31602 0.658010 0.753009i \(-0.271398\pi\)
0.658010 + 0.753009i \(0.271398\pi\)
\(8\) −0.309330 −0.109365
\(9\) 1.00000 0.333333
\(10\) −0.0774485 −0.0244914
\(11\) 0.122543 0.0369481 0.0184740 0.999829i \(-0.494119\pi\)
0.0184740 + 0.999829i \(0.494119\pi\)
\(12\) −1.99400 −0.575619
\(13\) −0.150161 −0.0416472 −0.0208236 0.999783i \(-0.506629\pi\)
−0.0208236 + 0.999783i \(0.506629\pi\)
\(14\) 0.269665 0.0720710
\(15\) −1.00000 −0.258199
\(16\) 3.96405 0.991012
\(17\) 2.68990 0.652396 0.326198 0.945302i \(-0.394232\pi\)
0.326198 + 0.945302i \(0.394232\pi\)
\(18\) 0.0774485 0.0182548
\(19\) −3.20531 −0.735348 −0.367674 0.929955i \(-0.619846\pi\)
−0.367674 + 0.929955i \(0.619846\pi\)
\(20\) 1.99400 0.445872
\(21\) 3.48186 0.759804
\(22\) 0.00949077 0.00202344
\(23\) 0 0
\(24\) −0.309330 −0.0631416
\(25\) 1.00000 0.200000
\(26\) −0.0116298 −0.00228079
\(27\) 1.00000 0.192450
\(28\) −6.94284 −1.31207
\(29\) −0.318838 −0.0592067 −0.0296033 0.999562i \(-0.509424\pi\)
−0.0296033 + 0.999562i \(0.509424\pi\)
\(30\) −0.0774485 −0.0141401
\(31\) 4.15015 0.745390 0.372695 0.927954i \(-0.378434\pi\)
0.372695 + 0.927954i \(0.378434\pi\)
\(32\) 0.925669 0.163637
\(33\) 0.122543 0.0213320
\(34\) 0.208329 0.0357280
\(35\) −3.48186 −0.588542
\(36\) −1.99400 −0.332334
\(37\) −2.32524 −0.382266 −0.191133 0.981564i \(-0.561216\pi\)
−0.191133 + 0.981564i \(0.561216\pi\)
\(38\) −0.248246 −0.0402709
\(39\) −0.150161 −0.0240450
\(40\) 0.309330 0.0489093
\(41\) 0.522379 0.0815819 0.0407910 0.999168i \(-0.487012\pi\)
0.0407910 + 0.999168i \(0.487012\pi\)
\(42\) 0.269665 0.0416102
\(43\) 3.64461 0.555797 0.277899 0.960610i \(-0.410362\pi\)
0.277899 + 0.960610i \(0.410362\pi\)
\(44\) −0.244351 −0.0368373
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 2.89806 0.422726 0.211363 0.977408i \(-0.432210\pi\)
0.211363 + 0.977408i \(0.432210\pi\)
\(48\) 3.96405 0.572161
\(49\) 5.12336 0.731908
\(50\) 0.0774485 0.0109529
\(51\) 2.68990 0.376661
\(52\) 0.299422 0.0415223
\(53\) 13.5930 1.86714 0.933569 0.358397i \(-0.116677\pi\)
0.933569 + 0.358397i \(0.116677\pi\)
\(54\) 0.0774485 0.0105394
\(55\) −0.122543 −0.0165237
\(56\) −1.07704 −0.143926
\(57\) −3.20531 −0.424553
\(58\) −0.0246935 −0.00324242
\(59\) −11.7230 −1.52620 −0.763102 0.646278i \(-0.776325\pi\)
−0.763102 + 0.646278i \(0.776325\pi\)
\(60\) 1.99400 0.257425
\(61\) −1.19839 −0.153439 −0.0767194 0.997053i \(-0.524445\pi\)
−0.0767194 + 0.997053i \(0.524445\pi\)
\(62\) 0.321423 0.0408208
\(63\) 3.48186 0.438673
\(64\) −7.85640 −0.982050
\(65\) 0.150161 0.0186252
\(66\) 0.00949077 0.00116823
\(67\) −14.3576 −1.75406 −0.877028 0.480440i \(-0.840477\pi\)
−0.877028 + 0.480440i \(0.840477\pi\)
\(68\) −5.36366 −0.650439
\(69\) 0 0
\(70\) −0.269665 −0.0322311
\(71\) 10.7769 1.27899 0.639494 0.768796i \(-0.279144\pi\)
0.639494 + 0.768796i \(0.279144\pi\)
\(72\) −0.309330 −0.0364548
\(73\) 7.64963 0.895321 0.447661 0.894204i \(-0.352257\pi\)
0.447661 + 0.894204i \(0.352257\pi\)
\(74\) −0.180086 −0.0209346
\(75\) 1.00000 0.115470
\(76\) 6.39139 0.733142
\(77\) 0.426677 0.0486244
\(78\) −0.0116298 −0.00131681
\(79\) 13.8162 1.55445 0.777224 0.629224i \(-0.216627\pi\)
0.777224 + 0.629224i \(0.216627\pi\)
\(80\) −3.96405 −0.443194
\(81\) 1.00000 0.111111
\(82\) 0.0404575 0.00446779
\(83\) 0.151610 0.0166414 0.00832070 0.999965i \(-0.497351\pi\)
0.00832070 + 0.999965i \(0.497351\pi\)
\(84\) −6.94284 −0.757526
\(85\) −2.68990 −0.291760
\(86\) 0.282269 0.0304379
\(87\) −0.318838 −0.0341830
\(88\) −0.0379061 −0.00404081
\(89\) −3.87082 −0.410306 −0.205153 0.978730i \(-0.565769\pi\)
−0.205153 + 0.978730i \(0.565769\pi\)
\(90\) −0.0774485 −0.00816379
\(91\) −0.522841 −0.0548086
\(92\) 0 0
\(93\) 4.15015 0.430351
\(94\) 0.224451 0.0231503
\(95\) 3.20531 0.328857
\(96\) 0.925669 0.0944757
\(97\) −15.7821 −1.60242 −0.801212 0.598380i \(-0.795811\pi\)
−0.801212 + 0.598380i \(0.795811\pi\)
\(98\) 0.396797 0.0400825
\(99\) 0.122543 0.0123160
\(100\) −1.99400 −0.199400
\(101\) 7.08225 0.704711 0.352355 0.935866i \(-0.385381\pi\)
0.352355 + 0.935866i \(0.385381\pi\)
\(102\) 0.208329 0.0206276
\(103\) 11.7909 1.16179 0.580895 0.813979i \(-0.302703\pi\)
0.580895 + 0.813979i \(0.302703\pi\)
\(104\) 0.0464493 0.00455473
\(105\) −3.48186 −0.339795
\(106\) 1.05276 0.102253
\(107\) −11.3579 −1.09801 −0.549006 0.835819i \(-0.684993\pi\)
−0.549006 + 0.835819i \(0.684993\pi\)
\(108\) −1.99400 −0.191873
\(109\) 10.2209 0.978985 0.489493 0.872007i \(-0.337182\pi\)
0.489493 + 0.872007i \(0.337182\pi\)
\(110\) −0.00949077 −0.000904909 0
\(111\) −2.32524 −0.220702
\(112\) 13.8023 1.30419
\(113\) 16.0018 1.50533 0.752663 0.658406i \(-0.228769\pi\)
0.752663 + 0.658406i \(0.228769\pi\)
\(114\) −0.248246 −0.0232504
\(115\) 0 0
\(116\) 0.635763 0.0590291
\(117\) −0.150161 −0.0138824
\(118\) −0.907929 −0.0835817
\(119\) 9.36584 0.858565
\(120\) 0.309330 0.0282378
\(121\) −10.9850 −0.998635
\(122\) −0.0928139 −0.00840298
\(123\) 0.522379 0.0471014
\(124\) −8.27541 −0.743154
\(125\) −1.00000 −0.0894427
\(126\) 0.269665 0.0240237
\(127\) −7.35560 −0.652704 −0.326352 0.945248i \(-0.605819\pi\)
−0.326352 + 0.945248i \(0.605819\pi\)
\(128\) −2.45980 −0.217418
\(129\) 3.64461 0.320890
\(130\) 0.0116298 0.00102000
\(131\) −20.5745 −1.79760 −0.898799 0.438361i \(-0.855559\pi\)
−0.898799 + 0.438361i \(0.855559\pi\)
\(132\) −0.244351 −0.0212680
\(133\) −11.1604 −0.967732
\(134\) −1.11197 −0.0960598
\(135\) −1.00000 −0.0860663
\(136\) −0.832064 −0.0713489
\(137\) −0.790270 −0.0675173 −0.0337587 0.999430i \(-0.510748\pi\)
−0.0337587 + 0.999430i \(0.510748\pi\)
\(138\) 0 0
\(139\) −6.81148 −0.577742 −0.288871 0.957368i \(-0.593280\pi\)
−0.288871 + 0.957368i \(0.593280\pi\)
\(140\) 6.94284 0.586777
\(141\) 2.89806 0.244061
\(142\) 0.834658 0.0700430
\(143\) −0.0184012 −0.00153878
\(144\) 3.96405 0.330337
\(145\) 0.318838 0.0264780
\(146\) 0.592452 0.0490317
\(147\) 5.12336 0.422567
\(148\) 4.63652 0.381120
\(149\) 18.0464 1.47842 0.739209 0.673476i \(-0.235200\pi\)
0.739209 + 0.673476i \(0.235200\pi\)
\(150\) 0.0774485 0.00632365
\(151\) −2.88270 −0.234591 −0.117296 0.993097i \(-0.537422\pi\)
−0.117296 + 0.993097i \(0.537422\pi\)
\(152\) 0.991496 0.0804210
\(153\) 2.68990 0.217465
\(154\) 0.0330455 0.00266289
\(155\) −4.15015 −0.333348
\(156\) 0.299422 0.0239729
\(157\) −2.58166 −0.206039 −0.103019 0.994679i \(-0.532850\pi\)
−0.103019 + 0.994679i \(0.532850\pi\)
\(158\) 1.07005 0.0851284
\(159\) 13.5930 1.07799
\(160\) −0.925669 −0.0731806
\(161\) 0 0
\(162\) 0.0774485 0.00608493
\(163\) −2.37638 −0.186132 −0.0930662 0.995660i \(-0.529667\pi\)
−0.0930662 + 0.995660i \(0.529667\pi\)
\(164\) −1.04163 −0.0813373
\(165\) −0.122543 −0.00953995
\(166\) 0.0117420 0.000911356 0
\(167\) 11.1767 0.864882 0.432441 0.901662i \(-0.357652\pi\)
0.432441 + 0.901662i \(0.357652\pi\)
\(168\) −1.07704 −0.0830957
\(169\) −12.9775 −0.998266
\(170\) −0.208329 −0.0159781
\(171\) −3.20531 −0.245116
\(172\) −7.26735 −0.554130
\(173\) 16.4682 1.25206 0.626028 0.779800i \(-0.284679\pi\)
0.626028 + 0.779800i \(0.284679\pi\)
\(174\) −0.0246935 −0.00187201
\(175\) 3.48186 0.263204
\(176\) 0.485766 0.0366160
\(177\) −11.7230 −0.881155
\(178\) −0.299789 −0.0224701
\(179\) −6.83739 −0.511051 −0.255525 0.966802i \(-0.582248\pi\)
−0.255525 + 0.966802i \(0.582248\pi\)
\(180\) 1.99400 0.148624
\(181\) 10.3514 0.769416 0.384708 0.923038i \(-0.374302\pi\)
0.384708 + 0.923038i \(0.374302\pi\)
\(182\) −0.0404932 −0.00300156
\(183\) −1.19839 −0.0885879
\(184\) 0 0
\(185\) 2.32524 0.170955
\(186\) 0.321423 0.0235679
\(187\) 0.329628 0.0241048
\(188\) −5.77874 −0.421458
\(189\) 3.48186 0.253268
\(190\) 0.248246 0.0180097
\(191\) 13.8067 0.999021 0.499510 0.866308i \(-0.333513\pi\)
0.499510 + 0.866308i \(0.333513\pi\)
\(192\) −7.85640 −0.566987
\(193\) −15.6957 −1.12980 −0.564900 0.825159i \(-0.691085\pi\)
−0.564900 + 0.825159i \(0.691085\pi\)
\(194\) −1.22230 −0.0877558
\(195\) 0.150161 0.0107533
\(196\) −10.2160 −0.729713
\(197\) 11.3169 0.806299 0.403149 0.915134i \(-0.367916\pi\)
0.403149 + 0.915134i \(0.367916\pi\)
\(198\) 0.00949077 0.000674479 0
\(199\) 1.55183 0.110006 0.0550032 0.998486i \(-0.482483\pi\)
0.0550032 + 0.998486i \(0.482483\pi\)
\(200\) −0.309330 −0.0218729
\(201\) −14.3576 −1.01270
\(202\) 0.548510 0.0385930
\(203\) −1.11015 −0.0779172
\(204\) −5.36366 −0.375531
\(205\) −0.522379 −0.0364846
\(206\) 0.913186 0.0636247
\(207\) 0 0
\(208\) −0.595246 −0.0412729
\(209\) −0.392787 −0.0271697
\(210\) −0.269665 −0.0186087
\(211\) 26.1808 1.80236 0.901179 0.433447i \(-0.142703\pi\)
0.901179 + 0.433447i \(0.142703\pi\)
\(212\) −27.1044 −1.86154
\(213\) 10.7769 0.738424
\(214\) −0.879654 −0.0601319
\(215\) −3.64461 −0.248560
\(216\) −0.309330 −0.0210472
\(217\) 14.4503 0.980948
\(218\) 0.791594 0.0536135
\(219\) 7.64963 0.516914
\(220\) 0.244351 0.0164741
\(221\) −0.403918 −0.0271705
\(222\) −0.180086 −0.0120866
\(223\) 12.0509 0.806987 0.403493 0.914983i \(-0.367796\pi\)
0.403493 + 0.914983i \(0.367796\pi\)
\(224\) 3.22305 0.215349
\(225\) 1.00000 0.0666667
\(226\) 1.23932 0.0824383
\(227\) 20.1940 1.34032 0.670160 0.742216i \(-0.266225\pi\)
0.670160 + 0.742216i \(0.266225\pi\)
\(228\) 6.39139 0.423280
\(229\) 18.2714 1.20741 0.603705 0.797208i \(-0.293690\pi\)
0.603705 + 0.797208i \(0.293690\pi\)
\(230\) 0 0
\(231\) 0.426677 0.0280733
\(232\) 0.0986260 0.00647511
\(233\) −7.21642 −0.472763 −0.236382 0.971660i \(-0.575962\pi\)
−0.236382 + 0.971660i \(0.575962\pi\)
\(234\) −0.0116298 −0.000760262 0
\(235\) −2.89806 −0.189049
\(236\) 23.3757 1.52163
\(237\) 13.8162 0.897461
\(238\) 0.725371 0.0470188
\(239\) −22.2588 −1.43980 −0.719901 0.694077i \(-0.755813\pi\)
−0.719901 + 0.694077i \(0.755813\pi\)
\(240\) −3.96405 −0.255878
\(241\) 17.4490 1.12399 0.561995 0.827141i \(-0.310034\pi\)
0.561995 + 0.827141i \(0.310034\pi\)
\(242\) −0.850771 −0.0546896
\(243\) 1.00000 0.0641500
\(244\) 2.38960 0.152979
\(245\) −5.12336 −0.327319
\(246\) 0.0404575 0.00257948
\(247\) 0.481313 0.0306252
\(248\) −1.28377 −0.0815192
\(249\) 0.151610 0.00960792
\(250\) −0.0774485 −0.00489828
\(251\) 26.1264 1.64908 0.824540 0.565803i \(-0.191434\pi\)
0.824540 + 0.565803i \(0.191434\pi\)
\(252\) −6.94284 −0.437358
\(253\) 0 0
\(254\) −0.569681 −0.0357449
\(255\) −2.68990 −0.168448
\(256\) 15.5223 0.970143
\(257\) 23.4736 1.46424 0.732121 0.681175i \(-0.238531\pi\)
0.732121 + 0.681175i \(0.238531\pi\)
\(258\) 0.282269 0.0175733
\(259\) −8.09615 −0.503070
\(260\) −0.299422 −0.0185693
\(261\) −0.318838 −0.0197356
\(262\) −1.59346 −0.0984444
\(263\) 10.4261 0.642899 0.321450 0.946927i \(-0.395830\pi\)
0.321450 + 0.946927i \(0.395830\pi\)
\(264\) −0.0379061 −0.00233296
\(265\) −13.5930 −0.835010
\(266\) −0.864359 −0.0529973
\(267\) −3.87082 −0.236890
\(268\) 28.6290 1.74880
\(269\) −2.38704 −0.145541 −0.0727703 0.997349i \(-0.523184\pi\)
−0.0727703 + 0.997349i \(0.523184\pi\)
\(270\) −0.0774485 −0.00471337
\(271\) 6.56615 0.398865 0.199433 0.979912i \(-0.436090\pi\)
0.199433 + 0.979912i \(0.436090\pi\)
\(272\) 10.6629 0.646532
\(273\) −0.522841 −0.0316438
\(274\) −0.0612053 −0.00369755
\(275\) 0.122543 0.00738961
\(276\) 0 0
\(277\) −12.2650 −0.736932 −0.368466 0.929641i \(-0.620117\pi\)
−0.368466 + 0.929641i \(0.620117\pi\)
\(278\) −0.527539 −0.0316397
\(279\) 4.15015 0.248463
\(280\) 1.07704 0.0643656
\(281\) 21.8472 1.30330 0.651648 0.758522i \(-0.274078\pi\)
0.651648 + 0.758522i \(0.274078\pi\)
\(282\) 0.224451 0.0133658
\(283\) −4.29021 −0.255026 −0.127513 0.991837i \(-0.540699\pi\)
−0.127513 + 0.991837i \(0.540699\pi\)
\(284\) −21.4892 −1.27515
\(285\) 3.20531 0.189866
\(286\) −0.00142515 −8.42706e−5 0
\(287\) 1.81885 0.107363
\(288\) 0.925669 0.0545456
\(289\) −9.76446 −0.574380
\(290\) 0.0246935 0.00145005
\(291\) −15.7821 −0.925160
\(292\) −15.2534 −0.892636
\(293\) −21.3164 −1.24532 −0.622659 0.782493i \(-0.713948\pi\)
−0.622659 + 0.782493i \(0.713948\pi\)
\(294\) 0.396797 0.0231417
\(295\) 11.7230 0.682539
\(296\) 0.719264 0.0418064
\(297\) 0.122543 0.00711066
\(298\) 1.39767 0.0809646
\(299\) 0 0
\(300\) −1.99400 −0.115124
\(301\) 12.6900 0.731440
\(302\) −0.223261 −0.0128472
\(303\) 7.08225 0.406865
\(304\) −12.7060 −0.728738
\(305\) 1.19839 0.0686199
\(306\) 0.208329 0.0119093
\(307\) −29.2234 −1.66787 −0.833934 0.551864i \(-0.813917\pi\)
−0.833934 + 0.551864i \(0.813917\pi\)
\(308\) −0.850795 −0.0484786
\(309\) 11.7909 0.670760
\(310\) −0.321423 −0.0182556
\(311\) 18.9974 1.07725 0.538623 0.842547i \(-0.318945\pi\)
0.538623 + 0.842547i \(0.318945\pi\)
\(312\) 0.0464493 0.00262967
\(313\) −0.839035 −0.0474251 −0.0237125 0.999719i \(-0.507549\pi\)
−0.0237125 + 0.999719i \(0.507549\pi\)
\(314\) −0.199946 −0.0112836
\(315\) −3.48186 −0.196181
\(316\) −27.5496 −1.54979
\(317\) 31.5060 1.76956 0.884778 0.466013i \(-0.154310\pi\)
0.884778 + 0.466013i \(0.154310\pi\)
\(318\) 1.05276 0.0590356
\(319\) −0.0390713 −0.00218757
\(320\) 7.85640 0.439186
\(321\) −11.3579 −0.633937
\(322\) 0 0
\(323\) −8.62194 −0.479737
\(324\) −1.99400 −0.110778
\(325\) −0.150161 −0.00832945
\(326\) −0.184047 −0.0101934
\(327\) 10.2209 0.565217
\(328\) −0.161587 −0.00892217
\(329\) 10.0906 0.556315
\(330\) −0.00949077 −0.000522450 0
\(331\) −22.1435 −1.21712 −0.608559 0.793509i \(-0.708252\pi\)
−0.608559 + 0.793509i \(0.708252\pi\)
\(332\) −0.302311 −0.0165915
\(333\) −2.32524 −0.127422
\(334\) 0.865622 0.0473647
\(335\) 14.3576 0.784438
\(336\) 13.8023 0.752975
\(337\) 17.0402 0.928236 0.464118 0.885773i \(-0.346371\pi\)
0.464118 + 0.885773i \(0.346371\pi\)
\(338\) −1.00508 −0.0546694
\(339\) 16.0018 0.869100
\(340\) 5.36366 0.290885
\(341\) 0.508572 0.0275407
\(342\) −0.248246 −0.0134236
\(343\) −6.53421 −0.352814
\(344\) −1.12738 −0.0607845
\(345\) 0 0
\(346\) 1.27544 0.0685681
\(347\) −27.9081 −1.49818 −0.749092 0.662465i \(-0.769510\pi\)
−0.749092 + 0.662465i \(0.769510\pi\)
\(348\) 0.635763 0.0340805
\(349\) 13.0369 0.697850 0.348925 0.937151i \(-0.386547\pi\)
0.348925 + 0.937151i \(0.386547\pi\)
\(350\) 0.269665 0.0144142
\(351\) −0.150161 −0.00801501
\(352\) 0.113434 0.00604606
\(353\) −12.8361 −0.683197 −0.341598 0.939846i \(-0.610968\pi\)
−0.341598 + 0.939846i \(0.610968\pi\)
\(354\) −0.907929 −0.0482559
\(355\) −10.7769 −0.571981
\(356\) 7.71842 0.409075
\(357\) 9.36584 0.495693
\(358\) −0.529546 −0.0279874
\(359\) −11.6388 −0.614275 −0.307137 0.951665i \(-0.599371\pi\)
−0.307137 + 0.951665i \(0.599371\pi\)
\(360\) 0.309330 0.0163031
\(361\) −8.72601 −0.459264
\(362\) 0.801704 0.0421366
\(363\) −10.9850 −0.576562
\(364\) 1.04255 0.0546442
\(365\) −7.64963 −0.400400
\(366\) −0.0928139 −0.00485146
\(367\) 6.39887 0.334018 0.167009 0.985955i \(-0.446589\pi\)
0.167009 + 0.985955i \(0.446589\pi\)
\(368\) 0 0
\(369\) 0.522379 0.0271940
\(370\) 0.180086 0.00936223
\(371\) 47.3288 2.45719
\(372\) −8.27541 −0.429060
\(373\) −11.8683 −0.614517 −0.307259 0.951626i \(-0.599412\pi\)
−0.307259 + 0.951626i \(0.599412\pi\)
\(374\) 0.0255292 0.00132008
\(375\) −1.00000 −0.0516398
\(376\) −0.896456 −0.0462312
\(377\) 0.0478771 0.00246579
\(378\) 0.269665 0.0138701
\(379\) 38.4103 1.97300 0.986502 0.163748i \(-0.0523584\pi\)
0.986502 + 0.163748i \(0.0523584\pi\)
\(380\) −6.39139 −0.327871
\(381\) −7.35560 −0.376839
\(382\) 1.06931 0.0547108
\(383\) −2.27071 −0.116028 −0.0580140 0.998316i \(-0.518477\pi\)
−0.0580140 + 0.998316i \(0.518477\pi\)
\(384\) −2.45980 −0.125526
\(385\) −0.426677 −0.0217455
\(386\) −1.21561 −0.0618728
\(387\) 3.64461 0.185266
\(388\) 31.4694 1.59762
\(389\) −6.36626 −0.322782 −0.161391 0.986891i \(-0.551598\pi\)
−0.161391 + 0.986891i \(0.551598\pi\)
\(390\) 0.0116298 0.000588896 0
\(391\) 0 0
\(392\) −1.58481 −0.0800448
\(393\) −20.5745 −1.03784
\(394\) 0.876481 0.0441565
\(395\) −13.8162 −0.695171
\(396\) −0.244351 −0.0122791
\(397\) −15.6002 −0.782953 −0.391476 0.920188i \(-0.628035\pi\)
−0.391476 + 0.920188i \(0.628035\pi\)
\(398\) 0.120187 0.00602444
\(399\) −11.1604 −0.558720
\(400\) 3.96405 0.198202
\(401\) 25.1565 1.25625 0.628127 0.778111i \(-0.283822\pi\)
0.628127 + 0.778111i \(0.283822\pi\)
\(402\) −1.11197 −0.0554602
\(403\) −0.623192 −0.0310434
\(404\) −14.1220 −0.702597
\(405\) −1.00000 −0.0496904
\(406\) −0.0859794 −0.00426709
\(407\) −0.284941 −0.0141240
\(408\) −0.832064 −0.0411933
\(409\) 23.1444 1.14442 0.572210 0.820107i \(-0.306086\pi\)
0.572210 + 0.820107i \(0.306086\pi\)
\(410\) −0.0404575 −0.00199805
\(411\) −0.790270 −0.0389812
\(412\) −23.5110 −1.15831
\(413\) −40.8179 −2.00852
\(414\) 0 0
\(415\) −0.151610 −0.00744226
\(416\) −0.139000 −0.00681502
\(417\) −6.81148 −0.333560
\(418\) −0.0304208 −0.00148793
\(419\) 12.6640 0.618676 0.309338 0.950952i \(-0.399893\pi\)
0.309338 + 0.950952i \(0.399893\pi\)
\(420\) 6.94284 0.338776
\(421\) 2.60380 0.126901 0.0634506 0.997985i \(-0.479789\pi\)
0.0634506 + 0.997985i \(0.479789\pi\)
\(422\) 2.02766 0.0987050
\(423\) 2.89806 0.140909
\(424\) −4.20471 −0.204199
\(425\) 2.68990 0.130479
\(426\) 0.834658 0.0404393
\(427\) −4.17264 −0.201928
\(428\) 22.6477 1.09472
\(429\) −0.0184012 −0.000888418 0
\(430\) −0.282269 −0.0136122
\(431\) 11.4498 0.551516 0.275758 0.961227i \(-0.411071\pi\)
0.275758 + 0.961227i \(0.411071\pi\)
\(432\) 3.96405 0.190720
\(433\) −0.0910636 −0.00437624 −0.00218812 0.999998i \(-0.500697\pi\)
−0.00218812 + 0.999998i \(0.500697\pi\)
\(434\) 1.11915 0.0537210
\(435\) 0.318838 0.0152871
\(436\) −20.3805 −0.976049
\(437\) 0 0
\(438\) 0.592452 0.0283085
\(439\) 20.8570 0.995452 0.497726 0.867334i \(-0.334169\pi\)
0.497726 + 0.867334i \(0.334169\pi\)
\(440\) 0.0379061 0.00180710
\(441\) 5.12336 0.243969
\(442\) −0.0312829 −0.00148797
\(443\) −8.82141 −0.419118 −0.209559 0.977796i \(-0.567203\pi\)
−0.209559 + 0.977796i \(0.567203\pi\)
\(444\) 4.63652 0.220040
\(445\) 3.87082 0.183494
\(446\) 0.933324 0.0441942
\(447\) 18.0464 0.853565
\(448\) −27.3549 −1.29240
\(449\) 4.95512 0.233847 0.116923 0.993141i \(-0.462697\pi\)
0.116923 + 0.993141i \(0.462697\pi\)
\(450\) 0.0774485 0.00365096
\(451\) 0.0640139 0.00301429
\(452\) −31.9077 −1.50081
\(453\) −2.88270 −0.135441
\(454\) 1.56399 0.0734019
\(455\) 0.522841 0.0245111
\(456\) 0.991496 0.0464311
\(457\) 29.6720 1.38800 0.693998 0.719977i \(-0.255848\pi\)
0.693998 + 0.719977i \(0.255848\pi\)
\(458\) 1.41510 0.0661231
\(459\) 2.68990 0.125554
\(460\) 0 0
\(461\) 32.4318 1.51050 0.755250 0.655437i \(-0.227516\pi\)
0.755250 + 0.655437i \(0.227516\pi\)
\(462\) 0.0330455 0.00153742
\(463\) 33.2618 1.54581 0.772903 0.634524i \(-0.218804\pi\)
0.772903 + 0.634524i \(0.218804\pi\)
\(464\) −1.26389 −0.0586745
\(465\) −4.15015 −0.192459
\(466\) −0.558901 −0.0258906
\(467\) −6.24766 −0.289107 −0.144554 0.989497i \(-0.546175\pi\)
−0.144554 + 0.989497i \(0.546175\pi\)
\(468\) 0.299422 0.0138408
\(469\) −49.9911 −2.30837
\(470\) −0.224451 −0.0103531
\(471\) −2.58166 −0.118957
\(472\) 3.62627 0.166913
\(473\) 0.446620 0.0205356
\(474\) 1.07005 0.0491489
\(475\) −3.20531 −0.147070
\(476\) −18.6755 −0.855991
\(477\) 13.5930 0.622379
\(478\) −1.72391 −0.0788499
\(479\) 21.6317 0.988379 0.494189 0.869354i \(-0.335465\pi\)
0.494189 + 0.869354i \(0.335465\pi\)
\(480\) −0.925669 −0.0422508
\(481\) 0.349160 0.0159203
\(482\) 1.35140 0.0615546
\(483\) 0 0
\(484\) 21.9041 0.995640
\(485\) 15.7821 0.716626
\(486\) 0.0774485 0.00351314
\(487\) 9.31743 0.422213 0.211107 0.977463i \(-0.432293\pi\)
0.211107 + 0.977463i \(0.432293\pi\)
\(488\) 0.370699 0.0167808
\(489\) −2.37638 −0.107464
\(490\) −0.396797 −0.0179254
\(491\) 0.564202 0.0254621 0.0127310 0.999919i \(-0.495947\pi\)
0.0127310 + 0.999919i \(0.495947\pi\)
\(492\) −1.04163 −0.0469601
\(493\) −0.857640 −0.0386262
\(494\) 0.0372770 0.00167717
\(495\) −0.122543 −0.00550789
\(496\) 16.4514 0.738690
\(497\) 37.5238 1.68317
\(498\) 0.0117420 0.000526172 0
\(499\) 32.4148 1.45108 0.725542 0.688177i \(-0.241589\pi\)
0.725542 + 0.688177i \(0.241589\pi\)
\(500\) 1.99400 0.0891745
\(501\) 11.1767 0.499340
\(502\) 2.02345 0.0903109
\(503\) 11.8006 0.526164 0.263082 0.964774i \(-0.415261\pi\)
0.263082 + 0.964774i \(0.415261\pi\)
\(504\) −1.07704 −0.0479753
\(505\) −7.08225 −0.315156
\(506\) 0 0
\(507\) −12.9775 −0.576349
\(508\) 14.6671 0.650747
\(509\) −11.9014 −0.527522 −0.263761 0.964588i \(-0.584963\pi\)
−0.263761 + 0.964588i \(0.584963\pi\)
\(510\) −0.208329 −0.00922494
\(511\) 26.6349 1.17826
\(512\) 6.12179 0.270547
\(513\) −3.20531 −0.141518
\(514\) 1.81799 0.0801883
\(515\) −11.7909 −0.519568
\(516\) −7.26735 −0.319927
\(517\) 0.355137 0.0156189
\(518\) −0.627035 −0.0275503
\(519\) 16.4682 0.722875
\(520\) −0.0464493 −0.00203694
\(521\) 41.5516 1.82041 0.910204 0.414160i \(-0.135925\pi\)
0.910204 + 0.414160i \(0.135925\pi\)
\(522\) −0.0246935 −0.00108081
\(523\) 2.18164 0.0953964 0.0476982 0.998862i \(-0.484811\pi\)
0.0476982 + 0.998862i \(0.484811\pi\)
\(524\) 41.0255 1.79221
\(525\) 3.48186 0.151961
\(526\) 0.807484 0.0352080
\(527\) 11.1635 0.486289
\(528\) 0.485766 0.0211402
\(529\) 0 0
\(530\) −1.05276 −0.0457288
\(531\) −11.7230 −0.508735
\(532\) 22.2539 0.964830
\(533\) −0.0784411 −0.00339766
\(534\) −0.299789 −0.0129731
\(535\) 11.3579 0.491046
\(536\) 4.44122 0.191831
\(537\) −6.83739 −0.295055
\(538\) −0.184873 −0.00797044
\(539\) 0.627831 0.0270426
\(540\) 1.99400 0.0858082
\(541\) −19.1708 −0.824218 −0.412109 0.911135i \(-0.635208\pi\)
−0.412109 + 0.911135i \(0.635208\pi\)
\(542\) 0.508539 0.0218436
\(543\) 10.3514 0.444223
\(544\) 2.48995 0.106756
\(545\) −10.2209 −0.437815
\(546\) −0.0404932 −0.00173295
\(547\) 0.783501 0.0335001 0.0167500 0.999860i \(-0.494668\pi\)
0.0167500 + 0.999860i \(0.494668\pi\)
\(548\) 1.57580 0.0673149
\(549\) −1.19839 −0.0511462
\(550\) 0.00949077 0.000404688 0
\(551\) 1.02197 0.0435375
\(552\) 0 0
\(553\) 48.1062 2.04569
\(554\) −0.949906 −0.0403577
\(555\) 2.32524 0.0987007
\(556\) 13.5821 0.576009
\(557\) −32.2113 −1.36484 −0.682418 0.730962i \(-0.739072\pi\)
−0.682418 + 0.730962i \(0.739072\pi\)
\(558\) 0.321423 0.0136069
\(559\) −0.547278 −0.0231474
\(560\) −13.8023 −0.583252
\(561\) 0.329628 0.0139169
\(562\) 1.69203 0.0713742
\(563\) −3.68471 −0.155292 −0.0776460 0.996981i \(-0.524740\pi\)
−0.0776460 + 0.996981i \(0.524740\pi\)
\(564\) −5.77874 −0.243329
\(565\) −16.0018 −0.673202
\(566\) −0.332270 −0.0139664
\(567\) 3.48186 0.146224
\(568\) −3.33363 −0.139876
\(569\) 38.3511 1.60776 0.803882 0.594789i \(-0.202764\pi\)
0.803882 + 0.594789i \(0.202764\pi\)
\(570\) 0.248246 0.0103979
\(571\) 3.30491 0.138306 0.0691532 0.997606i \(-0.477970\pi\)
0.0691532 + 0.997606i \(0.477970\pi\)
\(572\) 0.0366920 0.00153417
\(573\) 13.8067 0.576785
\(574\) 0.140867 0.00587969
\(575\) 0 0
\(576\) −7.85640 −0.327350
\(577\) 13.3012 0.553737 0.276869 0.960908i \(-0.410703\pi\)
0.276869 + 0.960908i \(0.410703\pi\)
\(578\) −0.756243 −0.0314556
\(579\) −15.6957 −0.652291
\(580\) −0.635763 −0.0263986
\(581\) 0.527886 0.0219004
\(582\) −1.22230 −0.0506658
\(583\) 1.66572 0.0689871
\(584\) −2.36626 −0.0979164
\(585\) 0.150161 0.00620840
\(586\) −1.65093 −0.0681991
\(587\) 31.1044 1.28381 0.641907 0.766782i \(-0.278143\pi\)
0.641907 + 0.766782i \(0.278143\pi\)
\(588\) −10.2160 −0.421300
\(589\) −13.3025 −0.548120
\(590\) 0.907929 0.0373789
\(591\) 11.3169 0.465517
\(592\) −9.21734 −0.378830
\(593\) −26.6284 −1.09350 −0.546749 0.837297i \(-0.684135\pi\)
−0.546749 + 0.837297i \(0.684135\pi\)
\(594\) 0.00949077 0.000389411 0
\(595\) −9.36584 −0.383962
\(596\) −35.9845 −1.47398
\(597\) 1.55183 0.0635122
\(598\) 0 0
\(599\) −32.2549 −1.31790 −0.658950 0.752187i \(-0.728999\pi\)
−0.658950 + 0.752187i \(0.728999\pi\)
\(600\) −0.309330 −0.0126283
\(601\) 16.1792 0.659964 0.329982 0.943987i \(-0.392957\pi\)
0.329982 + 0.943987i \(0.392957\pi\)
\(602\) 0.982823 0.0400569
\(603\) −14.3576 −0.584685
\(604\) 5.74811 0.233887
\(605\) 10.9850 0.446603
\(606\) 0.548510 0.0222817
\(607\) −22.4212 −0.910050 −0.455025 0.890479i \(-0.650370\pi\)
−0.455025 + 0.890479i \(0.650370\pi\)
\(608\) −2.96705 −0.120330
\(609\) −1.11015 −0.0449855
\(610\) 0.0928139 0.00375793
\(611\) −0.435176 −0.0176054
\(612\) −5.36366 −0.216813
\(613\) 35.2456 1.42356 0.711778 0.702405i \(-0.247890\pi\)
0.711778 + 0.702405i \(0.247890\pi\)
\(614\) −2.26331 −0.0913398
\(615\) −0.522379 −0.0210644
\(616\) −0.131984 −0.00531778
\(617\) −21.7154 −0.874229 −0.437114 0.899406i \(-0.643999\pi\)
−0.437114 + 0.899406i \(0.643999\pi\)
\(618\) 0.913186 0.0367337
\(619\) −21.6812 −0.871441 −0.435721 0.900082i \(-0.643506\pi\)
−0.435721 + 0.900082i \(0.643506\pi\)
\(620\) 8.27541 0.332349
\(621\) 0 0
\(622\) 1.47132 0.0589947
\(623\) −13.4776 −0.539971
\(624\) −0.595246 −0.0238289
\(625\) 1.00000 0.0400000
\(626\) −0.0649821 −0.00259721
\(627\) −0.392787 −0.0156864
\(628\) 5.14783 0.205421
\(629\) −6.25464 −0.249389
\(630\) −0.269665 −0.0107437
\(631\) −42.4602 −1.69031 −0.845157 0.534519i \(-0.820493\pi\)
−0.845157 + 0.534519i \(0.820493\pi\)
\(632\) −4.27377 −0.170002
\(633\) 26.1808 1.04059
\(634\) 2.44010 0.0969086
\(635\) 7.35560 0.291898
\(636\) −27.1044 −1.07476
\(637\) −0.769330 −0.0304820
\(638\) −0.00302601 −0.000119801 0
\(639\) 10.7769 0.426329
\(640\) 2.45980 0.0972323
\(641\) 2.51082 0.0991714 0.0495857 0.998770i \(-0.484210\pi\)
0.0495857 + 0.998770i \(0.484210\pi\)
\(642\) −0.879654 −0.0347172
\(643\) −47.1823 −1.86069 −0.930343 0.366690i \(-0.880491\pi\)
−0.930343 + 0.366690i \(0.880491\pi\)
\(644\) 0 0
\(645\) −3.64461 −0.143506
\(646\) −0.667757 −0.0262725
\(647\) −12.4526 −0.489561 −0.244780 0.969579i \(-0.578716\pi\)
−0.244780 + 0.969579i \(0.578716\pi\)
\(648\) −0.309330 −0.0121516
\(649\) −1.43657 −0.0563903
\(650\) −0.0116298 −0.000456157 0
\(651\) 14.4503 0.566350
\(652\) 4.73851 0.185574
\(653\) −33.7486 −1.32069 −0.660343 0.750964i \(-0.729589\pi\)
−0.660343 + 0.750964i \(0.729589\pi\)
\(654\) 0.791594 0.0309538
\(655\) 20.5745 0.803910
\(656\) 2.07074 0.0808486
\(657\) 7.64963 0.298440
\(658\) 0.781506 0.0304663
\(659\) −41.2396 −1.60646 −0.803232 0.595666i \(-0.796888\pi\)
−0.803232 + 0.595666i \(0.796888\pi\)
\(660\) 0.244351 0.00951134
\(661\) −24.1163 −0.938015 −0.469008 0.883194i \(-0.655388\pi\)
−0.469008 + 0.883194i \(0.655388\pi\)
\(662\) −1.71498 −0.0666547
\(663\) −0.403918 −0.0156869
\(664\) −0.0468976 −0.00181998
\(665\) 11.1604 0.432783
\(666\) −0.180086 −0.00697819
\(667\) 0 0
\(668\) −22.2864 −0.862288
\(669\) 12.0509 0.465914
\(670\) 1.11197 0.0429592
\(671\) −0.146855 −0.00566926
\(672\) 3.22305 0.124332
\(673\) 18.6820 0.720140 0.360070 0.932925i \(-0.382753\pi\)
0.360070 + 0.932925i \(0.382753\pi\)
\(674\) 1.31974 0.0508343
\(675\) 1.00000 0.0384900
\(676\) 25.8771 0.995272
\(677\) 3.24032 0.124535 0.0622677 0.998059i \(-0.480167\pi\)
0.0622677 + 0.998059i \(0.480167\pi\)
\(678\) 1.23932 0.0475958
\(679\) −54.9509 −2.10882
\(680\) 0.832064 0.0319082
\(681\) 20.1940 0.773835
\(682\) 0.0393881 0.00150825
\(683\) 34.8609 1.33392 0.666958 0.745095i \(-0.267596\pi\)
0.666958 + 0.745095i \(0.267596\pi\)
\(684\) 6.39139 0.244381
\(685\) 0.790270 0.0301947
\(686\) −0.506065 −0.0193216
\(687\) 18.2714 0.697099
\(688\) 14.4474 0.550801
\(689\) −2.04114 −0.0777611
\(690\) 0 0
\(691\) 23.0941 0.878542 0.439271 0.898355i \(-0.355237\pi\)
0.439271 + 0.898355i \(0.355237\pi\)
\(692\) −32.8377 −1.24830
\(693\) 0.426677 0.0162081
\(694\) −2.16144 −0.0820472
\(695\) 6.81148 0.258374
\(696\) 0.0986260 0.00373841
\(697\) 1.40515 0.0532237
\(698\) 1.00969 0.0382173
\(699\) −7.21642 −0.272950
\(700\) −6.94284 −0.262415
\(701\) −24.3949 −0.921382 −0.460691 0.887561i \(-0.652398\pi\)
−0.460691 + 0.887561i \(0.652398\pi\)
\(702\) −0.0116298 −0.000438937 0
\(703\) 7.45309 0.281099
\(704\) −0.962746 −0.0362849
\(705\) −2.89806 −0.109147
\(706\) −0.994137 −0.0374148
\(707\) 24.6594 0.927413
\(708\) 23.3757 0.878512
\(709\) −9.01577 −0.338594 −0.169297 0.985565i \(-0.554150\pi\)
−0.169297 + 0.985565i \(0.554150\pi\)
\(710\) −0.834658 −0.0313242
\(711\) 13.8162 0.518150
\(712\) 1.19736 0.0448729
\(713\) 0 0
\(714\) 0.725371 0.0271463
\(715\) 0.0184012 0.000688165 0
\(716\) 13.6338 0.509518
\(717\) −22.2588 −0.831270
\(718\) −0.901412 −0.0336404
\(719\) 27.7308 1.03418 0.517092 0.855930i \(-0.327015\pi\)
0.517092 + 0.855930i \(0.327015\pi\)
\(720\) −3.96405 −0.147731
\(721\) 41.0542 1.52894
\(722\) −0.675817 −0.0251513
\(723\) 17.4490 0.648936
\(724\) −20.6408 −0.767109
\(725\) −0.318838 −0.0118413
\(726\) −0.850771 −0.0315751
\(727\) −30.1451 −1.11802 −0.559010 0.829161i \(-0.688819\pi\)
−0.559010 + 0.829161i \(0.688819\pi\)
\(728\) 0.161730 0.00599412
\(729\) 1.00000 0.0370370
\(730\) −0.592452 −0.0219277
\(731\) 9.80361 0.362600
\(732\) 2.38960 0.0883222
\(733\) −4.16577 −0.153866 −0.0769332 0.997036i \(-0.524513\pi\)
−0.0769332 + 0.997036i \(0.524513\pi\)
\(734\) 0.495583 0.0182923
\(735\) −5.12336 −0.188978
\(736\) 0 0
\(737\) −1.75942 −0.0648090
\(738\) 0.0404575 0.00148926
\(739\) 15.7522 0.579455 0.289728 0.957109i \(-0.406435\pi\)
0.289728 + 0.957109i \(0.406435\pi\)
\(740\) −4.63652 −0.170442
\(741\) 0.481313 0.0176815
\(742\) 3.66555 0.134567
\(743\) 50.6258 1.85728 0.928640 0.370983i \(-0.120979\pi\)
0.928640 + 0.370983i \(0.120979\pi\)
\(744\) −1.28377 −0.0470651
\(745\) −18.0464 −0.661168
\(746\) −0.919183 −0.0336537
\(747\) 0.151610 0.00554713
\(748\) −0.657278 −0.0240325
\(749\) −39.5467 −1.44500
\(750\) −0.0774485 −0.00282802
\(751\) −10.6736 −0.389484 −0.194742 0.980854i \(-0.562387\pi\)
−0.194742 + 0.980854i \(0.562387\pi\)
\(752\) 11.4880 0.418926
\(753\) 26.1264 0.952097
\(754\) 0.00370801 0.000135038 0
\(755\) 2.88270 0.104912
\(756\) −6.94284 −0.252509
\(757\) 11.4031 0.414452 0.207226 0.978293i \(-0.433556\pi\)
0.207226 + 0.978293i \(0.433556\pi\)
\(758\) 2.97482 0.108050
\(759\) 0 0
\(760\) −0.991496 −0.0359653
\(761\) 9.39101 0.340424 0.170212 0.985407i \(-0.445555\pi\)
0.170212 + 0.985407i \(0.445555\pi\)
\(762\) −0.569681 −0.0206374
\(763\) 35.5878 1.28836
\(764\) −27.5307 −0.996024
\(765\) −2.68990 −0.0972534
\(766\) −0.175863 −0.00635420
\(767\) 1.76034 0.0635622
\(768\) 15.5223 0.560113
\(769\) −41.3206 −1.49006 −0.745029 0.667032i \(-0.767564\pi\)
−0.745029 + 0.667032i \(0.767564\pi\)
\(770\) −0.0330455 −0.00119088
\(771\) 23.4736 0.845380
\(772\) 31.2972 1.12641
\(773\) 10.7585 0.386956 0.193478 0.981105i \(-0.438023\pi\)
0.193478 + 0.981105i \(0.438023\pi\)
\(774\) 0.282269 0.0101460
\(775\) 4.15015 0.149078
\(776\) 4.88186 0.175248
\(777\) −8.09615 −0.290448
\(778\) −0.493058 −0.0176770
\(779\) −1.67439 −0.0599911
\(780\) −0.299422 −0.0107210
\(781\) 1.32064 0.0472561
\(782\) 0 0
\(783\) −0.318838 −0.0113943
\(784\) 20.3092 0.725330
\(785\) 2.58166 0.0921434
\(786\) −1.59346 −0.0568369
\(787\) 32.8202 1.16991 0.584957 0.811064i \(-0.301111\pi\)
0.584957 + 0.811064i \(0.301111\pi\)
\(788\) −22.5660 −0.803881
\(789\) 10.4261 0.371178
\(790\) −1.07005 −0.0380706
\(791\) 55.7162 1.98104
\(792\) −0.0379061 −0.00134694
\(793\) 0.179952 0.00639030
\(794\) −1.20821 −0.0428779
\(795\) −13.5930 −0.482093
\(796\) −3.09436 −0.109677
\(797\) 25.8920 0.917143 0.458572 0.888657i \(-0.348361\pi\)
0.458572 + 0.888657i \(0.348361\pi\)
\(798\) −0.864359 −0.0305980
\(799\) 7.79548 0.275784
\(800\) 0.925669 0.0327273
\(801\) −3.87082 −0.136769
\(802\) 1.94833 0.0687980
\(803\) 0.937407 0.0330804
\(804\) 28.6290 1.00967
\(805\) 0 0
\(806\) −0.0482653 −0.00170007
\(807\) −2.38704 −0.0840278
\(808\) −2.19075 −0.0770704
\(809\) −46.4747 −1.63396 −0.816982 0.576663i \(-0.804355\pi\)
−0.816982 + 0.576663i \(0.804355\pi\)
\(810\) −0.0774485 −0.00272126
\(811\) −10.4961 −0.368567 −0.184283 0.982873i \(-0.558996\pi\)
−0.184283 + 0.982873i \(0.558996\pi\)
\(812\) 2.21364 0.0776835
\(813\) 6.56615 0.230285
\(814\) −0.0220683 −0.000773492 0
\(815\) 2.37638 0.0832410
\(816\) 10.6629 0.373275
\(817\) −11.6821 −0.408704
\(818\) 1.79250 0.0626734
\(819\) −0.522841 −0.0182695
\(820\) 1.04163 0.0363751
\(821\) −40.0411 −1.39744 −0.698722 0.715394i \(-0.746247\pi\)
−0.698722 + 0.715394i \(0.746247\pi\)
\(822\) −0.0612053 −0.00213478
\(823\) −42.4282 −1.47895 −0.739477 0.673182i \(-0.764927\pi\)
−0.739477 + 0.673182i \(0.764927\pi\)
\(824\) −3.64727 −0.127059
\(825\) 0.122543 0.00426639
\(826\) −3.16128 −0.109995
\(827\) −4.03147 −0.140188 −0.0700940 0.997540i \(-0.522330\pi\)
−0.0700940 + 0.997540i \(0.522330\pi\)
\(828\) 0 0
\(829\) 6.46474 0.224530 0.112265 0.993678i \(-0.464189\pi\)
0.112265 + 0.993678i \(0.464189\pi\)
\(830\) −0.0117420 −0.000407571 0
\(831\) −12.2650 −0.425468
\(832\) 1.17973 0.0408997
\(833\) 13.7813 0.477494
\(834\) −0.527539 −0.0182672
\(835\) −11.1767 −0.386787
\(836\) 0.783219 0.0270882
\(837\) 4.15015 0.143450
\(838\) 0.980807 0.0338814
\(839\) 36.8309 1.27154 0.635772 0.771877i \(-0.280682\pi\)
0.635772 + 0.771877i \(0.280682\pi\)
\(840\) 1.07704 0.0371615
\(841\) −28.8983 −0.996495
\(842\) 0.201660 0.00694967
\(843\) 21.8472 0.752458
\(844\) −52.2045 −1.79695
\(845\) 12.9775 0.446438
\(846\) 0.224451 0.00771677
\(847\) −38.2482 −1.31422
\(848\) 53.8832 1.85036
\(849\) −4.29021 −0.147239
\(850\) 0.208329 0.00714561
\(851\) 0 0
\(852\) −21.4892 −0.736209
\(853\) −22.4507 −0.768696 −0.384348 0.923188i \(-0.625574\pi\)
−0.384348 + 0.923188i \(0.625574\pi\)
\(854\) −0.323165 −0.0110585
\(855\) 3.20531 0.109619
\(856\) 3.51334 0.120084
\(857\) −55.2589 −1.88761 −0.943804 0.330505i \(-0.892781\pi\)
−0.943804 + 0.330505i \(0.892781\pi\)
\(858\) −0.00142515 −4.86537e−5 0
\(859\) −54.5778 −1.86217 −0.931085 0.364802i \(-0.881137\pi\)
−0.931085 + 0.364802i \(0.881137\pi\)
\(860\) 7.26735 0.247815
\(861\) 1.81885 0.0619863
\(862\) 0.886769 0.0302035
\(863\) 1.15790 0.0394153 0.0197077 0.999806i \(-0.493726\pi\)
0.0197077 + 0.999806i \(0.493726\pi\)
\(864\) 0.925669 0.0314919
\(865\) −16.4682 −0.559937
\(866\) −0.00705274 −0.000239662 0
\(867\) −9.76446 −0.331618
\(868\) −28.8138 −0.978006
\(869\) 1.69308 0.0574339
\(870\) 0.0246935 0.000837189 0
\(871\) 2.15595 0.0730516
\(872\) −3.16163 −0.107066
\(873\) −15.7821 −0.534142
\(874\) 0 0
\(875\) −3.48186 −0.117708
\(876\) −15.2534 −0.515364
\(877\) −30.9312 −1.04447 −0.522237 0.852801i \(-0.674902\pi\)
−0.522237 + 0.852801i \(0.674902\pi\)
\(878\) 1.61535 0.0545153
\(879\) −21.3164 −0.718985
\(880\) −0.485766 −0.0163752
\(881\) −31.2615 −1.05323 −0.526613 0.850105i \(-0.676538\pi\)
−0.526613 + 0.850105i \(0.676538\pi\)
\(882\) 0.396797 0.0133608
\(883\) 9.79167 0.329516 0.164758 0.986334i \(-0.447316\pi\)
0.164758 + 0.986334i \(0.447316\pi\)
\(884\) 0.805413 0.0270890
\(885\) 11.7230 0.394064
\(886\) −0.683206 −0.0229527
\(887\) −28.7695 −0.965985 −0.482993 0.875624i \(-0.660450\pi\)
−0.482993 + 0.875624i \(0.660450\pi\)
\(888\) 0.719264 0.0241369
\(889\) −25.6112 −0.858972
\(890\) 0.299789 0.0100490
\(891\) 0.122543 0.00410534
\(892\) −24.0295 −0.804567
\(893\) −9.28917 −0.310850
\(894\) 1.39767 0.0467450
\(895\) 6.83739 0.228549
\(896\) −8.56470 −0.286126
\(897\) 0 0
\(898\) 0.383767 0.0128065
\(899\) −1.32323 −0.0441320
\(900\) −1.99400 −0.0664667
\(901\) 36.5637 1.21811
\(902\) 0.00495778 0.000165076 0
\(903\) 12.6900 0.422297
\(904\) −4.94984 −0.164629
\(905\) −10.3514 −0.344094
\(906\) −0.223261 −0.00741735
\(907\) −15.1000 −0.501386 −0.250693 0.968067i \(-0.580658\pi\)
−0.250693 + 0.968067i \(0.580658\pi\)
\(908\) −40.2668 −1.33630
\(909\) 7.08225 0.234904
\(910\) 0.0404932 0.00134234
\(911\) −41.7213 −1.38229 −0.691144 0.722717i \(-0.742893\pi\)
−0.691144 + 0.722717i \(0.742893\pi\)
\(912\) −12.7060 −0.420737
\(913\) 0.0185788 0.000614868 0
\(914\) 2.29805 0.0760128
\(915\) 1.19839 0.0396177
\(916\) −36.4333 −1.20379
\(917\) −71.6374 −2.36568
\(918\) 0.208329 0.00687587
\(919\) 30.0337 0.990721 0.495361 0.868687i \(-0.335036\pi\)
0.495361 + 0.868687i \(0.335036\pi\)
\(920\) 0 0
\(921\) −29.2234 −0.962944
\(922\) 2.51180 0.0827216
\(923\) −1.61828 −0.0532663
\(924\) −0.850795 −0.0279891
\(925\) −2.32524 −0.0764533
\(926\) 2.57608 0.0846551
\(927\) 11.7909 0.387263
\(928\) −0.295138 −0.00968839
\(929\) 27.4627 0.901022 0.450511 0.892771i \(-0.351242\pi\)
0.450511 + 0.892771i \(0.351242\pi\)
\(930\) −0.321423 −0.0105399
\(931\) −16.4219 −0.538207
\(932\) 14.3895 0.471345
\(933\) 18.9974 0.621948
\(934\) −0.483872 −0.0158328
\(935\) −0.329628 −0.0107800
\(936\) 0.0464493 0.00151824
\(937\) −4.29929 −0.140452 −0.0702258 0.997531i \(-0.522372\pi\)
−0.0702258 + 0.997531i \(0.522372\pi\)
\(938\) −3.87173 −0.126417
\(939\) −0.839035 −0.0273809
\(940\) 5.77874 0.188482
\(941\) 47.3293 1.54289 0.771445 0.636296i \(-0.219534\pi\)
0.771445 + 0.636296i \(0.219534\pi\)
\(942\) −0.199946 −0.00651459
\(943\) 0 0
\(944\) −46.4705 −1.51249
\(945\) −3.48186 −0.113265
\(946\) 0.0345901 0.00112462
\(947\) 41.2322 1.33987 0.669933 0.742422i \(-0.266323\pi\)
0.669933 + 0.742422i \(0.266323\pi\)
\(948\) −27.5496 −0.894770
\(949\) −1.14868 −0.0372876
\(950\) −0.248246 −0.00805417
\(951\) 31.5060 1.02165
\(952\) −2.89713 −0.0938966
\(953\) −0.480977 −0.0155804 −0.00779019 0.999970i \(-0.502480\pi\)
−0.00779019 + 0.999970i \(0.502480\pi\)
\(954\) 1.05276 0.0340842
\(955\) −13.8067 −0.446776
\(956\) 44.3841 1.43548
\(957\) −0.0390713 −0.00126300
\(958\) 1.67535 0.0541280
\(959\) −2.75161 −0.0888542
\(960\) 7.85640 0.253564
\(961\) −13.7762 −0.444394
\(962\) 0.0270420 0.000871868 0
\(963\) −11.3579 −0.366004
\(964\) −34.7933 −1.12062
\(965\) 15.6957 0.505262
\(966\) 0 0
\(967\) 31.7740 1.02178 0.510891 0.859645i \(-0.329316\pi\)
0.510891 + 0.859645i \(0.329316\pi\)
\(968\) 3.39798 0.109215
\(969\) −8.62194 −0.276977
\(970\) 1.22230 0.0392456
\(971\) −5.61634 −0.180237 −0.0901185 0.995931i \(-0.528725\pi\)
−0.0901185 + 0.995931i \(0.528725\pi\)
\(972\) −1.99400 −0.0639576
\(973\) −23.7166 −0.760320
\(974\) 0.721622 0.0231223
\(975\) −0.150161 −0.00480901
\(976\) −4.75049 −0.152060
\(977\) 45.4913 1.45540 0.727698 0.685898i \(-0.240590\pi\)
0.727698 + 0.685898i \(0.240590\pi\)
\(978\) −0.184047 −0.00588518
\(979\) −0.474341 −0.0151600
\(980\) 10.2160 0.326338
\(981\) 10.2209 0.326328
\(982\) 0.0436966 0.00139442
\(983\) −54.2736 −1.73106 −0.865529 0.500859i \(-0.833018\pi\)
−0.865529 + 0.500859i \(0.833018\pi\)
\(984\) −0.161587 −0.00515122
\(985\) −11.3169 −0.360588
\(986\) −0.0664230 −0.00211534
\(987\) 10.0906 0.321189
\(988\) −0.959738 −0.0305333
\(989\) 0 0
\(990\) −0.00949077 −0.000301636 0
\(991\) 11.0444 0.350837 0.175418 0.984494i \(-0.443872\pi\)
0.175418 + 0.984494i \(0.443872\pi\)
\(992\) 3.84167 0.121973
\(993\) −22.1435 −0.702703
\(994\) 2.90616 0.0921779
\(995\) −1.55183 −0.0491964
\(996\) −0.302311 −0.00957910
\(997\) 20.2041 0.639870 0.319935 0.947439i \(-0.396339\pi\)
0.319935 + 0.947439i \(0.396339\pi\)
\(998\) 2.51048 0.0794678
\(999\) −2.32524 −0.0735672
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bl.1.6 12
23.22 odd 2 7935.2.a.bm.1.6 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7935.2.a.bl.1.6 12 1.1 even 1 trivial
7935.2.a.bm.1.6 yes 12 23.22 odd 2