Properties

Label 7935.2.a.bk.1.1
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $0$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,-10,16,10,0,6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 18x^{8} + 111x^{6} - 4x^{5} - 270x^{4} + 32x^{3} + 218x^{2} - 60x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.57634\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.57634 q^{2} -1.00000 q^{3} +4.63755 q^{4} +1.00000 q^{5} +2.57634 q^{6} +2.22333 q^{7} -6.79523 q^{8} +1.00000 q^{9} -2.57634 q^{10} -3.85296 q^{11} -4.63755 q^{12} +5.70765 q^{13} -5.72807 q^{14} -1.00000 q^{15} +8.23175 q^{16} -2.07011 q^{17} -2.57634 q^{18} +6.30815 q^{19} +4.63755 q^{20} -2.22333 q^{21} +9.92654 q^{22} +6.79523 q^{24} +1.00000 q^{25} -14.7049 q^{26} -1.00000 q^{27} +10.3108 q^{28} +7.07159 q^{29} +2.57634 q^{30} +4.00348 q^{31} -7.61737 q^{32} +3.85296 q^{33} +5.33331 q^{34} +2.22333 q^{35} +4.63755 q^{36} +9.82561 q^{37} -16.2520 q^{38} -5.70765 q^{39} -6.79523 q^{40} +9.04057 q^{41} +5.72807 q^{42} -1.69019 q^{43} -17.8683 q^{44} +1.00000 q^{45} -9.81936 q^{47} -8.23175 q^{48} -2.05679 q^{49} -2.57634 q^{50} +2.07011 q^{51} +26.4695 q^{52} +10.5293 q^{53} +2.57634 q^{54} -3.85296 q^{55} -15.1081 q^{56} -6.30815 q^{57} -18.2189 q^{58} -1.83222 q^{59} -4.63755 q^{60} +6.07024 q^{61} -10.3143 q^{62} +2.22333 q^{63} +3.16145 q^{64} +5.70765 q^{65} -9.92654 q^{66} +4.86287 q^{67} -9.60022 q^{68} -5.72807 q^{70} +0.951755 q^{71} -6.79523 q^{72} -7.81309 q^{73} -25.3142 q^{74} -1.00000 q^{75} +29.2543 q^{76} -8.56641 q^{77} +14.7049 q^{78} -6.11017 q^{79} +8.23175 q^{80} +1.00000 q^{81} -23.2916 q^{82} -12.4091 q^{83} -10.3108 q^{84} -2.07011 q^{85} +4.35451 q^{86} -7.07159 q^{87} +26.1817 q^{88} +13.5916 q^{89} -2.57634 q^{90} +12.6900 q^{91} -4.00348 q^{93} +25.2981 q^{94} +6.30815 q^{95} +7.61737 q^{96} +11.0986 q^{97} +5.29899 q^{98} -3.85296 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{3} + 16 q^{4} + 10 q^{5} + 6 q^{7} + 10 q^{9} - 4 q^{11} - 16 q^{12} - 4 q^{13} - 10 q^{15} + 28 q^{16} + 10 q^{17} + 8 q^{19} + 16 q^{20} - 6 q^{21} - 4 q^{22} + 10 q^{25} - 8 q^{26} - 10 q^{27}+ \cdots - 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.57634 −1.82175 −0.910875 0.412682i \(-0.864592\pi\)
−0.910875 + 0.412682i \(0.864592\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.63755 2.31877
\(5\) 1.00000 0.447214
\(6\) 2.57634 1.05179
\(7\) 2.22333 0.840341 0.420171 0.907445i \(-0.361970\pi\)
0.420171 + 0.907445i \(0.361970\pi\)
\(8\) −6.79523 −2.40248
\(9\) 1.00000 0.333333
\(10\) −2.57634 −0.814711
\(11\) −3.85296 −1.16171 −0.580855 0.814007i \(-0.697282\pi\)
−0.580855 + 0.814007i \(0.697282\pi\)
\(12\) −4.63755 −1.33874
\(13\) 5.70765 1.58302 0.791509 0.611157i \(-0.209296\pi\)
0.791509 + 0.611157i \(0.209296\pi\)
\(14\) −5.72807 −1.53089
\(15\) −1.00000 −0.258199
\(16\) 8.23175 2.05794
\(17\) −2.07011 −0.502075 −0.251037 0.967977i \(-0.580772\pi\)
−0.251037 + 0.967977i \(0.580772\pi\)
\(18\) −2.57634 −0.607250
\(19\) 6.30815 1.44719 0.723594 0.690225i \(-0.242489\pi\)
0.723594 + 0.690225i \(0.242489\pi\)
\(20\) 4.63755 1.03699
\(21\) −2.22333 −0.485171
\(22\) 9.92654 2.11635
\(23\) 0 0
\(24\) 6.79523 1.38707
\(25\) 1.00000 0.200000
\(26\) −14.7049 −2.88386
\(27\) −1.00000 −0.192450
\(28\) 10.3108 1.94856
\(29\) 7.07159 1.31316 0.656581 0.754256i \(-0.272002\pi\)
0.656581 + 0.754256i \(0.272002\pi\)
\(30\) 2.57634 0.470374
\(31\) 4.00348 0.719046 0.359523 0.933136i \(-0.382939\pi\)
0.359523 + 0.933136i \(0.382939\pi\)
\(32\) −7.61737 −1.34657
\(33\) 3.85296 0.670714
\(34\) 5.33331 0.914654
\(35\) 2.22333 0.375812
\(36\) 4.63755 0.772925
\(37\) 9.82561 1.61532 0.807660 0.589648i \(-0.200733\pi\)
0.807660 + 0.589648i \(0.200733\pi\)
\(38\) −16.2520 −2.63642
\(39\) −5.70765 −0.913956
\(40\) −6.79523 −1.07442
\(41\) 9.04057 1.41190 0.705950 0.708262i \(-0.250520\pi\)
0.705950 + 0.708262i \(0.250520\pi\)
\(42\) 5.72807 0.883861
\(43\) −1.69019 −0.257752 −0.128876 0.991661i \(-0.541137\pi\)
−0.128876 + 0.991661i \(0.541137\pi\)
\(44\) −17.8683 −2.69374
\(45\) 1.00000 0.149071
\(46\) 0 0
\(47\) −9.81936 −1.43230 −0.716151 0.697946i \(-0.754098\pi\)
−0.716151 + 0.697946i \(0.754098\pi\)
\(48\) −8.23175 −1.18815
\(49\) −2.05679 −0.293827
\(50\) −2.57634 −0.364350
\(51\) 2.07011 0.289873
\(52\) 26.4695 3.67066
\(53\) 10.5293 1.44632 0.723158 0.690683i \(-0.242690\pi\)
0.723158 + 0.690683i \(0.242690\pi\)
\(54\) 2.57634 0.350596
\(55\) −3.85296 −0.519532
\(56\) −15.1081 −2.01890
\(57\) −6.30815 −0.835535
\(58\) −18.2189 −2.39225
\(59\) −1.83222 −0.238535 −0.119267 0.992862i \(-0.538055\pi\)
−0.119267 + 0.992862i \(0.538055\pi\)
\(60\) −4.63755 −0.598705
\(61\) 6.07024 0.777215 0.388607 0.921403i \(-0.372956\pi\)
0.388607 + 0.921403i \(0.372956\pi\)
\(62\) −10.3143 −1.30992
\(63\) 2.22333 0.280114
\(64\) 3.16145 0.395181
\(65\) 5.70765 0.707947
\(66\) −9.92654 −1.22187
\(67\) 4.86287 0.594094 0.297047 0.954863i \(-0.403998\pi\)
0.297047 + 0.954863i \(0.403998\pi\)
\(68\) −9.60022 −1.16420
\(69\) 0 0
\(70\) −5.72807 −0.684636
\(71\) 0.951755 0.112953 0.0564763 0.998404i \(-0.482013\pi\)
0.0564763 + 0.998404i \(0.482013\pi\)
\(72\) −6.79523 −0.800825
\(73\) −7.81309 −0.914453 −0.457227 0.889350i \(-0.651157\pi\)
−0.457227 + 0.889350i \(0.651157\pi\)
\(74\) −25.3142 −2.94271
\(75\) −1.00000 −0.115470
\(76\) 29.2543 3.35570
\(77\) −8.56641 −0.976233
\(78\) 14.7049 1.66500
\(79\) −6.11017 −0.687448 −0.343724 0.939071i \(-0.611688\pi\)
−0.343724 + 0.939071i \(0.611688\pi\)
\(80\) 8.23175 0.920338
\(81\) 1.00000 0.111111
\(82\) −23.2916 −2.57213
\(83\) −12.4091 −1.36207 −0.681037 0.732249i \(-0.738471\pi\)
−0.681037 + 0.732249i \(0.738471\pi\)
\(84\) −10.3108 −1.12500
\(85\) −2.07011 −0.224535
\(86\) 4.35451 0.469559
\(87\) −7.07159 −0.758154
\(88\) 26.1817 2.79098
\(89\) 13.5916 1.44071 0.720355 0.693605i \(-0.243979\pi\)
0.720355 + 0.693605i \(0.243979\pi\)
\(90\) −2.57634 −0.271570
\(91\) 12.6900 1.33028
\(92\) 0 0
\(93\) −4.00348 −0.415141
\(94\) 25.2981 2.60929
\(95\) 6.30815 0.647203
\(96\) 7.61737 0.777444
\(97\) 11.0986 1.12689 0.563446 0.826153i \(-0.309475\pi\)
0.563446 + 0.826153i \(0.309475\pi\)
\(98\) 5.29899 0.535279
\(99\) −3.85296 −0.387237
\(100\) 4.63755 0.463755
\(101\) 11.5119 1.14548 0.572740 0.819737i \(-0.305880\pi\)
0.572740 + 0.819737i \(0.305880\pi\)
\(102\) −5.33331 −0.528076
\(103\) −15.4906 −1.52633 −0.763167 0.646201i \(-0.776357\pi\)
−0.763167 + 0.646201i \(0.776357\pi\)
\(104\) −38.7848 −3.80316
\(105\) −2.22333 −0.216975
\(106\) −27.1272 −2.63483
\(107\) 1.55180 0.150018 0.0750091 0.997183i \(-0.476101\pi\)
0.0750091 + 0.997183i \(0.476101\pi\)
\(108\) −4.63755 −0.446248
\(109\) 0.200796 0.0192328 0.00961640 0.999954i \(-0.496939\pi\)
0.00961640 + 0.999954i \(0.496939\pi\)
\(110\) 9.92654 0.946458
\(111\) −9.82561 −0.932606
\(112\) 18.3019 1.72937
\(113\) 10.0237 0.942954 0.471477 0.881878i \(-0.343721\pi\)
0.471477 + 0.881878i \(0.343721\pi\)
\(114\) 16.2520 1.52214
\(115\) 0 0
\(116\) 32.7948 3.04492
\(117\) 5.70765 0.527673
\(118\) 4.72043 0.434550
\(119\) −4.60254 −0.421914
\(120\) 6.79523 0.620317
\(121\) 3.84527 0.349570
\(122\) −15.6390 −1.41589
\(123\) −9.04057 −0.815161
\(124\) 18.5663 1.66730
\(125\) 1.00000 0.0894427
\(126\) −5.72807 −0.510297
\(127\) −12.0303 −1.06752 −0.533758 0.845637i \(-0.679221\pi\)
−0.533758 + 0.845637i \(0.679221\pi\)
\(128\) 7.08975 0.626652
\(129\) 1.69019 0.148813
\(130\) −14.7049 −1.28970
\(131\) 16.6883 1.45806 0.729031 0.684481i \(-0.239971\pi\)
0.729031 + 0.684481i \(0.239971\pi\)
\(132\) 17.8683 1.55523
\(133\) 14.0251 1.21613
\(134\) −12.5284 −1.08229
\(135\) −1.00000 −0.0860663
\(136\) 14.0668 1.20622
\(137\) −8.55331 −0.730758 −0.365379 0.930859i \(-0.619061\pi\)
−0.365379 + 0.930859i \(0.619061\pi\)
\(138\) 0 0
\(139\) −13.1286 −1.11356 −0.556778 0.830661i \(-0.687963\pi\)
−0.556778 + 0.830661i \(0.687963\pi\)
\(140\) 10.3108 0.871423
\(141\) 9.81936 0.826939
\(142\) −2.45205 −0.205771
\(143\) −21.9913 −1.83901
\(144\) 8.23175 0.685979
\(145\) 7.07159 0.587264
\(146\) 20.1292 1.66591
\(147\) 2.05679 0.169641
\(148\) 45.5667 3.74556
\(149\) 11.0037 0.901460 0.450730 0.892660i \(-0.351164\pi\)
0.450730 + 0.892660i \(0.351164\pi\)
\(150\) 2.57634 0.210358
\(151\) −17.2564 −1.40431 −0.702154 0.712025i \(-0.747778\pi\)
−0.702154 + 0.712025i \(0.747778\pi\)
\(152\) −42.8653 −3.47684
\(153\) −2.07011 −0.167358
\(154\) 22.0700 1.77845
\(155\) 4.00348 0.321567
\(156\) −26.4695 −2.11926
\(157\) −7.98282 −0.637098 −0.318549 0.947906i \(-0.603196\pi\)
−0.318549 + 0.947906i \(0.603196\pi\)
\(158\) 15.7419 1.25236
\(159\) −10.5293 −0.835031
\(160\) −7.61737 −0.602206
\(161\) 0 0
\(162\) −2.57634 −0.202417
\(163\) −4.19674 −0.328714 −0.164357 0.986401i \(-0.552555\pi\)
−0.164357 + 0.986401i \(0.552555\pi\)
\(164\) 41.9261 3.27388
\(165\) 3.85296 0.299952
\(166\) 31.9700 2.48136
\(167\) 25.2458 1.95358 0.976791 0.214194i \(-0.0687125\pi\)
0.976791 + 0.214194i \(0.0687125\pi\)
\(168\) 15.1081 1.16561
\(169\) 19.5773 1.50595
\(170\) 5.33331 0.409046
\(171\) 6.30815 0.482396
\(172\) −7.83834 −0.597668
\(173\) −18.5140 −1.40760 −0.703799 0.710400i \(-0.748514\pi\)
−0.703799 + 0.710400i \(0.748514\pi\)
\(174\) 18.2189 1.38117
\(175\) 2.22333 0.168068
\(176\) −31.7166 −2.39073
\(177\) 1.83222 0.137718
\(178\) −35.0167 −2.62461
\(179\) 13.3239 0.995877 0.497938 0.867212i \(-0.334091\pi\)
0.497938 + 0.867212i \(0.334091\pi\)
\(180\) 4.63755 0.345662
\(181\) 25.2946 1.88013 0.940066 0.340992i \(-0.110763\pi\)
0.940066 + 0.340992i \(0.110763\pi\)
\(182\) −32.6939 −2.42343
\(183\) −6.07024 −0.448725
\(184\) 0 0
\(185\) 9.82561 0.722393
\(186\) 10.3143 0.756284
\(187\) 7.97603 0.583265
\(188\) −45.5378 −3.32118
\(189\) −2.22333 −0.161724
\(190\) −16.2520 −1.17904
\(191\) −10.4473 −0.755938 −0.377969 0.925818i \(-0.623377\pi\)
−0.377969 + 0.925818i \(0.623377\pi\)
\(192\) −3.16145 −0.228158
\(193\) −8.36824 −0.602359 −0.301180 0.953567i \(-0.597380\pi\)
−0.301180 + 0.953567i \(0.597380\pi\)
\(194\) −28.5938 −2.05291
\(195\) −5.70765 −0.408734
\(196\) −9.53844 −0.681317
\(197\) −8.00920 −0.570632 −0.285316 0.958434i \(-0.592099\pi\)
−0.285316 + 0.958434i \(0.592099\pi\)
\(198\) 9.92654 0.705448
\(199\) 16.2030 1.14860 0.574298 0.818646i \(-0.305275\pi\)
0.574298 + 0.818646i \(0.305275\pi\)
\(200\) −6.79523 −0.480495
\(201\) −4.86287 −0.343001
\(202\) −29.6587 −2.08678
\(203\) 15.7225 1.10350
\(204\) 9.60022 0.672150
\(205\) 9.04057 0.631421
\(206\) 39.9091 2.78060
\(207\) 0 0
\(208\) 46.9840 3.25775
\(209\) −24.3050 −1.68121
\(210\) 5.72807 0.395275
\(211\) 22.8980 1.57636 0.788180 0.615444i \(-0.211023\pi\)
0.788180 + 0.615444i \(0.211023\pi\)
\(212\) 48.8303 3.35368
\(213\) −0.951755 −0.0652132
\(214\) −3.99797 −0.273296
\(215\) −1.69019 −0.115270
\(216\) 6.79523 0.462357
\(217\) 8.90107 0.604244
\(218\) −0.517320 −0.0350374
\(219\) 7.81309 0.527960
\(220\) −17.8683 −1.20468
\(221\) −11.8155 −0.794793
\(222\) 25.3142 1.69898
\(223\) 11.2262 0.751759 0.375880 0.926669i \(-0.377341\pi\)
0.375880 + 0.926669i \(0.377341\pi\)
\(224\) −16.9359 −1.13158
\(225\) 1.00000 0.0666667
\(226\) −25.8246 −1.71783
\(227\) 3.47153 0.230414 0.115207 0.993342i \(-0.463247\pi\)
0.115207 + 0.993342i \(0.463247\pi\)
\(228\) −29.2543 −1.93742
\(229\) −19.0032 −1.25577 −0.627885 0.778306i \(-0.716079\pi\)
−0.627885 + 0.778306i \(0.716079\pi\)
\(230\) 0 0
\(231\) 8.56641 0.563628
\(232\) −48.0531 −3.15484
\(233\) −10.0904 −0.661045 −0.330522 0.943798i \(-0.607225\pi\)
−0.330522 + 0.943798i \(0.607225\pi\)
\(234\) −14.7049 −0.961288
\(235\) −9.81936 −0.640545
\(236\) −8.49700 −0.553108
\(237\) 6.11017 0.396898
\(238\) 11.8577 0.768622
\(239\) −0.746340 −0.0482767 −0.0241384 0.999709i \(-0.507684\pi\)
−0.0241384 + 0.999709i \(0.507684\pi\)
\(240\) −8.23175 −0.531357
\(241\) −9.88272 −0.636602 −0.318301 0.947990i \(-0.603112\pi\)
−0.318301 + 0.947990i \(0.603112\pi\)
\(242\) −9.90674 −0.636829
\(243\) −1.00000 −0.0641500
\(244\) 28.1510 1.80219
\(245\) −2.05679 −0.131403
\(246\) 23.2916 1.48502
\(247\) 36.0047 2.29093
\(248\) −27.2045 −1.72749
\(249\) 12.4091 0.786393
\(250\) −2.57634 −0.162942
\(251\) 3.53095 0.222871 0.111436 0.993772i \(-0.464455\pi\)
0.111436 + 0.993772i \(0.464455\pi\)
\(252\) 10.3108 0.649520
\(253\) 0 0
\(254\) 30.9942 1.94475
\(255\) 2.07011 0.129635
\(256\) −24.5885 −1.53678
\(257\) −24.0303 −1.49897 −0.749484 0.662022i \(-0.769698\pi\)
−0.749484 + 0.662022i \(0.769698\pi\)
\(258\) −4.35451 −0.271100
\(259\) 21.8456 1.35742
\(260\) 26.4695 1.64157
\(261\) 7.07159 0.437721
\(262\) −42.9947 −2.65622
\(263\) −0.757054 −0.0466820 −0.0233410 0.999728i \(-0.507430\pi\)
−0.0233410 + 0.999728i \(0.507430\pi\)
\(264\) −26.1817 −1.61137
\(265\) 10.5293 0.646812
\(266\) −36.1335 −2.21549
\(267\) −13.5916 −0.831795
\(268\) 22.5518 1.37757
\(269\) 27.1946 1.65809 0.829043 0.559185i \(-0.188886\pi\)
0.829043 + 0.559185i \(0.188886\pi\)
\(270\) 2.57634 0.156791
\(271\) −2.56803 −0.155996 −0.0779982 0.996953i \(-0.524853\pi\)
−0.0779982 + 0.996953i \(0.524853\pi\)
\(272\) −17.0406 −1.03324
\(273\) −12.6900 −0.768035
\(274\) 22.0363 1.33126
\(275\) −3.85296 −0.232342
\(276\) 0 0
\(277\) −10.0095 −0.601415 −0.300708 0.953716i \(-0.597223\pi\)
−0.300708 + 0.953716i \(0.597223\pi\)
\(278\) 33.8239 2.02862
\(279\) 4.00348 0.239682
\(280\) −15.1081 −0.902880
\(281\) −12.5059 −0.746037 −0.373018 0.927824i \(-0.621677\pi\)
−0.373018 + 0.927824i \(0.621677\pi\)
\(282\) −25.2981 −1.50648
\(283\) −12.1338 −0.721279 −0.360640 0.932705i \(-0.617442\pi\)
−0.360640 + 0.932705i \(0.617442\pi\)
\(284\) 4.41381 0.261911
\(285\) −6.30815 −0.373663
\(286\) 56.6573 3.35021
\(287\) 20.1002 1.18648
\(288\) −7.61737 −0.448858
\(289\) −12.7147 −0.747921
\(290\) −18.2189 −1.06985
\(291\) −11.0986 −0.650611
\(292\) −36.2336 −2.12041
\(293\) 11.2319 0.656173 0.328087 0.944648i \(-0.393596\pi\)
0.328087 + 0.944648i \(0.393596\pi\)
\(294\) −5.29899 −0.309043
\(295\) −1.83222 −0.106676
\(296\) −66.7673 −3.88077
\(297\) 3.85296 0.223571
\(298\) −28.3494 −1.64224
\(299\) 0 0
\(300\) −4.63755 −0.267749
\(301\) −3.75786 −0.216599
\(302\) 44.4585 2.55830
\(303\) −11.5119 −0.661343
\(304\) 51.9271 2.97823
\(305\) 6.07024 0.347581
\(306\) 5.33331 0.304885
\(307\) 18.6464 1.06421 0.532104 0.846679i \(-0.321401\pi\)
0.532104 + 0.846679i \(0.321401\pi\)
\(308\) −39.7271 −2.26366
\(309\) 15.4906 0.881230
\(310\) −10.3143 −0.585815
\(311\) 14.5596 0.825597 0.412799 0.910822i \(-0.364551\pi\)
0.412799 + 0.910822i \(0.364551\pi\)
\(312\) 38.7848 2.19576
\(313\) −2.75237 −0.155573 −0.0777866 0.996970i \(-0.524785\pi\)
−0.0777866 + 0.996970i \(0.524785\pi\)
\(314\) 20.5665 1.16063
\(315\) 2.22333 0.125271
\(316\) −28.3362 −1.59404
\(317\) −34.5826 −1.94235 −0.971175 0.238368i \(-0.923388\pi\)
−0.971175 + 0.238368i \(0.923388\pi\)
\(318\) 27.1272 1.52122
\(319\) −27.2465 −1.52551
\(320\) 3.16145 0.176730
\(321\) −1.55180 −0.0866130
\(322\) 0 0
\(323\) −13.0585 −0.726597
\(324\) 4.63755 0.257642
\(325\) 5.70765 0.316604
\(326\) 10.8123 0.598835
\(327\) −0.200796 −0.0111041
\(328\) −61.4327 −3.39206
\(329\) −21.8317 −1.20362
\(330\) −9.92654 −0.546438
\(331\) −14.5713 −0.800909 −0.400454 0.916317i \(-0.631148\pi\)
−0.400454 + 0.916317i \(0.631148\pi\)
\(332\) −57.5477 −3.15834
\(333\) 9.82561 0.538440
\(334\) −65.0420 −3.55894
\(335\) 4.86287 0.265687
\(336\) −18.3019 −0.998452
\(337\) 10.1165 0.551082 0.275541 0.961289i \(-0.411143\pi\)
0.275541 + 0.961289i \(0.411143\pi\)
\(338\) −50.4379 −2.74346
\(339\) −10.0237 −0.544415
\(340\) −9.60022 −0.520645
\(341\) −15.4252 −0.835323
\(342\) −16.2520 −0.878806
\(343\) −20.1363 −1.08726
\(344\) 11.4852 0.619242
\(345\) 0 0
\(346\) 47.6986 2.56429
\(347\) 12.9436 0.694851 0.347425 0.937708i \(-0.387056\pi\)
0.347425 + 0.937708i \(0.387056\pi\)
\(348\) −32.7948 −1.75799
\(349\) −26.9395 −1.44204 −0.721019 0.692916i \(-0.756326\pi\)
−0.721019 + 0.692916i \(0.756326\pi\)
\(350\) −5.72807 −0.306178
\(351\) −5.70765 −0.304652
\(352\) 29.3494 1.56433
\(353\) −26.2272 −1.39593 −0.697965 0.716131i \(-0.745911\pi\)
−0.697965 + 0.716131i \(0.745911\pi\)
\(354\) −4.72043 −0.250888
\(355\) 0.951755 0.0505139
\(356\) 63.0319 3.34068
\(357\) 4.60254 0.243592
\(358\) −34.3270 −1.81424
\(359\) 9.08270 0.479366 0.239683 0.970851i \(-0.422956\pi\)
0.239683 + 0.970851i \(0.422956\pi\)
\(360\) −6.79523 −0.358140
\(361\) 20.7928 1.09436
\(362\) −65.1676 −3.42513
\(363\) −3.84527 −0.201824
\(364\) 58.8506 3.08461
\(365\) −7.81309 −0.408956
\(366\) 15.6390 0.817465
\(367\) −12.8673 −0.671668 −0.335834 0.941921i \(-0.609018\pi\)
−0.335834 + 0.941921i \(0.609018\pi\)
\(368\) 0 0
\(369\) 9.04057 0.470633
\(370\) −25.3142 −1.31602
\(371\) 23.4102 1.21540
\(372\) −18.5663 −0.962619
\(373\) −12.5724 −0.650975 −0.325488 0.945546i \(-0.605528\pi\)
−0.325488 + 0.945546i \(0.605528\pi\)
\(374\) −20.5490 −1.06256
\(375\) −1.00000 −0.0516398
\(376\) 66.7248 3.44107
\(377\) 40.3622 2.07876
\(378\) 5.72807 0.294620
\(379\) −0.856382 −0.0439894 −0.0219947 0.999758i \(-0.507002\pi\)
−0.0219947 + 0.999758i \(0.507002\pi\)
\(380\) 29.2543 1.50072
\(381\) 12.0303 0.616331
\(382\) 26.9158 1.37713
\(383\) −34.4088 −1.75821 −0.879103 0.476633i \(-0.841857\pi\)
−0.879103 + 0.476633i \(0.841857\pi\)
\(384\) −7.08975 −0.361797
\(385\) −8.56641 −0.436585
\(386\) 21.5595 1.09735
\(387\) −1.69019 −0.0859172
\(388\) 51.4702 2.61301
\(389\) 25.5349 1.29467 0.647336 0.762205i \(-0.275883\pi\)
0.647336 + 0.762205i \(0.275883\pi\)
\(390\) 14.7049 0.744610
\(391\) 0 0
\(392\) 13.9763 0.705911
\(393\) −16.6883 −0.841812
\(394\) 20.6345 1.03955
\(395\) −6.11017 −0.307436
\(396\) −17.8683 −0.897914
\(397\) 3.80517 0.190976 0.0954880 0.995431i \(-0.469559\pi\)
0.0954880 + 0.995431i \(0.469559\pi\)
\(398\) −41.7444 −2.09246
\(399\) −14.0251 −0.702134
\(400\) 8.23175 0.411588
\(401\) −6.10853 −0.305045 −0.152523 0.988300i \(-0.548740\pi\)
−0.152523 + 0.988300i \(0.548740\pi\)
\(402\) 12.5284 0.624861
\(403\) 22.8505 1.13826
\(404\) 53.3871 2.65611
\(405\) 1.00000 0.0496904
\(406\) −40.5066 −2.01031
\(407\) −37.8577 −1.87653
\(408\) −14.0668 −0.696413
\(409\) −5.97720 −0.295554 −0.147777 0.989021i \(-0.547212\pi\)
−0.147777 + 0.989021i \(0.547212\pi\)
\(410\) −23.2916 −1.15029
\(411\) 8.55331 0.421903
\(412\) −71.8384 −3.53922
\(413\) −4.07363 −0.200450
\(414\) 0 0
\(415\) −12.4091 −0.609138
\(416\) −43.4773 −2.13165
\(417\) 13.1286 0.642912
\(418\) 62.6181 3.06275
\(419\) −3.00501 −0.146804 −0.0734021 0.997302i \(-0.523386\pi\)
−0.0734021 + 0.997302i \(0.523386\pi\)
\(420\) −10.3108 −0.503116
\(421\) −23.6861 −1.15439 −0.577195 0.816606i \(-0.695853\pi\)
−0.577195 + 0.816606i \(0.695853\pi\)
\(422\) −58.9930 −2.87174
\(423\) −9.81936 −0.477434
\(424\) −71.5493 −3.47474
\(425\) −2.07011 −0.100415
\(426\) 2.45205 0.118802
\(427\) 13.4962 0.653126
\(428\) 7.19654 0.347858
\(429\) 21.9913 1.06175
\(430\) 4.35451 0.209993
\(431\) −6.51812 −0.313967 −0.156983 0.987601i \(-0.550177\pi\)
−0.156983 + 0.987601i \(0.550177\pi\)
\(432\) −8.23175 −0.396050
\(433\) 30.7910 1.47972 0.739860 0.672761i \(-0.234892\pi\)
0.739860 + 0.672761i \(0.234892\pi\)
\(434\) −22.9322 −1.10078
\(435\) −7.07159 −0.339057
\(436\) 0.931202 0.0445965
\(437\) 0 0
\(438\) −20.1292 −0.961811
\(439\) 8.28439 0.395392 0.197696 0.980263i \(-0.436654\pi\)
0.197696 + 0.980263i \(0.436654\pi\)
\(440\) 26.1817 1.24816
\(441\) −2.05679 −0.0979422
\(442\) 30.4407 1.44791
\(443\) 10.2668 0.487790 0.243895 0.969802i \(-0.421575\pi\)
0.243895 + 0.969802i \(0.421575\pi\)
\(444\) −45.5667 −2.16250
\(445\) 13.5916 0.644305
\(446\) −28.9224 −1.36952
\(447\) −11.0037 −0.520458
\(448\) 7.02896 0.332087
\(449\) −23.7501 −1.12084 −0.560418 0.828210i \(-0.689360\pi\)
−0.560418 + 0.828210i \(0.689360\pi\)
\(450\) −2.57634 −0.121450
\(451\) −34.8329 −1.64022
\(452\) 46.4856 2.18650
\(453\) 17.2564 0.810778
\(454\) −8.94385 −0.419756
\(455\) 12.6900 0.594917
\(456\) 42.8653 2.00735
\(457\) −6.21034 −0.290508 −0.145254 0.989394i \(-0.546400\pi\)
−0.145254 + 0.989394i \(0.546400\pi\)
\(458\) 48.9589 2.28770
\(459\) 2.07011 0.0966243
\(460\) 0 0
\(461\) −15.1396 −0.705120 −0.352560 0.935789i \(-0.614689\pi\)
−0.352560 + 0.935789i \(0.614689\pi\)
\(462\) −22.0700 −1.02679
\(463\) 31.2455 1.45210 0.726051 0.687641i \(-0.241354\pi\)
0.726051 + 0.687641i \(0.241354\pi\)
\(464\) 58.2116 2.70241
\(465\) −4.00348 −0.185657
\(466\) 25.9964 1.20426
\(467\) −7.39242 −0.342080 −0.171040 0.985264i \(-0.554713\pi\)
−0.171040 + 0.985264i \(0.554713\pi\)
\(468\) 26.4695 1.22355
\(469\) 10.8118 0.499242
\(470\) 25.2981 1.16691
\(471\) 7.98282 0.367829
\(472\) 12.4503 0.573074
\(473\) 6.51223 0.299433
\(474\) −15.7419 −0.723049
\(475\) 6.30815 0.289438
\(476\) −21.3445 −0.978323
\(477\) 10.5293 0.482105
\(478\) 1.92283 0.0879481
\(479\) 4.43812 0.202783 0.101392 0.994847i \(-0.467671\pi\)
0.101392 + 0.994847i \(0.467671\pi\)
\(480\) 7.61737 0.347684
\(481\) 56.0812 2.55708
\(482\) 25.4613 1.15973
\(483\) 0 0
\(484\) 17.8326 0.810574
\(485\) 11.0986 0.503961
\(486\) 2.57634 0.116865
\(487\) 20.6904 0.937571 0.468785 0.883312i \(-0.344692\pi\)
0.468785 + 0.883312i \(0.344692\pi\)
\(488\) −41.2487 −1.86724
\(489\) 4.19674 0.189783
\(490\) 5.29899 0.239384
\(491\) 2.13813 0.0964925 0.0482462 0.998835i \(-0.484637\pi\)
0.0482462 + 0.998835i \(0.484637\pi\)
\(492\) −41.9261 −1.89017
\(493\) −14.6389 −0.659305
\(494\) −92.7606 −4.17350
\(495\) −3.85296 −0.173177
\(496\) 32.9556 1.47975
\(497\) 2.11607 0.0949187
\(498\) −31.9700 −1.43261
\(499\) −30.8994 −1.38325 −0.691623 0.722259i \(-0.743104\pi\)
−0.691623 + 0.722259i \(0.743104\pi\)
\(500\) 4.63755 0.207397
\(501\) −25.2458 −1.12790
\(502\) −9.09693 −0.406016
\(503\) 0.210342 0.00937869 0.00468935 0.999989i \(-0.498507\pi\)
0.00468935 + 0.999989i \(0.498507\pi\)
\(504\) −15.1081 −0.672967
\(505\) 11.5119 0.512274
\(506\) 0 0
\(507\) −19.5773 −0.869459
\(508\) −55.7910 −2.47533
\(509\) −18.8512 −0.835564 −0.417782 0.908547i \(-0.637192\pi\)
−0.417782 + 0.908547i \(0.637192\pi\)
\(510\) −5.33331 −0.236163
\(511\) −17.3711 −0.768453
\(512\) 49.1690 2.17298
\(513\) −6.30815 −0.278512
\(514\) 61.9103 2.73075
\(515\) −15.4906 −0.682598
\(516\) 7.83834 0.345064
\(517\) 37.8336 1.66392
\(518\) −56.2818 −2.47288
\(519\) 18.5140 0.812677
\(520\) −38.7848 −1.70083
\(521\) −14.5923 −0.639302 −0.319651 0.947535i \(-0.603566\pi\)
−0.319651 + 0.947535i \(0.603566\pi\)
\(522\) −18.2189 −0.797418
\(523\) −36.5014 −1.59609 −0.798047 0.602595i \(-0.794133\pi\)
−0.798047 + 0.602595i \(0.794133\pi\)
\(524\) 77.3927 3.38091
\(525\) −2.22333 −0.0970343
\(526\) 1.95043 0.0850429
\(527\) −8.28762 −0.361015
\(528\) 31.7166 1.38029
\(529\) 0 0
\(530\) −27.1272 −1.17833
\(531\) −1.83222 −0.0795115
\(532\) 65.0422 2.81994
\(533\) 51.6004 2.23506
\(534\) 35.0167 1.51532
\(535\) 1.55180 0.0670901
\(536\) −33.0443 −1.42730
\(537\) −13.3239 −0.574970
\(538\) −70.0627 −3.02062
\(539\) 7.92471 0.341341
\(540\) −4.63755 −0.199568
\(541\) 46.1380 1.98363 0.991813 0.127698i \(-0.0407589\pi\)
0.991813 + 0.127698i \(0.0407589\pi\)
\(542\) 6.61612 0.284187
\(543\) −25.2946 −1.08550
\(544\) 15.7688 0.676080
\(545\) 0.200796 0.00860117
\(546\) 32.6939 1.39917
\(547\) −6.83035 −0.292045 −0.146022 0.989281i \(-0.546647\pi\)
−0.146022 + 0.989281i \(0.546647\pi\)
\(548\) −39.6664 −1.69446
\(549\) 6.07024 0.259072
\(550\) 9.92654 0.423269
\(551\) 44.6087 1.90039
\(552\) 0 0
\(553\) −13.5849 −0.577691
\(554\) 25.7880 1.09563
\(555\) −9.82561 −0.417074
\(556\) −60.8846 −2.58208
\(557\) −18.2801 −0.774553 −0.387277 0.921964i \(-0.626584\pi\)
−0.387277 + 0.921964i \(0.626584\pi\)
\(558\) −10.3143 −0.436641
\(559\) −9.64702 −0.408025
\(560\) 18.3019 0.773398
\(561\) −7.97603 −0.336748
\(562\) 32.2194 1.35909
\(563\) 8.28316 0.349094 0.174547 0.984649i \(-0.444154\pi\)
0.174547 + 0.984649i \(0.444154\pi\)
\(564\) 45.5378 1.91749
\(565\) 10.0237 0.421702
\(566\) 31.2608 1.31399
\(567\) 2.22333 0.0933713
\(568\) −6.46740 −0.271366
\(569\) −7.04869 −0.295497 −0.147748 0.989025i \(-0.547203\pi\)
−0.147748 + 0.989025i \(0.547203\pi\)
\(570\) 16.2520 0.680720
\(571\) −9.17289 −0.383874 −0.191937 0.981407i \(-0.561477\pi\)
−0.191937 + 0.981407i \(0.561477\pi\)
\(572\) −101.986 −4.26424
\(573\) 10.4473 0.436441
\(574\) −51.7850 −2.16147
\(575\) 0 0
\(576\) 3.16145 0.131727
\(577\) 2.97732 0.123947 0.0619737 0.998078i \(-0.480260\pi\)
0.0619737 + 0.998078i \(0.480260\pi\)
\(578\) 32.7573 1.36253
\(579\) 8.36824 0.347772
\(580\) 32.7948 1.36173
\(581\) −27.5895 −1.14461
\(582\) 28.5938 1.18525
\(583\) −40.5691 −1.68020
\(584\) 53.0917 2.19695
\(585\) 5.70765 0.235982
\(586\) −28.9372 −1.19538
\(587\) 7.78628 0.321374 0.160687 0.987005i \(-0.448629\pi\)
0.160687 + 0.987005i \(0.448629\pi\)
\(588\) 9.53844 0.393359
\(589\) 25.2545 1.04059
\(590\) 4.72043 0.194337
\(591\) 8.00920 0.329455
\(592\) 80.8820 3.32423
\(593\) −23.6189 −0.969911 −0.484956 0.874539i \(-0.661164\pi\)
−0.484956 + 0.874539i \(0.661164\pi\)
\(594\) −9.92654 −0.407291
\(595\) −4.60254 −0.188686
\(596\) 51.0303 2.09028
\(597\) −16.2030 −0.663143
\(598\) 0 0
\(599\) −0.214192 −0.00875165 −0.00437582 0.999990i \(-0.501393\pi\)
−0.00437582 + 0.999990i \(0.501393\pi\)
\(600\) 6.79523 0.277414
\(601\) −8.11936 −0.331196 −0.165598 0.986193i \(-0.552955\pi\)
−0.165598 + 0.986193i \(0.552955\pi\)
\(602\) 9.68153 0.394590
\(603\) 4.86287 0.198031
\(604\) −80.0275 −3.25627
\(605\) 3.84527 0.156332
\(606\) 29.6587 1.20480
\(607\) −42.1273 −1.70989 −0.854946 0.518716i \(-0.826410\pi\)
−0.854946 + 0.518716i \(0.826410\pi\)
\(608\) −48.0515 −1.94875
\(609\) −15.7225 −0.637108
\(610\) −15.6390 −0.633206
\(611\) −56.0455 −2.26736
\(612\) −9.60022 −0.388066
\(613\) 47.6665 1.92523 0.962616 0.270869i \(-0.0873110\pi\)
0.962616 + 0.270869i \(0.0873110\pi\)
\(614\) −48.0396 −1.93872
\(615\) −9.04057 −0.364551
\(616\) 58.2107 2.34538
\(617\) 10.3245 0.415648 0.207824 0.978166i \(-0.433362\pi\)
0.207824 + 0.978166i \(0.433362\pi\)
\(618\) −39.9091 −1.60538
\(619\) 38.0148 1.52794 0.763972 0.645250i \(-0.223247\pi\)
0.763972 + 0.645250i \(0.223247\pi\)
\(620\) 18.5663 0.745641
\(621\) 0 0
\(622\) −37.5105 −1.50403
\(623\) 30.2187 1.21069
\(624\) −46.9840 −1.88087
\(625\) 1.00000 0.0400000
\(626\) 7.09105 0.283416
\(627\) 24.3050 0.970649
\(628\) −37.0207 −1.47729
\(629\) −20.3401 −0.811011
\(630\) −5.72807 −0.228212
\(631\) 29.9890 1.19384 0.596922 0.802299i \(-0.296390\pi\)
0.596922 + 0.802299i \(0.296390\pi\)
\(632\) 41.5200 1.65158
\(633\) −22.8980 −0.910112
\(634\) 89.0965 3.53848
\(635\) −12.0303 −0.477408
\(636\) −48.8303 −1.93625
\(637\) −11.7394 −0.465133
\(638\) 70.1964 2.77910
\(639\) 0.951755 0.0376509
\(640\) 7.08975 0.280247
\(641\) −20.9929 −0.829170 −0.414585 0.910011i \(-0.636073\pi\)
−0.414585 + 0.910011i \(0.636073\pi\)
\(642\) 3.99797 0.157787
\(643\) 45.1488 1.78050 0.890248 0.455476i \(-0.150531\pi\)
0.890248 + 0.455476i \(0.150531\pi\)
\(644\) 0 0
\(645\) 1.69019 0.0665512
\(646\) 33.6433 1.32368
\(647\) −24.9572 −0.981169 −0.490585 0.871394i \(-0.663217\pi\)
−0.490585 + 0.871394i \(0.663217\pi\)
\(648\) −6.79523 −0.266942
\(649\) 7.05946 0.277108
\(650\) −14.7049 −0.576773
\(651\) −8.90107 −0.348860
\(652\) −19.4626 −0.762214
\(653\) 23.8399 0.932925 0.466463 0.884541i \(-0.345528\pi\)
0.466463 + 0.884541i \(0.345528\pi\)
\(654\) 0.517320 0.0202288
\(655\) 16.6883 0.652065
\(656\) 74.4197 2.90560
\(657\) −7.81309 −0.304818
\(658\) 56.2460 2.19270
\(659\) 8.97697 0.349693 0.174847 0.984596i \(-0.444057\pi\)
0.174847 + 0.984596i \(0.444057\pi\)
\(660\) 17.8683 0.695521
\(661\) 44.9308 1.74761 0.873803 0.486280i \(-0.161646\pi\)
0.873803 + 0.486280i \(0.161646\pi\)
\(662\) 37.5406 1.45906
\(663\) 11.8155 0.458874
\(664\) 84.3225 3.27235
\(665\) 14.0251 0.543871
\(666\) −25.3142 −0.980904
\(667\) 0 0
\(668\) 117.079 4.52992
\(669\) −11.2262 −0.434028
\(670\) −12.5284 −0.484016
\(671\) −23.3884 −0.902898
\(672\) 16.9359 0.653318
\(673\) 50.3579 1.94116 0.970578 0.240788i \(-0.0774057\pi\)
0.970578 + 0.240788i \(0.0774057\pi\)
\(674\) −26.0636 −1.00393
\(675\) −1.00000 −0.0384900
\(676\) 90.7907 3.49195
\(677\) 29.6193 1.13836 0.569181 0.822212i \(-0.307260\pi\)
0.569181 + 0.822212i \(0.307260\pi\)
\(678\) 25.8246 0.991788
\(679\) 24.6759 0.946973
\(680\) 14.0668 0.539439
\(681\) −3.47153 −0.133029
\(682\) 39.7407 1.52175
\(683\) 0.363453 0.0139071 0.00695356 0.999976i \(-0.497787\pi\)
0.00695356 + 0.999976i \(0.497787\pi\)
\(684\) 29.2543 1.11857
\(685\) −8.55331 −0.326805
\(686\) 51.8779 1.98071
\(687\) 19.0032 0.725019
\(688\) −13.9132 −0.530437
\(689\) 60.0978 2.28954
\(690\) 0 0
\(691\) −7.60415 −0.289276 −0.144638 0.989485i \(-0.546202\pi\)
−0.144638 + 0.989485i \(0.546202\pi\)
\(692\) −85.8598 −3.26390
\(693\) −8.56641 −0.325411
\(694\) −33.3473 −1.26584
\(695\) −13.1286 −0.497997
\(696\) 48.0531 1.82145
\(697\) −18.7149 −0.708879
\(698\) 69.4054 2.62703
\(699\) 10.0904 0.381654
\(700\) 10.3108 0.389712
\(701\) −29.0793 −1.09831 −0.549154 0.835721i \(-0.685050\pi\)
−0.549154 + 0.835721i \(0.685050\pi\)
\(702\) 14.7049 0.555000
\(703\) 61.9814 2.33767
\(704\) −12.1809 −0.459086
\(705\) 9.81936 0.369819
\(706\) 67.5702 2.54304
\(707\) 25.5949 0.962594
\(708\) 8.49700 0.319337
\(709\) 9.36886 0.351855 0.175927 0.984403i \(-0.443708\pi\)
0.175927 + 0.984403i \(0.443708\pi\)
\(710\) −2.45205 −0.0920238
\(711\) −6.11017 −0.229149
\(712\) −92.3583 −3.46127
\(713\) 0 0
\(714\) −11.8577 −0.443764
\(715\) −21.9913 −0.822429
\(716\) 61.7903 2.30921
\(717\) 0.746340 0.0278726
\(718\) −23.4002 −0.873286
\(719\) 34.3557 1.28125 0.640626 0.767853i \(-0.278675\pi\)
0.640626 + 0.767853i \(0.278675\pi\)
\(720\) 8.23175 0.306779
\(721\) −34.4408 −1.28264
\(722\) −53.5693 −1.99364
\(723\) 9.88272 0.367542
\(724\) 117.305 4.35960
\(725\) 7.07159 0.262632
\(726\) 9.90674 0.367674
\(727\) −49.5581 −1.83801 −0.919003 0.394250i \(-0.871004\pi\)
−0.919003 + 0.394250i \(0.871004\pi\)
\(728\) −86.2316 −3.19596
\(729\) 1.00000 0.0370370
\(730\) 20.1292 0.745015
\(731\) 3.49887 0.129410
\(732\) −28.1510 −1.04049
\(733\) 23.7820 0.878409 0.439205 0.898387i \(-0.355260\pi\)
0.439205 + 0.898387i \(0.355260\pi\)
\(734\) 33.1506 1.22361
\(735\) 2.05679 0.0758657
\(736\) 0 0
\(737\) −18.7364 −0.690165
\(738\) −23.2916 −0.857376
\(739\) −38.5883 −1.41949 −0.709747 0.704456i \(-0.751191\pi\)
−0.709747 + 0.704456i \(0.751191\pi\)
\(740\) 45.5667 1.67507
\(741\) −36.0047 −1.32267
\(742\) −60.3128 −2.21415
\(743\) 39.0138 1.43128 0.715638 0.698471i \(-0.246136\pi\)
0.715638 + 0.698471i \(0.246136\pi\)
\(744\) 27.2045 0.997367
\(745\) 11.0037 0.403145
\(746\) 32.3909 1.18591
\(747\) −12.4091 −0.454024
\(748\) 36.9892 1.35246
\(749\) 3.45017 0.126066
\(750\) 2.57634 0.0940748
\(751\) 39.1497 1.42859 0.714297 0.699842i \(-0.246746\pi\)
0.714297 + 0.699842i \(0.246746\pi\)
\(752\) −80.8306 −2.94759
\(753\) −3.53095 −0.128675
\(754\) −103.987 −3.78698
\(755\) −17.2564 −0.628026
\(756\) −10.3108 −0.375001
\(757\) −27.3944 −0.995667 −0.497833 0.867273i \(-0.665871\pi\)
−0.497833 + 0.867273i \(0.665871\pi\)
\(758\) 2.20633 0.0801376
\(759\) 0 0
\(760\) −42.8653 −1.55489
\(761\) 4.52175 0.163913 0.0819567 0.996636i \(-0.473883\pi\)
0.0819567 + 0.996636i \(0.473883\pi\)
\(762\) −30.9942 −1.12280
\(763\) 0.446437 0.0161621
\(764\) −48.4497 −1.75285
\(765\) −2.07011 −0.0748449
\(766\) 88.6488 3.20301
\(767\) −10.4577 −0.377605
\(768\) 24.5885 0.887262
\(769\) 9.30471 0.335536 0.167768 0.985826i \(-0.446344\pi\)
0.167768 + 0.985826i \(0.446344\pi\)
\(770\) 22.0700 0.795348
\(771\) 24.0303 0.865430
\(772\) −38.8081 −1.39673
\(773\) 32.0452 1.15259 0.576293 0.817243i \(-0.304499\pi\)
0.576293 + 0.817243i \(0.304499\pi\)
\(774\) 4.35451 0.156520
\(775\) 4.00348 0.143809
\(776\) −75.4175 −2.70733
\(777\) −21.8456 −0.783707
\(778\) −65.7867 −2.35857
\(779\) 57.0293 2.04329
\(780\) −26.4695 −0.947761
\(781\) −3.66707 −0.131218
\(782\) 0 0
\(783\) −7.07159 −0.252718
\(784\) −16.9310 −0.604677
\(785\) −7.98282 −0.284919
\(786\) 42.9947 1.53357
\(787\) 13.5428 0.482748 0.241374 0.970432i \(-0.422402\pi\)
0.241374 + 0.970432i \(0.422402\pi\)
\(788\) −37.1431 −1.32317
\(789\) 0.757054 0.0269518
\(790\) 15.7419 0.560072
\(791\) 22.2861 0.792403
\(792\) 26.1817 0.930327
\(793\) 34.6468 1.23035
\(794\) −9.80343 −0.347911
\(795\) −10.5293 −0.373437
\(796\) 75.1420 2.66334
\(797\) −18.0192 −0.638274 −0.319137 0.947709i \(-0.603393\pi\)
−0.319137 + 0.947709i \(0.603393\pi\)
\(798\) 36.1335 1.27911
\(799\) 20.3271 0.719122
\(800\) −7.61737 −0.269315
\(801\) 13.5916 0.480237
\(802\) 15.7377 0.555717
\(803\) 30.1035 1.06233
\(804\) −22.5518 −0.795341
\(805\) 0 0
\(806\) −58.8706 −2.07363
\(807\) −27.1946 −0.957297
\(808\) −78.2262 −2.75199
\(809\) −23.7507 −0.835031 −0.417516 0.908670i \(-0.637099\pi\)
−0.417516 + 0.908670i \(0.637099\pi\)
\(810\) −2.57634 −0.0905235
\(811\) −19.9626 −0.700981 −0.350490 0.936566i \(-0.613985\pi\)
−0.350490 + 0.936566i \(0.613985\pi\)
\(812\) 72.9139 2.55878
\(813\) 2.56803 0.0900646
\(814\) 97.5343 3.41858
\(815\) −4.19674 −0.147006
\(816\) 17.0406 0.596540
\(817\) −10.6620 −0.373015
\(818\) 15.3993 0.538425
\(819\) 12.6900 0.443425
\(820\) 41.9261 1.46412
\(821\) 24.1735 0.843662 0.421831 0.906674i \(-0.361388\pi\)
0.421831 + 0.906674i \(0.361388\pi\)
\(822\) −22.0363 −0.768603
\(823\) 10.4432 0.364027 0.182013 0.983296i \(-0.441739\pi\)
0.182013 + 0.983296i \(0.441739\pi\)
\(824\) 105.262 3.66698
\(825\) 3.85296 0.134143
\(826\) 10.4951 0.365171
\(827\) 2.24062 0.0779140 0.0389570 0.999241i \(-0.487596\pi\)
0.0389570 + 0.999241i \(0.487596\pi\)
\(828\) 0 0
\(829\) 9.11773 0.316672 0.158336 0.987385i \(-0.449387\pi\)
0.158336 + 0.987385i \(0.449387\pi\)
\(830\) 31.9700 1.10970
\(831\) 10.0095 0.347227
\(832\) 18.0445 0.625579
\(833\) 4.25777 0.147523
\(834\) −33.8239 −1.17122
\(835\) 25.2458 0.873669
\(836\) −112.716 −3.89835
\(837\) −4.00348 −0.138380
\(838\) 7.74193 0.267440
\(839\) −0.637012 −0.0219921 −0.0109961 0.999940i \(-0.503500\pi\)
−0.0109961 + 0.999940i \(0.503500\pi\)
\(840\) 15.1081 0.521278
\(841\) 21.0074 0.724394
\(842\) 61.0235 2.10301
\(843\) 12.5059 0.430724
\(844\) 106.190 3.65522
\(845\) 19.5773 0.673480
\(846\) 25.2981 0.869765
\(847\) 8.54932 0.293758
\(848\) 86.6749 2.97643
\(849\) 12.1338 0.416431
\(850\) 5.33331 0.182931
\(851\) 0 0
\(852\) −4.41381 −0.151215
\(853\) −3.30135 −0.113036 −0.0565180 0.998402i \(-0.518000\pi\)
−0.0565180 + 0.998402i \(0.518000\pi\)
\(854\) −34.7708 −1.18983
\(855\) 6.30815 0.215734
\(856\) −10.5448 −0.360415
\(857\) −7.98037 −0.272604 −0.136302 0.990667i \(-0.543522\pi\)
−0.136302 + 0.990667i \(0.543522\pi\)
\(858\) −56.6573 −1.93425
\(859\) −27.7698 −0.947492 −0.473746 0.880662i \(-0.657099\pi\)
−0.473746 + 0.880662i \(0.657099\pi\)
\(860\) −7.83834 −0.267285
\(861\) −20.1002 −0.685013
\(862\) 16.7929 0.571969
\(863\) −28.6753 −0.976119 −0.488059 0.872810i \(-0.662295\pi\)
−0.488059 + 0.872810i \(0.662295\pi\)
\(864\) 7.61737 0.259148
\(865\) −18.5140 −0.629497
\(866\) −79.3281 −2.69568
\(867\) 12.7147 0.431812
\(868\) 41.2791 1.40110
\(869\) 23.5422 0.798615
\(870\) 18.2189 0.617677
\(871\) 27.7556 0.940462
\(872\) −1.36446 −0.0462063
\(873\) 11.0986 0.375630
\(874\) 0 0
\(875\) 2.22333 0.0751624
\(876\) 36.2336 1.22422
\(877\) 13.8484 0.467626 0.233813 0.972282i \(-0.424880\pi\)
0.233813 + 0.972282i \(0.424880\pi\)
\(878\) −21.3434 −0.720306
\(879\) −11.2319 −0.378842
\(880\) −31.7166 −1.06917
\(881\) 29.9638 1.00950 0.504752 0.863264i \(-0.331584\pi\)
0.504752 + 0.863264i \(0.331584\pi\)
\(882\) 5.29899 0.178426
\(883\) 29.6813 0.998856 0.499428 0.866355i \(-0.333544\pi\)
0.499428 + 0.866355i \(0.333544\pi\)
\(884\) −54.7947 −1.84295
\(885\) 1.83222 0.0615894
\(886\) −26.4508 −0.888631
\(887\) −20.1448 −0.676395 −0.338198 0.941075i \(-0.609817\pi\)
−0.338198 + 0.941075i \(0.609817\pi\)
\(888\) 66.7673 2.24056
\(889\) −26.7474 −0.897078
\(890\) −35.0167 −1.17376
\(891\) −3.85296 −0.129079
\(892\) 52.0618 1.74316
\(893\) −61.9420 −2.07281
\(894\) 28.3494 0.948145
\(895\) 13.3239 0.445370
\(896\) 15.7629 0.526601
\(897\) 0 0
\(898\) 61.1884 2.04188
\(899\) 28.3110 0.944223
\(900\) 4.63755 0.154585
\(901\) −21.7968 −0.726158
\(902\) 89.7416 2.98807
\(903\) 3.75786 0.125054
\(904\) −68.1136 −2.26542
\(905\) 25.2946 0.840821
\(906\) −44.4585 −1.47703
\(907\) 19.5795 0.650127 0.325063 0.945692i \(-0.394614\pi\)
0.325063 + 0.945692i \(0.394614\pi\)
\(908\) 16.0994 0.534277
\(909\) 11.5119 0.381827
\(910\) −32.6939 −1.08379
\(911\) 43.2187 1.43190 0.715949 0.698152i \(-0.245994\pi\)
0.715949 + 0.698152i \(0.245994\pi\)
\(912\) −51.9271 −1.71948
\(913\) 47.8116 1.58233
\(914\) 16.0000 0.529232
\(915\) −6.07024 −0.200676
\(916\) −88.1284 −2.91184
\(917\) 37.1036 1.22527
\(918\) −5.33331 −0.176025
\(919\) 44.5514 1.46962 0.734808 0.678275i \(-0.237272\pi\)
0.734808 + 0.678275i \(0.237272\pi\)
\(920\) 0 0
\(921\) −18.6464 −0.614421
\(922\) 39.0048 1.28455
\(923\) 5.43229 0.178806
\(924\) 39.7271 1.30693
\(925\) 9.82561 0.323064
\(926\) −80.4991 −2.64537
\(927\) −15.4906 −0.508778
\(928\) −53.8669 −1.76827
\(929\) −27.0033 −0.885951 −0.442976 0.896534i \(-0.646077\pi\)
−0.442976 + 0.896534i \(0.646077\pi\)
\(930\) 10.3143 0.338220
\(931\) −12.9745 −0.425223
\(932\) −46.7948 −1.53281
\(933\) −14.5596 −0.476659
\(934\) 19.0454 0.623185
\(935\) 7.97603 0.260844
\(936\) −38.7848 −1.26772
\(937\) −6.47123 −0.211406 −0.105703 0.994398i \(-0.533709\pi\)
−0.105703 + 0.994398i \(0.533709\pi\)
\(938\) −27.8549 −0.909494
\(939\) 2.75237 0.0898202
\(940\) −45.5378 −1.48528
\(941\) 15.2810 0.498147 0.249073 0.968485i \(-0.419874\pi\)
0.249073 + 0.968485i \(0.419874\pi\)
\(942\) −20.5665 −0.670092
\(943\) 0 0
\(944\) −15.0824 −0.490889
\(945\) −2.22333 −0.0723251
\(946\) −16.7777 −0.545491
\(947\) −44.7053 −1.45273 −0.726364 0.687311i \(-0.758791\pi\)
−0.726364 + 0.687311i \(0.758791\pi\)
\(948\) 28.3362 0.920317
\(949\) −44.5944 −1.44760
\(950\) −16.2520 −0.527283
\(951\) 34.5826 1.12142
\(952\) 31.2753 1.01364
\(953\) 20.6174 0.667862 0.333931 0.942598i \(-0.391625\pi\)
0.333931 + 0.942598i \(0.391625\pi\)
\(954\) −27.1272 −0.878275
\(955\) −10.4473 −0.338066
\(956\) −3.46119 −0.111943
\(957\) 27.2465 0.880755
\(958\) −11.4341 −0.369420
\(959\) −19.0169 −0.614086
\(960\) −3.16145 −0.102035
\(961\) −14.9722 −0.482973
\(962\) −144.484 −4.65837
\(963\) 1.55180 0.0500060
\(964\) −45.8316 −1.47614
\(965\) −8.36824 −0.269383
\(966\) 0 0
\(967\) −7.72807 −0.248518 −0.124259 0.992250i \(-0.539655\pi\)
−0.124259 + 0.992250i \(0.539655\pi\)
\(968\) −26.1295 −0.839834
\(969\) 13.0585 0.419501
\(970\) −28.5938 −0.918091
\(971\) 30.0298 0.963704 0.481852 0.876253i \(-0.339964\pi\)
0.481852 + 0.876253i \(0.339964\pi\)
\(972\) −4.63755 −0.148749
\(973\) −29.1893 −0.935767
\(974\) −53.3055 −1.70802
\(975\) −5.70765 −0.182791
\(976\) 49.9687 1.59946
\(977\) 24.5148 0.784298 0.392149 0.919902i \(-0.371732\pi\)
0.392149 + 0.919902i \(0.371732\pi\)
\(978\) −10.8123 −0.345738
\(979\) −52.3680 −1.67369
\(980\) −9.53844 −0.304694
\(981\) 0.200796 0.00641093
\(982\) −5.50856 −0.175785
\(983\) 0.365112 0.0116453 0.00582263 0.999983i \(-0.498147\pi\)
0.00582263 + 0.999983i \(0.498147\pi\)
\(984\) 61.4327 1.95840
\(985\) −8.00920 −0.255194
\(986\) 37.7150 1.20109
\(987\) 21.8317 0.694911
\(988\) 166.974 5.31214
\(989\) 0 0
\(990\) 9.92654 0.315486
\(991\) −35.5339 −1.12877 −0.564386 0.825511i \(-0.690887\pi\)
−0.564386 + 0.825511i \(0.690887\pi\)
\(992\) −30.4959 −0.968247
\(993\) 14.5713 0.462405
\(994\) −5.45172 −0.172918
\(995\) 16.2030 0.513668
\(996\) 57.5477 1.82347
\(997\) −47.0929 −1.49145 −0.745724 0.666255i \(-0.767896\pi\)
−0.745724 + 0.666255i \(0.767896\pi\)
\(998\) 79.6074 2.51993
\(999\) −9.82561 −0.310869
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bk.1.1 yes 10
23.22 odd 2 7935.2.a.bj.1.1 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7935.2.a.bj.1.1 10 23.22 odd 2
7935.2.a.bk.1.1 yes 10 1.1 even 1 trivial