Properties

Label 7935.2.a.bj.1.3
Level $7935$
Weight $2$
Character 7935.1
Self dual yes
Analytic conductor $63.361$
Analytic rank $1$
Dimension $10$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7935,2,Mod(1,7935)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7935.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7935, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 7935 = 3 \cdot 5 \cdot 23^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7935.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,-10,16,-10,0,-6] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3612940039\)
Analytic rank: \(1\)
Dimension: \(10\)
Coefficient field: \(\mathbb{Q}[x]/(x^{10} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} - 18x^{8} + 111x^{6} - 4x^{5} - 270x^{4} + 32x^{3} + 218x^{2} - 60x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.80133\) of defining polynomial
Character \(\chi\) \(=\) 7935.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80133 q^{2} -1.00000 q^{3} +1.24478 q^{4} -1.00000 q^{5} +1.80133 q^{6} +1.16943 q^{7} +1.36039 q^{8} +1.00000 q^{9} +1.80133 q^{10} -4.93264 q^{11} -1.24478 q^{12} -5.72358 q^{13} -2.10653 q^{14} +1.00000 q^{15} -4.94008 q^{16} -5.96836 q^{17} -1.80133 q^{18} -3.76464 q^{19} -1.24478 q^{20} -1.16943 q^{21} +8.88530 q^{22} -1.36039 q^{24} +1.00000 q^{25} +10.3100 q^{26} -1.00000 q^{27} +1.45569 q^{28} +10.2723 q^{29} -1.80133 q^{30} +2.01570 q^{31} +6.17792 q^{32} +4.93264 q^{33} +10.7510 q^{34} -1.16943 q^{35} +1.24478 q^{36} +10.8290 q^{37} +6.78136 q^{38} +5.72358 q^{39} -1.36039 q^{40} +1.84318 q^{41} +2.10653 q^{42} -11.4820 q^{43} -6.14006 q^{44} -1.00000 q^{45} +9.40399 q^{47} +4.94008 q^{48} -5.63243 q^{49} -1.80133 q^{50} +5.96836 q^{51} -7.12461 q^{52} +0.718670 q^{53} +1.80133 q^{54} +4.93264 q^{55} +1.59089 q^{56} +3.76464 q^{57} -18.5039 q^{58} +6.18960 q^{59} +1.24478 q^{60} +4.15996 q^{61} -3.63093 q^{62} +1.16943 q^{63} -1.24830 q^{64} +5.72358 q^{65} -8.88530 q^{66} +15.1497 q^{67} -7.42931 q^{68} +2.10653 q^{70} +9.42763 q^{71} +1.36039 q^{72} +9.34659 q^{73} -19.5065 q^{74} -1.00000 q^{75} -4.68616 q^{76} -5.76838 q^{77} -10.3100 q^{78} -7.30497 q^{79} +4.94008 q^{80} +1.00000 q^{81} -3.32018 q^{82} +11.7083 q^{83} -1.45569 q^{84} +5.96836 q^{85} +20.6828 q^{86} -10.2723 q^{87} -6.71033 q^{88} -3.77295 q^{89} +1.80133 q^{90} -6.69333 q^{91} -2.01570 q^{93} -16.9397 q^{94} +3.76464 q^{95} -6.17792 q^{96} -15.4375 q^{97} +10.1459 q^{98} -4.93264 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 10 q^{3} + 16 q^{4} - 10 q^{5} - 6 q^{7} + 10 q^{9} + 4 q^{11} - 16 q^{12} - 4 q^{13} + 10 q^{15} + 28 q^{16} - 10 q^{17} - 8 q^{19} - 16 q^{20} + 6 q^{21} + 4 q^{22} + 10 q^{25} - 8 q^{26} - 10 q^{27}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80133 −1.27373 −0.636866 0.770975i \(-0.719769\pi\)
−0.636866 + 0.770975i \(0.719769\pi\)
\(3\) −1.00000 −0.577350
\(4\) 1.24478 0.622391
\(5\) −1.00000 −0.447214
\(6\) 1.80133 0.735389
\(7\) 1.16943 0.442003 0.221002 0.975273i \(-0.429067\pi\)
0.221002 + 0.975273i \(0.429067\pi\)
\(8\) 1.36039 0.480972
\(9\) 1.00000 0.333333
\(10\) 1.80133 0.569630
\(11\) −4.93264 −1.48725 −0.743623 0.668599i \(-0.766894\pi\)
−0.743623 + 0.668599i \(0.766894\pi\)
\(12\) −1.24478 −0.359338
\(13\) −5.72358 −1.58743 −0.793717 0.608287i \(-0.791857\pi\)
−0.793717 + 0.608287i \(0.791857\pi\)
\(14\) −2.10653 −0.562993
\(15\) 1.00000 0.258199
\(16\) −4.94008 −1.23502
\(17\) −5.96836 −1.44754 −0.723770 0.690041i \(-0.757592\pi\)
−0.723770 + 0.690041i \(0.757592\pi\)
\(18\) −1.80133 −0.424577
\(19\) −3.76464 −0.863668 −0.431834 0.901953i \(-0.642133\pi\)
−0.431834 + 0.901953i \(0.642133\pi\)
\(20\) −1.24478 −0.278342
\(21\) −1.16943 −0.255191
\(22\) 8.88530 1.89435
\(23\) 0 0
\(24\) −1.36039 −0.277689
\(25\) 1.00000 0.200000
\(26\) 10.3100 2.02197
\(27\) −1.00000 −0.192450
\(28\) 1.45569 0.275099
\(29\) 10.2723 1.90753 0.953763 0.300559i \(-0.0971731\pi\)
0.953763 + 0.300559i \(0.0971731\pi\)
\(30\) −1.80133 −0.328876
\(31\) 2.01570 0.362030 0.181015 0.983480i \(-0.442062\pi\)
0.181015 + 0.983480i \(0.442062\pi\)
\(32\) 6.17792 1.09211
\(33\) 4.93264 0.858662
\(34\) 10.7510 1.84378
\(35\) −1.16943 −0.197670
\(36\) 1.24478 0.207464
\(37\) 10.8290 1.78027 0.890135 0.455697i \(-0.150610\pi\)
0.890135 + 0.455697i \(0.150610\pi\)
\(38\) 6.78136 1.10008
\(39\) 5.72358 0.916506
\(40\) −1.36039 −0.215097
\(41\) 1.84318 0.287857 0.143929 0.989588i \(-0.454026\pi\)
0.143929 + 0.989588i \(0.454026\pi\)
\(42\) 2.10653 0.325044
\(43\) −11.4820 −1.75099 −0.875493 0.483230i \(-0.839463\pi\)
−0.875493 + 0.483230i \(0.839463\pi\)
\(44\) −6.14006 −0.925649
\(45\) −1.00000 −0.149071
\(46\) 0 0
\(47\) 9.40399 1.37171 0.685856 0.727737i \(-0.259428\pi\)
0.685856 + 0.727737i \(0.259428\pi\)
\(48\) 4.94008 0.713039
\(49\) −5.63243 −0.804633
\(50\) −1.80133 −0.254746
\(51\) 5.96836 0.835737
\(52\) −7.12461 −0.988006
\(53\) 0.718670 0.0987170 0.0493585 0.998781i \(-0.484282\pi\)
0.0493585 + 0.998781i \(0.484282\pi\)
\(54\) 1.80133 0.245130
\(55\) 4.93264 0.665117
\(56\) 1.59089 0.212591
\(57\) 3.76464 0.498639
\(58\) −18.5039 −2.42968
\(59\) 6.18960 0.805818 0.402909 0.915240i \(-0.367999\pi\)
0.402909 + 0.915240i \(0.367999\pi\)
\(60\) 1.24478 0.160701
\(61\) 4.15996 0.532628 0.266314 0.963886i \(-0.414194\pi\)
0.266314 + 0.963886i \(0.414194\pi\)
\(62\) −3.63093 −0.461129
\(63\) 1.16943 0.147334
\(64\) −1.24830 −0.156037
\(65\) 5.72358 0.709922
\(66\) −8.88530 −1.09370
\(67\) 15.1497 1.85082 0.925412 0.378961i \(-0.123719\pi\)
0.925412 + 0.378961i \(0.123719\pi\)
\(68\) −7.42931 −0.900936
\(69\) 0 0
\(70\) 2.10653 0.251778
\(71\) 9.42763 1.11885 0.559427 0.828880i \(-0.311021\pi\)
0.559427 + 0.828880i \(0.311021\pi\)
\(72\) 1.36039 0.160324
\(73\) 9.34659 1.09394 0.546968 0.837154i \(-0.315782\pi\)
0.546968 + 0.837154i \(0.315782\pi\)
\(74\) −19.5065 −2.26759
\(75\) −1.00000 −0.115470
\(76\) −4.68616 −0.537540
\(77\) −5.76838 −0.657368
\(78\) −10.3100 −1.16738
\(79\) −7.30497 −0.821873 −0.410937 0.911664i \(-0.634798\pi\)
−0.410937 + 0.911664i \(0.634798\pi\)
\(80\) 4.94008 0.552318
\(81\) 1.00000 0.111111
\(82\) −3.32018 −0.366653
\(83\) 11.7083 1.28515 0.642577 0.766221i \(-0.277865\pi\)
0.642577 + 0.766221i \(0.277865\pi\)
\(84\) −1.45569 −0.158829
\(85\) 5.96836 0.647359
\(86\) 20.6828 2.23029
\(87\) −10.2723 −1.10131
\(88\) −6.71033 −0.715324
\(89\) −3.77295 −0.399932 −0.199966 0.979803i \(-0.564083\pi\)
−0.199966 + 0.979803i \(0.564083\pi\)
\(90\) 1.80133 0.189877
\(91\) −6.69333 −0.701651
\(92\) 0 0
\(93\) −2.01570 −0.209018
\(94\) −16.9397 −1.74719
\(95\) 3.76464 0.386244
\(96\) −6.17792 −0.630531
\(97\) −15.4375 −1.56744 −0.783721 0.621112i \(-0.786681\pi\)
−0.783721 + 0.621112i \(0.786681\pi\)
\(98\) 10.1459 1.02489
\(99\) −4.93264 −0.495749
\(100\) 1.24478 0.124478
\(101\) −0.00890951 −0.000886530 0 −0.000443265 1.00000i \(-0.500141\pi\)
−0.000443265 1.00000i \(0.500141\pi\)
\(102\) −10.7510 −1.06450
\(103\) −6.89593 −0.679476 −0.339738 0.940520i \(-0.610338\pi\)
−0.339738 + 0.940520i \(0.610338\pi\)
\(104\) −7.78632 −0.763511
\(105\) 1.16943 0.114125
\(106\) −1.29456 −0.125739
\(107\) 1.59496 0.154191 0.0770954 0.997024i \(-0.475435\pi\)
0.0770954 + 0.997024i \(0.475435\pi\)
\(108\) −1.24478 −0.119779
\(109\) 7.63337 0.731144 0.365572 0.930783i \(-0.380873\pi\)
0.365572 + 0.930783i \(0.380873\pi\)
\(110\) −8.88530 −0.847180
\(111\) −10.8290 −1.02784
\(112\) −5.77708 −0.545883
\(113\) −1.38224 −0.130030 −0.0650149 0.997884i \(-0.520710\pi\)
−0.0650149 + 0.997884i \(0.520710\pi\)
\(114\) −6.78136 −0.635132
\(115\) 0 0
\(116\) 12.7868 1.18723
\(117\) −5.72358 −0.529145
\(118\) −11.1495 −1.02640
\(119\) −6.97958 −0.639817
\(120\) 1.36039 0.124186
\(121\) 13.3309 1.21190
\(122\) −7.49345 −0.678425
\(123\) −1.84318 −0.166194
\(124\) 2.50911 0.225324
\(125\) −1.00000 −0.0894427
\(126\) −2.10653 −0.187664
\(127\) −6.30514 −0.559491 −0.279745 0.960074i \(-0.590250\pi\)
−0.279745 + 0.960074i \(0.590250\pi\)
\(128\) −10.1072 −0.893363
\(129\) 11.4820 1.01093
\(130\) −10.3100 −0.904250
\(131\) 15.4861 1.35303 0.676515 0.736428i \(-0.263489\pi\)
0.676515 + 0.736428i \(0.263489\pi\)
\(132\) 6.14006 0.534424
\(133\) −4.40249 −0.381744
\(134\) −27.2895 −2.35745
\(135\) 1.00000 0.0860663
\(136\) −8.11932 −0.696226
\(137\) −17.0436 −1.45613 −0.728066 0.685508i \(-0.759580\pi\)
−0.728066 + 0.685508i \(0.759580\pi\)
\(138\) 0 0
\(139\) −0.538072 −0.0456387 −0.0228193 0.999740i \(-0.507264\pi\)
−0.0228193 + 0.999740i \(0.507264\pi\)
\(140\) −1.45569 −0.123028
\(141\) −9.40399 −0.791959
\(142\) −16.9822 −1.42512
\(143\) 28.2323 2.36091
\(144\) −4.94008 −0.411673
\(145\) −10.2723 −0.853072
\(146\) −16.8363 −1.39338
\(147\) 5.63243 0.464555
\(148\) 13.4797 1.10802
\(149\) 10.3510 0.847988 0.423994 0.905665i \(-0.360628\pi\)
0.423994 + 0.905665i \(0.360628\pi\)
\(150\) 1.80133 0.147078
\(151\) −8.46171 −0.688604 −0.344302 0.938859i \(-0.611884\pi\)
−0.344302 + 0.938859i \(0.611884\pi\)
\(152\) −5.12140 −0.415400
\(153\) −5.96836 −0.482513
\(154\) 10.3907 0.837310
\(155\) −2.01570 −0.161905
\(156\) 7.12461 0.570425
\(157\) −5.43266 −0.433573 −0.216787 0.976219i \(-0.569558\pi\)
−0.216787 + 0.976219i \(0.569558\pi\)
\(158\) 13.1586 1.04685
\(159\) −0.718670 −0.0569943
\(160\) −6.17792 −0.488407
\(161\) 0 0
\(162\) −1.80133 −0.141526
\(163\) −13.7929 −1.08035 −0.540173 0.841554i \(-0.681641\pi\)
−0.540173 + 0.841554i \(0.681641\pi\)
\(164\) 2.29436 0.179160
\(165\) −4.93264 −0.384005
\(166\) −21.0905 −1.63694
\(167\) 12.3352 0.954528 0.477264 0.878760i \(-0.341629\pi\)
0.477264 + 0.878760i \(0.341629\pi\)
\(168\) −1.59089 −0.122740
\(169\) 19.7593 1.51995
\(170\) −10.7510 −0.824562
\(171\) −3.76464 −0.287889
\(172\) −14.2926 −1.08980
\(173\) −17.2887 −1.31443 −0.657217 0.753701i \(-0.728267\pi\)
−0.657217 + 0.753701i \(0.728267\pi\)
\(174\) 18.5039 1.40277
\(175\) 1.16943 0.0884007
\(176\) 24.3676 1.83678
\(177\) −6.18960 −0.465239
\(178\) 6.79632 0.509405
\(179\) 6.09510 0.455569 0.227785 0.973712i \(-0.426852\pi\)
0.227785 + 0.973712i \(0.426852\pi\)
\(180\) −1.24478 −0.0927806
\(181\) 7.53099 0.559774 0.279887 0.960033i \(-0.409703\pi\)
0.279887 + 0.960033i \(0.409703\pi\)
\(182\) 12.0569 0.893715
\(183\) −4.15996 −0.307513
\(184\) 0 0
\(185\) −10.8290 −0.796161
\(186\) 3.63093 0.266233
\(187\) 29.4398 2.15285
\(188\) 11.7059 0.853742
\(189\) −1.16943 −0.0850636
\(190\) −6.78136 −0.491971
\(191\) −5.32898 −0.385591 −0.192796 0.981239i \(-0.561755\pi\)
−0.192796 + 0.981239i \(0.561755\pi\)
\(192\) 1.24830 0.0900880
\(193\) −4.62606 −0.332991 −0.166496 0.986042i \(-0.553245\pi\)
−0.166496 + 0.986042i \(0.553245\pi\)
\(194\) 27.8080 1.99650
\(195\) −5.72358 −0.409874
\(196\) −7.01115 −0.500797
\(197\) −21.0697 −1.50116 −0.750578 0.660781i \(-0.770225\pi\)
−0.750578 + 0.660781i \(0.770225\pi\)
\(198\) 8.88530 0.631451
\(199\) −2.08378 −0.147715 −0.0738577 0.997269i \(-0.523531\pi\)
−0.0738577 + 0.997269i \(0.523531\pi\)
\(200\) 1.36039 0.0961944
\(201\) −15.1497 −1.06857
\(202\) 0.0160490 0.00112920
\(203\) 12.0128 0.843133
\(204\) 7.42931 0.520156
\(205\) −1.84318 −0.128734
\(206\) 12.4218 0.865470
\(207\) 0 0
\(208\) 28.2749 1.96051
\(209\) 18.5696 1.28449
\(210\) −2.10653 −0.145364
\(211\) −15.7435 −1.08383 −0.541914 0.840434i \(-0.682300\pi\)
−0.541914 + 0.840434i \(0.682300\pi\)
\(212\) 0.894588 0.0614406
\(213\) −9.42763 −0.645970
\(214\) −2.87305 −0.196398
\(215\) 11.4820 0.783065
\(216\) −1.36039 −0.0925631
\(217\) 2.35722 0.160019
\(218\) −13.7502 −0.931282
\(219\) −9.34659 −0.631584
\(220\) 6.14006 0.413963
\(221\) 34.1604 2.29787
\(222\) 19.5065 1.30919
\(223\) 3.79797 0.254331 0.127166 0.991882i \(-0.459412\pi\)
0.127166 + 0.991882i \(0.459412\pi\)
\(224\) 7.22465 0.482717
\(225\) 1.00000 0.0666667
\(226\) 2.48986 0.165623
\(227\) 16.7068 1.10887 0.554436 0.832226i \(-0.312934\pi\)
0.554436 + 0.832226i \(0.312934\pi\)
\(228\) 4.68616 0.310349
\(229\) 6.36253 0.420448 0.210224 0.977653i \(-0.432581\pi\)
0.210224 + 0.977653i \(0.432581\pi\)
\(230\) 0 0
\(231\) 5.76838 0.379531
\(232\) 13.9744 0.917467
\(233\) 26.5783 1.74120 0.870601 0.491991i \(-0.163731\pi\)
0.870601 + 0.491991i \(0.163731\pi\)
\(234\) 10.3100 0.673988
\(235\) −9.40399 −0.613449
\(236\) 7.70471 0.501534
\(237\) 7.30497 0.474509
\(238\) 12.5725 0.814955
\(239\) 20.8849 1.35093 0.675467 0.737390i \(-0.263942\pi\)
0.675467 + 0.737390i \(0.263942\pi\)
\(240\) −4.94008 −0.318881
\(241\) 12.8885 0.830222 0.415111 0.909771i \(-0.363743\pi\)
0.415111 + 0.909771i \(0.363743\pi\)
\(242\) −24.0134 −1.54364
\(243\) −1.00000 −0.0641500
\(244\) 5.17824 0.331503
\(245\) 5.63243 0.359843
\(246\) 3.32018 0.211687
\(247\) 21.5472 1.37102
\(248\) 2.74214 0.174126
\(249\) −11.7083 −0.741984
\(250\) 1.80133 0.113926
\(251\) −2.70724 −0.170879 −0.0854397 0.996343i \(-0.527229\pi\)
−0.0854397 + 0.996343i \(0.527229\pi\)
\(252\) 1.45569 0.0916997
\(253\) 0 0
\(254\) 11.3576 0.712641
\(255\) −5.96836 −0.373753
\(256\) 20.7031 1.29394
\(257\) −13.3118 −0.830368 −0.415184 0.909737i \(-0.636283\pi\)
−0.415184 + 0.909737i \(0.636283\pi\)
\(258\) −20.6828 −1.28766
\(259\) 12.6637 0.786885
\(260\) 7.12461 0.441850
\(261\) 10.2723 0.635842
\(262\) −27.8956 −1.72340
\(263\) −8.29888 −0.511731 −0.255865 0.966712i \(-0.582360\pi\)
−0.255865 + 0.966712i \(0.582360\pi\)
\(264\) 6.71033 0.412992
\(265\) −0.718670 −0.0441476
\(266\) 7.93033 0.486240
\(267\) 3.77295 0.230901
\(268\) 18.8580 1.15194
\(269\) −16.7113 −1.01891 −0.509453 0.860498i \(-0.670152\pi\)
−0.509453 + 0.860498i \(0.670152\pi\)
\(270\) −1.80133 −0.109625
\(271\) −15.2463 −0.926147 −0.463073 0.886320i \(-0.653253\pi\)
−0.463073 + 0.886320i \(0.653253\pi\)
\(272\) 29.4842 1.78774
\(273\) 6.69333 0.405099
\(274\) 30.7011 1.85472
\(275\) −4.93264 −0.297449
\(276\) 0 0
\(277\) −18.6811 −1.12244 −0.561220 0.827666i \(-0.689668\pi\)
−0.561220 + 0.827666i \(0.689668\pi\)
\(278\) 0.969244 0.0581314
\(279\) 2.01570 0.120677
\(280\) −1.59089 −0.0950737
\(281\) 5.20277 0.310372 0.155186 0.987885i \(-0.450402\pi\)
0.155186 + 0.987885i \(0.450402\pi\)
\(282\) 16.9397 1.00874
\(283\) 21.7172 1.29095 0.645477 0.763779i \(-0.276659\pi\)
0.645477 + 0.763779i \(0.276659\pi\)
\(284\) 11.7353 0.696365
\(285\) −3.76464 −0.222998
\(286\) −50.8557 −3.00716
\(287\) 2.15548 0.127234
\(288\) 6.17792 0.364037
\(289\) 18.6213 1.09537
\(290\) 18.5039 1.08658
\(291\) 15.4375 0.904964
\(292\) 11.6345 0.680856
\(293\) −6.86349 −0.400970 −0.200485 0.979697i \(-0.564252\pi\)
−0.200485 + 0.979697i \(0.564252\pi\)
\(294\) −10.1459 −0.591718
\(295\) −6.18960 −0.360373
\(296\) 14.7316 0.856260
\(297\) 4.93264 0.286221
\(298\) −18.6456 −1.08011
\(299\) 0 0
\(300\) −1.24478 −0.0718676
\(301\) −13.4274 −0.773942
\(302\) 15.2423 0.877096
\(303\) 0.00890951 0.000511838 0
\(304\) 18.5976 1.06665
\(305\) −4.15996 −0.238198
\(306\) 10.7510 0.614592
\(307\) −5.99610 −0.342216 −0.171108 0.985252i \(-0.554735\pi\)
−0.171108 + 0.985252i \(0.554735\pi\)
\(308\) −7.18038 −0.409140
\(309\) 6.89593 0.392296
\(310\) 3.63093 0.206223
\(311\) −23.5490 −1.33534 −0.667671 0.744457i \(-0.732709\pi\)
−0.667671 + 0.744457i \(0.732709\pi\)
\(312\) 7.78632 0.440814
\(313\) −7.43120 −0.420037 −0.210018 0.977697i \(-0.567352\pi\)
−0.210018 + 0.977697i \(0.567352\pi\)
\(314\) 9.78600 0.552256
\(315\) −1.16943 −0.0658900
\(316\) −9.09310 −0.511527
\(317\) 16.8174 0.944557 0.472278 0.881450i \(-0.343432\pi\)
0.472278 + 0.881450i \(0.343432\pi\)
\(318\) 1.29456 0.0725954
\(319\) −50.6698 −2.83696
\(320\) 1.24830 0.0697819
\(321\) −1.59496 −0.0890220
\(322\) 0 0
\(323\) 22.4687 1.25019
\(324\) 1.24478 0.0691546
\(325\) −5.72358 −0.317487
\(326\) 24.8456 1.37607
\(327\) −7.63337 −0.422126
\(328\) 2.50746 0.138451
\(329\) 10.9973 0.606301
\(330\) 8.88530 0.489120
\(331\) 8.38033 0.460625 0.230312 0.973117i \(-0.426025\pi\)
0.230312 + 0.973117i \(0.426025\pi\)
\(332\) 14.5743 0.799868
\(333\) 10.8290 0.593423
\(334\) −22.2198 −1.21581
\(335\) −15.1497 −0.827714
\(336\) 5.77708 0.315166
\(337\) −33.6380 −1.83238 −0.916190 0.400743i \(-0.868752\pi\)
−0.916190 + 0.400743i \(0.868752\pi\)
\(338\) −35.5930 −1.93601
\(339\) 1.38224 0.0750728
\(340\) 7.42931 0.402911
\(341\) −9.94271 −0.538428
\(342\) 6.78136 0.366694
\(343\) −14.7728 −0.797654
\(344\) −15.6200 −0.842175
\(345\) 0 0
\(346\) 31.1426 1.67424
\(347\) −28.4991 −1.52991 −0.764956 0.644082i \(-0.777239\pi\)
−0.764956 + 0.644082i \(0.777239\pi\)
\(348\) −12.7868 −0.685447
\(349\) 7.85834 0.420647 0.210324 0.977632i \(-0.432548\pi\)
0.210324 + 0.977632i \(0.432548\pi\)
\(350\) −2.10653 −0.112599
\(351\) 5.72358 0.305502
\(352\) −30.4734 −1.62424
\(353\) −7.29174 −0.388100 −0.194050 0.980992i \(-0.562162\pi\)
−0.194050 + 0.980992i \(0.562162\pi\)
\(354\) 11.1495 0.592590
\(355\) −9.42763 −0.500366
\(356\) −4.69650 −0.248914
\(357\) 6.97958 0.369399
\(358\) −10.9793 −0.580273
\(359\) 2.98636 0.157614 0.0788071 0.996890i \(-0.474889\pi\)
0.0788071 + 0.996890i \(0.474889\pi\)
\(360\) −1.36039 −0.0716991
\(361\) −4.82746 −0.254077
\(362\) −13.5658 −0.713001
\(363\) −13.3309 −0.699692
\(364\) −8.33174 −0.436702
\(365\) −9.34659 −0.489223
\(366\) 7.49345 0.391689
\(367\) 22.9008 1.19541 0.597707 0.801715i \(-0.296079\pi\)
0.597707 + 0.801715i \(0.296079\pi\)
\(368\) 0 0
\(369\) 1.84318 0.0959523
\(370\) 19.5065 1.01409
\(371\) 0.840435 0.0436332
\(372\) −2.50911 −0.130091
\(373\) −2.72067 −0.140871 −0.0704356 0.997516i \(-0.522439\pi\)
−0.0704356 + 0.997516i \(0.522439\pi\)
\(374\) −53.0307 −2.74215
\(375\) 1.00000 0.0516398
\(376\) 12.7931 0.659755
\(377\) −58.7946 −3.02807
\(378\) 2.10653 0.108348
\(379\) −7.01494 −0.360333 −0.180167 0.983636i \(-0.557664\pi\)
−0.180167 + 0.983636i \(0.557664\pi\)
\(380\) 4.68616 0.240395
\(381\) 6.30514 0.323022
\(382\) 9.59923 0.491139
\(383\) −10.5223 −0.537666 −0.268833 0.963187i \(-0.586638\pi\)
−0.268833 + 0.963187i \(0.586638\pi\)
\(384\) 10.1072 0.515783
\(385\) 5.76838 0.293984
\(386\) 8.33305 0.424141
\(387\) −11.4820 −0.583662
\(388\) −19.2164 −0.975563
\(389\) −8.16762 −0.414115 −0.207057 0.978329i \(-0.566389\pi\)
−0.207057 + 0.978329i \(0.566389\pi\)
\(390\) 10.3100 0.522069
\(391\) 0 0
\(392\) −7.66233 −0.387006
\(393\) −15.4861 −0.781173
\(394\) 37.9535 1.91207
\(395\) 7.30497 0.367553
\(396\) −6.14006 −0.308550
\(397\) 16.1626 0.811178 0.405589 0.914055i \(-0.367066\pi\)
0.405589 + 0.914055i \(0.367066\pi\)
\(398\) 3.75357 0.188150
\(399\) 4.40249 0.220400
\(400\) −4.94008 −0.247004
\(401\) 17.8918 0.893471 0.446736 0.894666i \(-0.352586\pi\)
0.446736 + 0.894666i \(0.352586\pi\)
\(402\) 27.2895 1.36108
\(403\) −11.5370 −0.574699
\(404\) −0.0110904 −0.000551768 0
\(405\) −1.00000 −0.0496904
\(406\) −21.6390 −1.07392
\(407\) −53.4153 −2.64770
\(408\) 8.11932 0.401966
\(409\) −8.01024 −0.396081 −0.198041 0.980194i \(-0.563458\pi\)
−0.198041 + 0.980194i \(0.563458\pi\)
\(410\) 3.32018 0.163972
\(411\) 17.0436 0.840698
\(412\) −8.58394 −0.422900
\(413\) 7.23831 0.356174
\(414\) 0 0
\(415\) −11.7083 −0.574738
\(416\) −35.3598 −1.73366
\(417\) 0.538072 0.0263495
\(418\) −33.4500 −1.63609
\(419\) 16.0239 0.782820 0.391410 0.920216i \(-0.371987\pi\)
0.391410 + 0.920216i \(0.371987\pi\)
\(420\) 1.45569 0.0710303
\(421\) −25.5126 −1.24341 −0.621704 0.783252i \(-0.713559\pi\)
−0.621704 + 0.783252i \(0.713559\pi\)
\(422\) 28.3593 1.38051
\(423\) 9.40399 0.457238
\(424\) 0.977675 0.0474801
\(425\) −5.96836 −0.289508
\(426\) 16.9822 0.822792
\(427\) 4.86478 0.235423
\(428\) 1.98538 0.0959670
\(429\) −28.2323 −1.36307
\(430\) −20.6828 −0.997414
\(431\) 5.19120 0.250051 0.125026 0.992154i \(-0.460099\pi\)
0.125026 + 0.992154i \(0.460099\pi\)
\(432\) 4.94008 0.237680
\(433\) −2.56604 −0.123316 −0.0616580 0.998097i \(-0.519639\pi\)
−0.0616580 + 0.998097i \(0.519639\pi\)
\(434\) −4.24613 −0.203821
\(435\) 10.2723 0.492521
\(436\) 9.50189 0.455058
\(437\) 0 0
\(438\) 16.8363 0.804468
\(439\) −6.69755 −0.319657 −0.159828 0.987145i \(-0.551094\pi\)
−0.159828 + 0.987145i \(0.551094\pi\)
\(440\) 6.71033 0.319902
\(441\) −5.63243 −0.268211
\(442\) −61.5340 −2.92687
\(443\) 16.2002 0.769692 0.384846 0.922981i \(-0.374254\pi\)
0.384846 + 0.922981i \(0.374254\pi\)
\(444\) −13.4797 −0.639718
\(445\) 3.77295 0.178855
\(446\) −6.84139 −0.323949
\(447\) −10.3510 −0.489586
\(448\) −1.45980 −0.0689689
\(449\) 18.5691 0.876331 0.438166 0.898894i \(-0.355628\pi\)
0.438166 + 0.898894i \(0.355628\pi\)
\(450\) −1.80133 −0.0849154
\(451\) −9.09176 −0.428114
\(452\) −1.72058 −0.0809295
\(453\) 8.46171 0.397566
\(454\) −30.0945 −1.41241
\(455\) 6.69333 0.313788
\(456\) 5.12140 0.239831
\(457\) 14.8197 0.693238 0.346619 0.938006i \(-0.387330\pi\)
0.346619 + 0.938006i \(0.387330\pi\)
\(458\) −11.4610 −0.535537
\(459\) 5.96836 0.278579
\(460\) 0 0
\(461\) 7.32481 0.341150 0.170575 0.985345i \(-0.445437\pi\)
0.170575 + 0.985345i \(0.445437\pi\)
\(462\) −10.3907 −0.483421
\(463\) −21.4397 −0.996388 −0.498194 0.867066i \(-0.666003\pi\)
−0.498194 + 0.867066i \(0.666003\pi\)
\(464\) −50.7462 −2.35583
\(465\) 2.01570 0.0934758
\(466\) −47.8762 −2.21782
\(467\) 4.00977 0.185550 0.0927750 0.995687i \(-0.470426\pi\)
0.0927750 + 0.995687i \(0.470426\pi\)
\(468\) −7.12461 −0.329335
\(469\) 17.7165 0.818071
\(470\) 16.9397 0.781369
\(471\) 5.43266 0.250324
\(472\) 8.42030 0.387576
\(473\) 56.6365 2.60415
\(474\) −13.1586 −0.604397
\(475\) −3.76464 −0.172734
\(476\) −8.68807 −0.398217
\(477\) 0.718670 0.0329057
\(478\) −37.6206 −1.72073
\(479\) −12.4853 −0.570470 −0.285235 0.958458i \(-0.592072\pi\)
−0.285235 + 0.958458i \(0.592072\pi\)
\(480\) 6.17792 0.281982
\(481\) −61.9804 −2.82606
\(482\) −23.2164 −1.05748
\(483\) 0 0
\(484\) 16.5941 0.754277
\(485\) 15.4375 0.700982
\(486\) 1.80133 0.0817099
\(487\) −2.01019 −0.0910902 −0.0455451 0.998962i \(-0.514502\pi\)
−0.0455451 + 0.998962i \(0.514502\pi\)
\(488\) 5.65918 0.256179
\(489\) 13.7929 0.623738
\(490\) −10.1459 −0.458343
\(491\) 8.21262 0.370630 0.185315 0.982679i \(-0.440669\pi\)
0.185315 + 0.982679i \(0.440669\pi\)
\(492\) −2.29436 −0.103438
\(493\) −61.3091 −2.76122
\(494\) −38.8136 −1.74631
\(495\) 4.93264 0.221706
\(496\) −9.95771 −0.447115
\(497\) 11.0250 0.494537
\(498\) 21.0905 0.945088
\(499\) 40.5552 1.81550 0.907751 0.419509i \(-0.137798\pi\)
0.907751 + 0.419509i \(0.137798\pi\)
\(500\) −1.24478 −0.0556684
\(501\) −12.3352 −0.551097
\(502\) 4.87662 0.217654
\(503\) −38.6279 −1.72233 −0.861166 0.508325i \(-0.830265\pi\)
−0.861166 + 0.508325i \(0.830265\pi\)
\(504\) 1.59089 0.0708637
\(505\) 0.00890951 0.000396468 0
\(506\) 0 0
\(507\) −19.7593 −0.877543
\(508\) −7.84853 −0.348222
\(509\) 31.4463 1.39383 0.696916 0.717152i \(-0.254555\pi\)
0.696916 + 0.717152i \(0.254555\pi\)
\(510\) 10.7510 0.476061
\(511\) 10.9302 0.483523
\(512\) −17.0785 −0.754771
\(513\) 3.76464 0.166213
\(514\) 23.9789 1.05767
\(515\) 6.89593 0.303871
\(516\) 14.2926 0.629196
\(517\) −46.3865 −2.04007
\(518\) −22.8115 −1.00228
\(519\) 17.2887 0.758889
\(520\) 7.78632 0.341453
\(521\) 33.9586 1.48775 0.743876 0.668318i \(-0.232985\pi\)
0.743876 + 0.668318i \(0.232985\pi\)
\(522\) −18.5039 −0.809892
\(523\) −15.4202 −0.674280 −0.337140 0.941455i \(-0.609460\pi\)
−0.337140 + 0.941455i \(0.609460\pi\)
\(524\) 19.2769 0.842115
\(525\) −1.16943 −0.0510381
\(526\) 14.9490 0.651807
\(527\) −12.0304 −0.524053
\(528\) −24.3676 −1.06047
\(529\) 0 0
\(530\) 1.29456 0.0562321
\(531\) 6.18960 0.268606
\(532\) −5.48014 −0.237594
\(533\) −10.5496 −0.456954
\(534\) −6.79632 −0.294105
\(535\) −1.59496 −0.0689562
\(536\) 20.6095 0.890195
\(537\) −6.09510 −0.263023
\(538\) 30.1025 1.29781
\(539\) 27.7827 1.19669
\(540\) 1.24478 0.0535669
\(541\) 18.8236 0.809292 0.404646 0.914473i \(-0.367395\pi\)
0.404646 + 0.914473i \(0.367395\pi\)
\(542\) 27.4636 1.17966
\(543\) −7.53099 −0.323186
\(544\) −36.8720 −1.58088
\(545\) −7.63337 −0.326978
\(546\) −12.0569 −0.515987
\(547\) −32.9692 −1.40966 −0.704831 0.709376i \(-0.748977\pi\)
−0.704831 + 0.709376i \(0.748977\pi\)
\(548\) −21.2156 −0.906283
\(549\) 4.15996 0.177543
\(550\) 8.88530 0.378870
\(551\) −38.6717 −1.64747
\(552\) 0 0
\(553\) −8.54265 −0.363271
\(554\) 33.6509 1.42969
\(555\) 10.8290 0.459664
\(556\) −0.669783 −0.0284051
\(557\) −20.2861 −0.859548 −0.429774 0.902936i \(-0.641407\pi\)
−0.429774 + 0.902936i \(0.641407\pi\)
\(558\) −3.63093 −0.153710
\(559\) 65.7180 2.77958
\(560\) 5.77708 0.244126
\(561\) −29.4398 −1.24295
\(562\) −9.37190 −0.395330
\(563\) −41.0100 −1.72836 −0.864182 0.503179i \(-0.832164\pi\)
−0.864182 + 0.503179i \(0.832164\pi\)
\(564\) −11.7059 −0.492908
\(565\) 1.38224 0.0581511
\(566\) −39.1198 −1.64433
\(567\) 1.16943 0.0491115
\(568\) 12.8253 0.538137
\(569\) 12.6489 0.530269 0.265135 0.964211i \(-0.414584\pi\)
0.265135 + 0.964211i \(0.414584\pi\)
\(570\) 6.78136 0.284040
\(571\) 12.9538 0.542102 0.271051 0.962565i \(-0.412629\pi\)
0.271051 + 0.962565i \(0.412629\pi\)
\(572\) 35.1431 1.46941
\(573\) 5.32898 0.222621
\(574\) −3.88272 −0.162062
\(575\) 0 0
\(576\) −1.24830 −0.0520124
\(577\) −9.25738 −0.385390 −0.192695 0.981259i \(-0.561723\pi\)
−0.192695 + 0.981259i \(0.561723\pi\)
\(578\) −33.5431 −1.39521
\(579\) 4.62606 0.192252
\(580\) −12.7868 −0.530945
\(581\) 13.6920 0.568042
\(582\) −27.8080 −1.15268
\(583\) −3.54494 −0.146816
\(584\) 12.7150 0.526152
\(585\) 5.72358 0.236641
\(586\) 12.3634 0.510728
\(587\) 13.7534 0.567664 0.283832 0.958874i \(-0.408394\pi\)
0.283832 + 0.958874i \(0.408394\pi\)
\(588\) 7.01115 0.289135
\(589\) −7.58839 −0.312674
\(590\) 11.1495 0.459018
\(591\) 21.0697 0.866693
\(592\) −53.4959 −2.19867
\(593\) 13.4462 0.552170 0.276085 0.961133i \(-0.410963\pi\)
0.276085 + 0.961133i \(0.410963\pi\)
\(594\) −8.88530 −0.364568
\(595\) 6.97958 0.286135
\(596\) 12.8848 0.527780
\(597\) 2.08378 0.0852835
\(598\) 0 0
\(599\) 15.5951 0.637200 0.318600 0.947889i \(-0.396787\pi\)
0.318600 + 0.947889i \(0.396787\pi\)
\(600\) −1.36039 −0.0555379
\(601\) −2.46541 −0.100566 −0.0502830 0.998735i \(-0.516012\pi\)
−0.0502830 + 0.998735i \(0.516012\pi\)
\(602\) 24.1871 0.985794
\(603\) 15.1497 0.616942
\(604\) −10.5330 −0.428581
\(605\) −13.3309 −0.541979
\(606\) −0.0160490 −0.000651944 0
\(607\) −43.8562 −1.78007 −0.890034 0.455894i \(-0.849320\pi\)
−0.890034 + 0.455894i \(0.849320\pi\)
\(608\) −23.2577 −0.943223
\(609\) −12.0128 −0.486783
\(610\) 7.49345 0.303401
\(611\) −53.8244 −2.17750
\(612\) −7.42931 −0.300312
\(613\) −7.88607 −0.318516 −0.159258 0.987237i \(-0.550910\pi\)
−0.159258 + 0.987237i \(0.550910\pi\)
\(614\) 10.8009 0.435891
\(615\) 1.84318 0.0743244
\(616\) −7.84727 −0.316175
\(617\) 9.42380 0.379388 0.189694 0.981843i \(-0.439250\pi\)
0.189694 + 0.981843i \(0.439250\pi\)
\(618\) −12.4218 −0.499679
\(619\) −46.7301 −1.87824 −0.939120 0.343588i \(-0.888358\pi\)
−0.939120 + 0.343588i \(0.888358\pi\)
\(620\) −2.50911 −0.100768
\(621\) 0 0
\(622\) 42.4195 1.70087
\(623\) −4.41220 −0.176771
\(624\) −28.2749 −1.13190
\(625\) 1.00000 0.0400000
\(626\) 13.3860 0.535014
\(627\) −18.5696 −0.741599
\(628\) −6.76248 −0.269852
\(629\) −64.6311 −2.57701
\(630\) 2.10653 0.0839261
\(631\) 25.5344 1.01651 0.508255 0.861207i \(-0.330291\pi\)
0.508255 + 0.861207i \(0.330291\pi\)
\(632\) −9.93763 −0.395298
\(633\) 15.7435 0.625749
\(634\) −30.2936 −1.20311
\(635\) 6.30514 0.250212
\(636\) −0.894588 −0.0354727
\(637\) 32.2377 1.27730
\(638\) 91.2729 3.61353
\(639\) 9.42763 0.372951
\(640\) 10.1072 0.399524
\(641\) −35.4489 −1.40015 −0.700073 0.714072i \(-0.746849\pi\)
−0.700073 + 0.714072i \(0.746849\pi\)
\(642\) 2.87305 0.113390
\(643\) 14.5158 0.572446 0.286223 0.958163i \(-0.407600\pi\)
0.286223 + 0.958163i \(0.407600\pi\)
\(644\) 0 0
\(645\) −11.4820 −0.452103
\(646\) −40.4736 −1.59241
\(647\) −4.12441 −0.162147 −0.0810737 0.996708i \(-0.525835\pi\)
−0.0810737 + 0.996708i \(0.525835\pi\)
\(648\) 1.36039 0.0534413
\(649\) −30.5311 −1.19845
\(650\) 10.3100 0.404393
\(651\) −2.35722 −0.0923867
\(652\) −17.1692 −0.672398
\(653\) −2.99421 −0.117173 −0.0585863 0.998282i \(-0.518659\pi\)
−0.0585863 + 0.998282i \(0.518659\pi\)
\(654\) 13.7502 0.537676
\(655\) −15.4861 −0.605094
\(656\) −9.10548 −0.355509
\(657\) 9.34659 0.364645
\(658\) −19.8098 −0.772265
\(659\) 9.54973 0.372005 0.186002 0.982549i \(-0.440447\pi\)
0.186002 + 0.982549i \(0.440447\pi\)
\(660\) −6.14006 −0.239002
\(661\) −12.6193 −0.490832 −0.245416 0.969418i \(-0.578925\pi\)
−0.245416 + 0.969418i \(0.578925\pi\)
\(662\) −15.0957 −0.586712
\(663\) −34.1604 −1.32668
\(664\) 15.9279 0.618123
\(665\) 4.40249 0.170721
\(666\) −19.5065 −0.755862
\(667\) 0 0
\(668\) 15.3547 0.594090
\(669\) −3.79797 −0.146838
\(670\) 27.2895 1.05429
\(671\) −20.5196 −0.792149
\(672\) −7.22465 −0.278697
\(673\) −22.7988 −0.878830 −0.439415 0.898284i \(-0.644814\pi\)
−0.439415 + 0.898284i \(0.644814\pi\)
\(674\) 60.5931 2.33396
\(675\) −1.00000 −0.0384900
\(676\) 24.5961 0.946003
\(677\) 1.30088 0.0499967 0.0249984 0.999687i \(-0.492042\pi\)
0.0249984 + 0.999687i \(0.492042\pi\)
\(678\) −2.48986 −0.0956225
\(679\) −18.0531 −0.692815
\(680\) 8.11932 0.311362
\(681\) −16.7068 −0.640208
\(682\) 17.9101 0.685813
\(683\) −3.52866 −0.135020 −0.0675102 0.997719i \(-0.521506\pi\)
−0.0675102 + 0.997719i \(0.521506\pi\)
\(684\) −4.68616 −0.179180
\(685\) 17.0436 0.651202
\(686\) 26.6106 1.01600
\(687\) −6.36253 −0.242746
\(688\) 56.7220 2.16250
\(689\) −4.11336 −0.156707
\(690\) 0 0
\(691\) −22.9943 −0.874745 −0.437372 0.899281i \(-0.644091\pi\)
−0.437372 + 0.899281i \(0.644091\pi\)
\(692\) −21.5207 −0.818093
\(693\) −5.76838 −0.219123
\(694\) 51.3363 1.94870
\(695\) 0.538072 0.0204102
\(696\) −13.9744 −0.529700
\(697\) −11.0008 −0.416685
\(698\) −14.1554 −0.535791
\(699\) −26.5783 −1.00528
\(700\) 1.45569 0.0550198
\(701\) −20.5637 −0.776680 −0.388340 0.921516i \(-0.626951\pi\)
−0.388340 + 0.921516i \(0.626951\pi\)
\(702\) −10.3100 −0.389127
\(703\) −40.7672 −1.53756
\(704\) 6.15739 0.232066
\(705\) 9.40399 0.354175
\(706\) 13.1348 0.494335
\(707\) −0.0104191 −0.000391849 0
\(708\) −7.70471 −0.289561
\(709\) −40.6832 −1.52789 −0.763945 0.645281i \(-0.776740\pi\)
−0.763945 + 0.645281i \(0.776740\pi\)
\(710\) 16.9822 0.637332
\(711\) −7.30497 −0.273958
\(712\) −5.13269 −0.192356
\(713\) 0 0
\(714\) −12.5725 −0.470515
\(715\) −28.2323 −1.05583
\(716\) 7.58707 0.283542
\(717\) −20.8849 −0.779962
\(718\) −5.37942 −0.200758
\(719\) 13.6807 0.510206 0.255103 0.966914i \(-0.417891\pi\)
0.255103 + 0.966914i \(0.417891\pi\)
\(720\) 4.94008 0.184106
\(721\) −8.06431 −0.300331
\(722\) 8.69584 0.323626
\(723\) −12.8885 −0.479329
\(724\) 9.37444 0.348398
\(725\) 10.2723 0.381505
\(726\) 24.0134 0.891219
\(727\) −16.1935 −0.600583 −0.300292 0.953847i \(-0.597084\pi\)
−0.300292 + 0.953847i \(0.597084\pi\)
\(728\) −9.10556 −0.337475
\(729\) 1.00000 0.0370370
\(730\) 16.8363 0.623138
\(731\) 68.5286 2.53462
\(732\) −5.17824 −0.191393
\(733\) −10.5359 −0.389151 −0.194576 0.980887i \(-0.562333\pi\)
−0.194576 + 0.980887i \(0.562333\pi\)
\(734\) −41.2519 −1.52264
\(735\) −5.63243 −0.207755
\(736\) 0 0
\(737\) −74.7278 −2.75263
\(738\) −3.32018 −0.122218
\(739\) 39.8626 1.46637 0.733184 0.680030i \(-0.238033\pi\)
0.733184 + 0.680030i \(0.238033\pi\)
\(740\) −13.4797 −0.495524
\(741\) −21.5472 −0.791557
\(742\) −1.51390 −0.0555770
\(743\) −7.32384 −0.268686 −0.134343 0.990935i \(-0.542892\pi\)
−0.134343 + 0.990935i \(0.542892\pi\)
\(744\) −2.74214 −0.100532
\(745\) −10.3510 −0.379232
\(746\) 4.90082 0.179432
\(747\) 11.7083 0.428384
\(748\) 36.6461 1.33991
\(749\) 1.86520 0.0681528
\(750\) −1.80133 −0.0657752
\(751\) 15.0521 0.549261 0.274630 0.961550i \(-0.411445\pi\)
0.274630 + 0.961550i \(0.411445\pi\)
\(752\) −46.4565 −1.69409
\(753\) 2.70724 0.0986572
\(754\) 105.908 3.85695
\(755\) 8.46171 0.307953
\(756\) −1.45569 −0.0529428
\(757\) 38.5540 1.40127 0.700634 0.713521i \(-0.252901\pi\)
0.700634 + 0.713521i \(0.252901\pi\)
\(758\) 12.6362 0.458968
\(759\) 0 0
\(760\) 5.12140 0.185773
\(761\) −6.58967 −0.238875 −0.119438 0.992842i \(-0.538109\pi\)
−0.119438 + 0.992842i \(0.538109\pi\)
\(762\) −11.3576 −0.411444
\(763\) 8.92670 0.323168
\(764\) −6.63342 −0.239989
\(765\) 5.96836 0.215786
\(766\) 18.9542 0.684842
\(767\) −35.4267 −1.27918
\(768\) −20.7031 −0.747057
\(769\) 8.13233 0.293259 0.146630 0.989191i \(-0.453157\pi\)
0.146630 + 0.989191i \(0.453157\pi\)
\(770\) −10.3907 −0.374456
\(771\) 13.3118 0.479413
\(772\) −5.75844 −0.207251
\(773\) −5.20702 −0.187284 −0.0936418 0.995606i \(-0.529851\pi\)
−0.0936418 + 0.995606i \(0.529851\pi\)
\(774\) 20.6828 0.743429
\(775\) 2.01570 0.0724060
\(776\) −21.0011 −0.753896
\(777\) −12.6637 −0.454308
\(778\) 14.7126 0.527471
\(779\) −6.93893 −0.248613
\(780\) −7.12461 −0.255102
\(781\) −46.5031 −1.66401
\(782\) 0 0
\(783\) −10.2723 −0.367104
\(784\) 27.8247 0.993738
\(785\) 5.43266 0.193900
\(786\) 27.8956 0.995004
\(787\) 49.1472 1.75191 0.875954 0.482395i \(-0.160233\pi\)
0.875954 + 0.482395i \(0.160233\pi\)
\(788\) −26.2272 −0.934307
\(789\) 8.29888 0.295448
\(790\) −13.1586 −0.468164
\(791\) −1.61643 −0.0574736
\(792\) −6.71033 −0.238441
\(793\) −23.8098 −0.845512
\(794\) −29.1142 −1.03322
\(795\) 0.718670 0.0254886
\(796\) −2.59386 −0.0919368
\(797\) −20.8049 −0.736946 −0.368473 0.929639i \(-0.620119\pi\)
−0.368473 + 0.929639i \(0.620119\pi\)
\(798\) −7.93033 −0.280731
\(799\) −56.1264 −1.98561
\(800\) 6.17792 0.218422
\(801\) −3.77295 −0.133311
\(802\) −32.2289 −1.13804
\(803\) −46.1033 −1.62695
\(804\) −18.8580 −0.665071
\(805\) 0 0
\(806\) 20.7819 0.732012
\(807\) 16.7113 0.588266
\(808\) −0.0121204 −0.000426396 0
\(809\) 45.5051 1.59987 0.799936 0.600085i \(-0.204867\pi\)
0.799936 + 0.600085i \(0.204867\pi\)
\(810\) 1.80133 0.0632922
\(811\) −41.9687 −1.47372 −0.736860 0.676045i \(-0.763692\pi\)
−0.736860 + 0.676045i \(0.763692\pi\)
\(812\) 14.9533 0.524759
\(813\) 15.2463 0.534711
\(814\) 96.2185 3.37246
\(815\) 13.7929 0.483145
\(816\) −29.4842 −1.03215
\(817\) 43.2256 1.51227
\(818\) 14.4291 0.504501
\(819\) −6.69333 −0.233884
\(820\) −2.29436 −0.0801227
\(821\) 18.9558 0.661562 0.330781 0.943708i \(-0.392688\pi\)
0.330781 + 0.943708i \(0.392688\pi\)
\(822\) −30.7011 −1.07082
\(823\) 12.2743 0.427855 0.213927 0.976850i \(-0.431374\pi\)
0.213927 + 0.976850i \(0.431374\pi\)
\(824\) −9.38118 −0.326809
\(825\) 4.93264 0.171732
\(826\) −13.0386 −0.453670
\(827\) −3.16378 −0.110016 −0.0550078 0.998486i \(-0.517518\pi\)
−0.0550078 + 0.998486i \(0.517518\pi\)
\(828\) 0 0
\(829\) 35.3042 1.22616 0.613082 0.790019i \(-0.289929\pi\)
0.613082 + 0.790019i \(0.289929\pi\)
\(830\) 21.0905 0.732062
\(831\) 18.6811 0.648042
\(832\) 7.14472 0.247699
\(833\) 33.6164 1.16474
\(834\) −0.969244 −0.0335622
\(835\) −12.3352 −0.426878
\(836\) 23.1151 0.799454
\(837\) −2.01570 −0.0696727
\(838\) −28.8643 −0.997102
\(839\) 37.7512 1.30332 0.651659 0.758512i \(-0.274073\pi\)
0.651659 + 0.758512i \(0.274073\pi\)
\(840\) 1.59089 0.0548908
\(841\) 76.5211 2.63866
\(842\) 45.9566 1.58377
\(843\) −5.20277 −0.179193
\(844\) −19.5973 −0.674566
\(845\) −19.7593 −0.679742
\(846\) −16.9397 −0.582398
\(847\) 15.5896 0.535664
\(848\) −3.55029 −0.121917
\(849\) −21.7172 −0.745333
\(850\) 10.7510 0.368755
\(851\) 0 0
\(852\) −11.7353 −0.402046
\(853\) −20.9667 −0.717885 −0.358943 0.933360i \(-0.616863\pi\)
−0.358943 + 0.933360i \(0.616863\pi\)
\(854\) −8.76307 −0.299866
\(855\) 3.76464 0.128748
\(856\) 2.16978 0.0741614
\(857\) 48.1896 1.64612 0.823062 0.567951i \(-0.192264\pi\)
0.823062 + 0.567951i \(0.192264\pi\)
\(858\) 50.8557 1.73618
\(859\) 42.5110 1.45046 0.725228 0.688509i \(-0.241734\pi\)
0.725228 + 0.688509i \(0.241734\pi\)
\(860\) 14.2926 0.487373
\(861\) −2.15548 −0.0734584
\(862\) −9.35106 −0.318498
\(863\) 51.5990 1.75645 0.878226 0.478247i \(-0.158727\pi\)
0.878226 + 0.478247i \(0.158727\pi\)
\(864\) −6.17792 −0.210177
\(865\) 17.2887 0.587833
\(866\) 4.62228 0.157071
\(867\) −18.6213 −0.632413
\(868\) 2.93423 0.0995941
\(869\) 36.0328 1.22233
\(870\) −18.5039 −0.627340
\(871\) −86.7102 −2.93806
\(872\) 10.3844 0.351660
\(873\) −15.4375 −0.522481
\(874\) 0 0
\(875\) −1.16943 −0.0395340
\(876\) −11.6345 −0.393092
\(877\) 33.2526 1.12286 0.561431 0.827524i \(-0.310251\pi\)
0.561431 + 0.827524i \(0.310251\pi\)
\(878\) 12.0645 0.407157
\(879\) 6.86349 0.231500
\(880\) −24.3676 −0.821433
\(881\) −28.3999 −0.956817 −0.478408 0.878137i \(-0.658786\pi\)
−0.478408 + 0.878137i \(0.658786\pi\)
\(882\) 10.1459 0.341629
\(883\) 19.5877 0.659178 0.329589 0.944125i \(-0.393090\pi\)
0.329589 + 0.944125i \(0.393090\pi\)
\(884\) 42.5222 1.43018
\(885\) 6.18960 0.208061
\(886\) −29.1818 −0.980381
\(887\) −20.5286 −0.689283 −0.344641 0.938734i \(-0.611999\pi\)
−0.344641 + 0.938734i \(0.611999\pi\)
\(888\) −14.7316 −0.494362
\(889\) −7.37343 −0.247297
\(890\) −6.79632 −0.227813
\(891\) −4.93264 −0.165250
\(892\) 4.72765 0.158293
\(893\) −35.4027 −1.18470
\(894\) 18.6456 0.623601
\(895\) −6.09510 −0.203737
\(896\) −11.8197 −0.394869
\(897\) 0 0
\(898\) −33.4491 −1.11621
\(899\) 20.7060 0.690582
\(900\) 1.24478 0.0414928
\(901\) −4.28928 −0.142897
\(902\) 16.3772 0.545303
\(903\) 13.4274 0.446836
\(904\) −1.88039 −0.0625407
\(905\) −7.53099 −0.250338
\(906\) −15.2423 −0.506392
\(907\) −25.0489 −0.831736 −0.415868 0.909425i \(-0.636522\pi\)
−0.415868 + 0.909425i \(0.636522\pi\)
\(908\) 20.7964 0.690153
\(909\) −0.00890951 −0.000295510 0
\(910\) −12.0569 −0.399682
\(911\) −26.4675 −0.876906 −0.438453 0.898754i \(-0.644473\pi\)
−0.438453 + 0.898754i \(0.644473\pi\)
\(912\) −18.5976 −0.615830
\(913\) −57.7528 −1.91134
\(914\) −26.6952 −0.882999
\(915\) 4.15996 0.137524
\(916\) 7.91997 0.261683
\(917\) 18.1100 0.598044
\(918\) −10.7510 −0.354835
\(919\) 5.03813 0.166193 0.0830963 0.996542i \(-0.473519\pi\)
0.0830963 + 0.996542i \(0.473519\pi\)
\(920\) 0 0
\(921\) 5.99610 0.197578
\(922\) −13.1944 −0.434534
\(923\) −53.9597 −1.77611
\(924\) 7.18038 0.236217
\(925\) 10.8290 0.356054
\(926\) 38.6200 1.26913
\(927\) −6.89593 −0.226492
\(928\) 63.4617 2.08323
\(929\) 35.4018 1.16149 0.580747 0.814084i \(-0.302761\pi\)
0.580747 + 0.814084i \(0.302761\pi\)
\(930\) −3.63093 −0.119063
\(931\) 21.2041 0.694936
\(932\) 33.0842 1.08371
\(933\) 23.5490 0.770960
\(934\) −7.22291 −0.236341
\(935\) −29.4398 −0.962783
\(936\) −7.78632 −0.254504
\(937\) −53.7077 −1.75456 −0.877278 0.479983i \(-0.840643\pi\)
−0.877278 + 0.479983i \(0.840643\pi\)
\(938\) −31.9132 −1.04200
\(939\) 7.43120 0.242508
\(940\) −11.7059 −0.381805
\(941\) 18.8802 0.615475 0.307738 0.951471i \(-0.400428\pi\)
0.307738 + 0.951471i \(0.400428\pi\)
\(942\) −9.78600 −0.318845
\(943\) 0 0
\(944\) −30.5771 −0.995201
\(945\) 1.16943 0.0380416
\(946\) −102.021 −3.31699
\(947\) −0.0162488 −0.000528015 0 −0.000264007 1.00000i \(-0.500084\pi\)
−0.000264007 1.00000i \(0.500084\pi\)
\(948\) 9.09310 0.295330
\(949\) −53.4959 −1.73655
\(950\) 6.78136 0.220016
\(951\) −16.8174 −0.545340
\(952\) −9.49498 −0.307734
\(953\) −5.80510 −0.188046 −0.0940228 0.995570i \(-0.529973\pi\)
−0.0940228 + 0.995570i \(0.529973\pi\)
\(954\) −1.29456 −0.0419130
\(955\) 5.32898 0.172442
\(956\) 25.9972 0.840810
\(957\) 50.6698 1.63792
\(958\) 22.4902 0.726626
\(959\) −19.9313 −0.643615
\(960\) −1.24830 −0.0402886
\(961\) −26.9370 −0.868934
\(962\) 111.647 3.59964
\(963\) 1.59496 0.0513969
\(964\) 16.0434 0.516723
\(965\) 4.62606 0.148918
\(966\) 0 0
\(967\) −12.0594 −0.387805 −0.193902 0.981021i \(-0.562115\pi\)
−0.193902 + 0.981021i \(0.562115\pi\)
\(968\) 18.1353 0.582890
\(969\) −22.4687 −0.721800
\(970\) −27.8080 −0.892862
\(971\) −2.00731 −0.0644175 −0.0322088 0.999481i \(-0.510254\pi\)
−0.0322088 + 0.999481i \(0.510254\pi\)
\(972\) −1.24478 −0.0399264
\(973\) −0.629238 −0.0201724
\(974\) 3.62100 0.116024
\(975\) 5.72358 0.183301
\(976\) −20.5505 −0.657806
\(977\) −33.8365 −1.08253 −0.541263 0.840854i \(-0.682054\pi\)
−0.541263 + 0.840854i \(0.682054\pi\)
\(978\) −24.8456 −0.794474
\(979\) 18.6106 0.594797
\(980\) 7.01115 0.223963
\(981\) 7.63337 0.243715
\(982\) −14.7936 −0.472084
\(983\) −27.2751 −0.869939 −0.434970 0.900445i \(-0.643241\pi\)
−0.434970 + 0.900445i \(0.643241\pi\)
\(984\) −2.50746 −0.0799348
\(985\) 21.0697 0.671338
\(986\) 110.438 3.51705
\(987\) −10.9973 −0.350048
\(988\) 26.8216 0.853309
\(989\) 0 0
\(990\) −8.88530 −0.282393
\(991\) −20.6046 −0.654526 −0.327263 0.944933i \(-0.606126\pi\)
−0.327263 + 0.944933i \(0.606126\pi\)
\(992\) 12.4528 0.395378
\(993\) −8.38033 −0.265942
\(994\) −19.8596 −0.629907
\(995\) 2.08378 0.0660603
\(996\) −14.5743 −0.461804
\(997\) −52.6168 −1.66639 −0.833196 0.552978i \(-0.813491\pi\)
−0.833196 + 0.552978i \(0.813491\pi\)
\(998\) −73.0533 −2.31246
\(999\) −10.8290 −0.342613
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7935.2.a.bj.1.3 10
23.22 odd 2 7935.2.a.bk.1.3 yes 10
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7935.2.a.bj.1.3 10 1.1 even 1 trivial
7935.2.a.bk.1.3 yes 10 23.22 odd 2