Properties

Label 7920.2.a.e.1.1
Level $7920$
Weight $2$
Character 7920.1
Self dual yes
Analytic conductor $63.242$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7920.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(63.2415184009\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 440)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7920.1

$q$-expansion

\(f(q)\) \(=\) \(q-1.00000 q^{5} -1.00000 q^{7} +O(q^{10})\) \(q-1.00000 q^{5} -1.00000 q^{7} -1.00000 q^{11} -6.00000 q^{13} -3.00000 q^{17} +5.00000 q^{19} -2.00000 q^{23} +1.00000 q^{25} +5.00000 q^{29} -5.00000 q^{31} +1.00000 q^{35} -1.00000 q^{37} +2.00000 q^{41} -12.0000 q^{43} -2.00000 q^{47} -6.00000 q^{49} +13.0000 q^{53} +1.00000 q^{55} +2.00000 q^{59} +1.00000 q^{61} +6.00000 q^{65} -16.0000 q^{67} +15.0000 q^{71} +10.0000 q^{73} +1.00000 q^{77} -2.00000 q^{79} -14.0000 q^{83} +3.00000 q^{85} -9.00000 q^{89} +6.00000 q^{91} -5.00000 q^{95} -16.0000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −1.00000 −0.377964 −0.188982 0.981981i \(-0.560519\pi\)
−0.188982 + 0.981981i \(0.560519\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.00000 −0.301511
\(12\) 0 0
\(13\) −6.00000 −1.66410 −0.832050 0.554700i \(-0.812833\pi\)
−0.832050 + 0.554700i \(0.812833\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.00000 −0.417029 −0.208514 0.978019i \(-0.566863\pi\)
−0.208514 + 0.978019i \(0.566863\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 5.00000 0.928477 0.464238 0.885710i \(-0.346328\pi\)
0.464238 + 0.885710i \(0.346328\pi\)
\(30\) 0 0
\(31\) −5.00000 −0.898027 −0.449013 0.893525i \(-0.648224\pi\)
−0.449013 + 0.893525i \(0.648224\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −1.00000 −0.164399 −0.0821995 0.996616i \(-0.526194\pi\)
−0.0821995 + 0.996616i \(0.526194\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.00000 0.312348 0.156174 0.987730i \(-0.450084\pi\)
0.156174 + 0.987730i \(0.450084\pi\)
\(42\) 0 0
\(43\) −12.0000 −1.82998 −0.914991 0.403473i \(-0.867803\pi\)
−0.914991 + 0.403473i \(0.867803\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −2.00000 −0.291730 −0.145865 0.989305i \(-0.546597\pi\)
−0.145865 + 0.989305i \(0.546597\pi\)
\(48\) 0 0
\(49\) −6.00000 −0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.0000 1.78569 0.892844 0.450367i \(-0.148707\pi\)
0.892844 + 0.450367i \(0.148707\pi\)
\(54\) 0 0
\(55\) 1.00000 0.134840
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.00000 0.260378 0.130189 0.991489i \(-0.458442\pi\)
0.130189 + 0.991489i \(0.458442\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 6.00000 0.744208
\(66\) 0 0
\(67\) −16.0000 −1.95471 −0.977356 0.211604i \(-0.932131\pi\)
−0.977356 + 0.211604i \(0.932131\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 15.0000 1.78017 0.890086 0.455792i \(-0.150644\pi\)
0.890086 + 0.455792i \(0.150644\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.00000 0.113961
\(78\) 0 0
\(79\) −2.00000 −0.225018 −0.112509 0.993651i \(-0.535889\pi\)
−0.112509 + 0.993651i \(0.535889\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −14.0000 −1.53670 −0.768350 0.640030i \(-0.778922\pi\)
−0.768350 + 0.640030i \(0.778922\pi\)
\(84\) 0 0
\(85\) 3.00000 0.325396
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.00000 −0.953998 −0.476999 0.878904i \(-0.658275\pi\)
−0.476999 + 0.878904i \(0.658275\pi\)
\(90\) 0 0
\(91\) 6.00000 0.628971
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −5.00000 −0.512989
\(96\) 0 0
\(97\) −16.0000 −1.62455 −0.812277 0.583272i \(-0.801772\pi\)
−0.812277 + 0.583272i \(0.801772\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 10.0000 0.995037 0.497519 0.867453i \(-0.334245\pi\)
0.497519 + 0.867453i \(0.334245\pi\)
\(102\) 0 0
\(103\) 16.0000 1.57653 0.788263 0.615338i \(-0.210980\pi\)
0.788263 + 0.615338i \(0.210980\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −4.00000 −0.386695 −0.193347 0.981130i \(-0.561934\pi\)
−0.193347 + 0.981130i \(0.561934\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0000 1.50515 0.752577 0.658505i \(-0.228811\pi\)
0.752577 + 0.658505i \(0.228811\pi\)
\(114\) 0 0
\(115\) 2.00000 0.186501
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 3.00000 0.275010
\(120\) 0 0
\(121\) 1.00000 0.0909091
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) 8.00000 0.709885 0.354943 0.934888i \(-0.384500\pi\)
0.354943 + 0.934888i \(0.384500\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.00000 0.611593 0.305796 0.952097i \(-0.401077\pi\)
0.305796 + 0.952097i \(0.401077\pi\)
\(132\) 0 0
\(133\) −5.00000 −0.433555
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −12.0000 −1.02523 −0.512615 0.858619i \(-0.671323\pi\)
−0.512615 + 0.858619i \(0.671323\pi\)
\(138\) 0 0
\(139\) 4.00000 0.339276 0.169638 0.985506i \(-0.445740\pi\)
0.169638 + 0.985506i \(0.445740\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) −5.00000 −0.415227
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 15.0000 1.22885 0.614424 0.788976i \(-0.289388\pi\)
0.614424 + 0.788976i \(0.289388\pi\)
\(150\) 0 0
\(151\) −18.0000 −1.46482 −0.732410 0.680864i \(-0.761604\pi\)
−0.732410 + 0.680864i \(0.761604\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 5.00000 0.401610
\(156\) 0 0
\(157\) 7.00000 0.558661 0.279330 0.960195i \(-0.409888\pi\)
0.279330 + 0.960195i \(0.409888\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 2.00000 0.157622
\(162\) 0 0
\(163\) 1.00000 0.0783260 0.0391630 0.999233i \(-0.487531\pi\)
0.0391630 + 0.999233i \(0.487531\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.00000 0.0773823 0.0386912 0.999251i \(-0.487681\pi\)
0.0386912 + 0.999251i \(0.487681\pi\)
\(168\) 0 0
\(169\) 23.0000 1.76923
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 6.00000 0.456172 0.228086 0.973641i \(-0.426753\pi\)
0.228086 + 0.973641i \(0.426753\pi\)
\(174\) 0 0
\(175\) −1.00000 −0.0755929
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.00000 0.298974 0.149487 0.988764i \(-0.452238\pi\)
0.149487 + 0.988764i \(0.452238\pi\)
\(180\) 0 0
\(181\) 22.0000 1.63525 0.817624 0.575753i \(-0.195291\pi\)
0.817624 + 0.575753i \(0.195291\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.00000 0.0735215
\(186\) 0 0
\(187\) 3.00000 0.219382
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 12.0000 0.868290 0.434145 0.900843i \(-0.357051\pi\)
0.434145 + 0.900843i \(0.357051\pi\)
\(192\) 0 0
\(193\) 7.00000 0.503871 0.251936 0.967744i \(-0.418933\pi\)
0.251936 + 0.967744i \(0.418933\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 24.0000 1.70993 0.854965 0.518686i \(-0.173579\pi\)
0.854965 + 0.518686i \(0.173579\pi\)
\(198\) 0 0
\(199\) 1.00000 0.0708881 0.0354441 0.999372i \(-0.488715\pi\)
0.0354441 + 0.999372i \(0.488715\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −5.00000 −0.350931
\(204\) 0 0
\(205\) −2.00000 −0.139686
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.00000 −0.345857
\(210\) 0 0
\(211\) 1.00000 0.0688428 0.0344214 0.999407i \(-0.489041\pi\)
0.0344214 + 0.999407i \(0.489041\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 12.0000 0.818393
\(216\) 0 0
\(217\) 5.00000 0.339422
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 18.0000 1.21081
\(222\) 0 0
\(223\) −26.0000 −1.74109 −0.870544 0.492090i \(-0.836233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 0 0
\(229\) 6.00000 0.396491 0.198246 0.980152i \(-0.436476\pi\)
0.198246 + 0.980152i \(0.436476\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −11.0000 −0.720634 −0.360317 0.932830i \(-0.617331\pi\)
−0.360317 + 0.932830i \(0.617331\pi\)
\(234\) 0 0
\(235\) 2.00000 0.130466
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −2.00000 −0.129369 −0.0646846 0.997906i \(-0.520604\pi\)
−0.0646846 + 0.997906i \(0.520604\pi\)
\(240\) 0 0
\(241\) 18.0000 1.15948 0.579741 0.814801i \(-0.303154\pi\)
0.579741 + 0.814801i \(0.303154\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 6.00000 0.383326
\(246\) 0 0
\(247\) −30.0000 −1.90885
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −10.0000 −0.631194 −0.315597 0.948893i \(-0.602205\pi\)
−0.315597 + 0.948893i \(0.602205\pi\)
\(252\) 0 0
\(253\) 2.00000 0.125739
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 22.0000 1.37232 0.686161 0.727450i \(-0.259294\pi\)
0.686161 + 0.727450i \(0.259294\pi\)
\(258\) 0 0
\(259\) 1.00000 0.0621370
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −13.0000 −0.801614 −0.400807 0.916162i \(-0.631270\pi\)
−0.400807 + 0.916162i \(0.631270\pi\)
\(264\) 0 0
\(265\) −13.0000 −0.798584
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −20.0000 −1.21942 −0.609711 0.792624i \(-0.708714\pi\)
−0.609711 + 0.792624i \(0.708714\pi\)
\(270\) 0 0
\(271\) −24.0000 −1.45790 −0.728948 0.684569i \(-0.759990\pi\)
−0.728948 + 0.684569i \(0.759990\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.00000 −0.0603023
\(276\) 0 0
\(277\) 16.0000 0.961347 0.480673 0.876900i \(-0.340392\pi\)
0.480673 + 0.876900i \(0.340392\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) −10.0000 −0.594438 −0.297219 0.954809i \(-0.596059\pi\)
−0.297219 + 0.954809i \(0.596059\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −2.00000 −0.118056
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −6.00000 −0.350524 −0.175262 0.984522i \(-0.556077\pi\)
−0.175262 + 0.984522i \(0.556077\pi\)
\(294\) 0 0
\(295\) −2.00000 −0.116445
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 12.0000 0.693978
\(300\) 0 0
\(301\) 12.0000 0.691669
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −1.00000 −0.0572598
\(306\) 0 0
\(307\) 22.0000 1.25561 0.627803 0.778372i \(-0.283954\pi\)
0.627803 + 0.778372i \(0.283954\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 21.0000 1.19080 0.595400 0.803429i \(-0.296993\pi\)
0.595400 + 0.803429i \(0.296993\pi\)
\(312\) 0 0
\(313\) −30.0000 −1.69570 −0.847850 0.530236i \(-0.822103\pi\)
−0.847850 + 0.530236i \(0.822103\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.00000 0.168497 0.0842484 0.996445i \(-0.473151\pi\)
0.0842484 + 0.996445i \(0.473151\pi\)
\(318\) 0 0
\(319\) −5.00000 −0.279946
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −15.0000 −0.834622
\(324\) 0 0
\(325\) −6.00000 −0.332820
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 2.00000 0.110264
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 16.0000 0.874173
\(336\) 0 0
\(337\) 29.0000 1.57973 0.789865 0.613280i \(-0.210150\pi\)
0.789865 + 0.613280i \(0.210150\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 5.00000 0.270765
\(342\) 0 0
\(343\) 13.0000 0.701934
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −2.00000 −0.107366 −0.0536828 0.998558i \(-0.517096\pi\)
−0.0536828 + 0.998558i \(0.517096\pi\)
\(348\) 0 0
\(349\) 10.0000 0.535288 0.267644 0.963518i \(-0.413755\pi\)
0.267644 + 0.963518i \(0.413755\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.0000 0.958043 0.479022 0.877803i \(-0.340992\pi\)
0.479022 + 0.877803i \(0.340992\pi\)
\(354\) 0 0
\(355\) −15.0000 −0.796117
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 24.0000 1.26667 0.633336 0.773877i \(-0.281685\pi\)
0.633336 + 0.773877i \(0.281685\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −10.0000 −0.523424
\(366\) 0 0
\(367\) 12.0000 0.626395 0.313197 0.949688i \(-0.398600\pi\)
0.313197 + 0.949688i \(0.398600\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.0000 −0.674926
\(372\) 0 0
\(373\) 14.0000 0.724893 0.362446 0.932005i \(-0.381942\pi\)
0.362446 + 0.932005i \(0.381942\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −30.0000 −1.54508
\(378\) 0 0
\(379\) 2.00000 0.102733 0.0513665 0.998680i \(-0.483642\pi\)
0.0513665 + 0.998680i \(0.483642\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −14.0000 −0.715367 −0.357683 0.933843i \(-0.616433\pi\)
−0.357683 + 0.933843i \(0.616433\pi\)
\(384\) 0 0
\(385\) −1.00000 −0.0509647
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 2.00000 0.101404 0.0507020 0.998714i \(-0.483854\pi\)
0.0507020 + 0.998714i \(0.483854\pi\)
\(390\) 0 0
\(391\) 6.00000 0.303433
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 2.00000 0.100631
\(396\) 0 0
\(397\) 22.0000 1.10415 0.552074 0.833795i \(-0.313837\pi\)
0.552074 + 0.833795i \(0.313837\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.0000 1.04869 0.524345 0.851506i \(-0.324310\pi\)
0.524345 + 0.851506i \(0.324310\pi\)
\(402\) 0 0
\(403\) 30.0000 1.49441
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 1.00000 0.0495682
\(408\) 0 0
\(409\) −32.0000 −1.58230 −0.791149 0.611623i \(-0.790517\pi\)
−0.791149 + 0.611623i \(0.790517\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −2.00000 −0.0984136
\(414\) 0 0
\(415\) 14.0000 0.687233
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −4.00000 −0.195413 −0.0977064 0.995215i \(-0.531151\pi\)
−0.0977064 + 0.995215i \(0.531151\pi\)
\(420\) 0 0
\(421\) −36.0000 −1.75453 −0.877266 0.480004i \(-0.840635\pi\)
−0.877266 + 0.480004i \(0.840635\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −3.00000 −0.145521
\(426\) 0 0
\(427\) −1.00000 −0.0483934
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −8.00000 −0.385346 −0.192673 0.981263i \(-0.561716\pi\)
−0.192673 + 0.981263i \(0.561716\pi\)
\(432\) 0 0
\(433\) 4.00000 0.192228 0.0961139 0.995370i \(-0.469359\pi\)
0.0961139 + 0.995370i \(0.469359\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.0000 −0.478365
\(438\) 0 0
\(439\) −16.0000 −0.763638 −0.381819 0.924237i \(-0.624702\pi\)
−0.381819 + 0.924237i \(0.624702\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 12.0000 0.570137 0.285069 0.958507i \(-0.407984\pi\)
0.285069 + 0.958507i \(0.407984\pi\)
\(444\) 0 0
\(445\) 9.00000 0.426641
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 6.00000 0.283158 0.141579 0.989927i \(-0.454782\pi\)
0.141579 + 0.989927i \(0.454782\pi\)
\(450\) 0 0
\(451\) −2.00000 −0.0941763
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −6.00000 −0.281284
\(456\) 0 0
\(457\) 33.0000 1.54367 0.771837 0.635820i \(-0.219338\pi\)
0.771837 + 0.635820i \(0.219338\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −5.00000 −0.232873 −0.116437 0.993198i \(-0.537147\pi\)
−0.116437 + 0.993198i \(0.537147\pi\)
\(462\) 0 0
\(463\) −6.00000 −0.278844 −0.139422 0.990233i \(-0.544524\pi\)
−0.139422 + 0.990233i \(0.544524\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 27.0000 1.24941 0.624705 0.780860i \(-0.285219\pi\)
0.624705 + 0.780860i \(0.285219\pi\)
\(468\) 0 0
\(469\) 16.0000 0.738811
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12.0000 0.551761
\(474\) 0 0
\(475\) 5.00000 0.229416
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 20.0000 0.913823 0.456912 0.889512i \(-0.348956\pi\)
0.456912 + 0.889512i \(0.348956\pi\)
\(480\) 0 0
\(481\) 6.00000 0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 16.0000 0.726523
\(486\) 0 0
\(487\) 12.0000 0.543772 0.271886 0.962329i \(-0.412353\pi\)
0.271886 + 0.962329i \(0.412353\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −13.0000 −0.586682 −0.293341 0.956008i \(-0.594767\pi\)
−0.293341 + 0.956008i \(0.594767\pi\)
\(492\) 0 0
\(493\) −15.0000 −0.675566
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −15.0000 −0.672842
\(498\) 0 0
\(499\) 8.00000 0.358129 0.179065 0.983837i \(-0.442693\pi\)
0.179065 + 0.983837i \(0.442693\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −8.00000 −0.354594 −0.177297 0.984157i \(-0.556735\pi\)
−0.177297 + 0.984157i \(0.556735\pi\)
\(510\) 0 0
\(511\) −10.0000 −0.442374
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −16.0000 −0.705044
\(516\) 0 0
\(517\) 2.00000 0.0879599
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 26.0000 1.13908 0.569540 0.821963i \(-0.307121\pi\)
0.569540 + 0.821963i \(0.307121\pi\)
\(522\) 0 0
\(523\) 4.00000 0.174908 0.0874539 0.996169i \(-0.472127\pi\)
0.0874539 + 0.996169i \(0.472127\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 15.0000 0.653410
\(528\) 0 0
\(529\) −19.0000 −0.826087
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −12.0000 −0.519778
\(534\) 0 0
\(535\) 4.00000 0.172935
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 6.00000 0.258438
\(540\) 0 0
\(541\) 15.0000 0.644900 0.322450 0.946586i \(-0.395494\pi\)
0.322450 + 0.946586i \(0.395494\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) 36.0000 1.53925 0.769624 0.638497i \(-0.220443\pi\)
0.769624 + 0.638497i \(0.220443\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 25.0000 1.06504
\(552\) 0 0
\(553\) 2.00000 0.0850487
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 30.0000 1.27114 0.635570 0.772043i \(-0.280765\pi\)
0.635570 + 0.772043i \(0.280765\pi\)
\(558\) 0 0
\(559\) 72.0000 3.04528
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) 0 0
\(565\) −16.0000 −0.673125
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −36.0000 −1.50920 −0.754599 0.656186i \(-0.772169\pi\)
−0.754599 + 0.656186i \(0.772169\pi\)
\(570\) 0 0
\(571\) 19.0000 0.795125 0.397563 0.917575i \(-0.369856\pi\)
0.397563 + 0.917575i \(0.369856\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −2.00000 −0.0834058
\(576\) 0 0
\(577\) −14.0000 −0.582828 −0.291414 0.956597i \(-0.594126\pi\)
−0.291414 + 0.956597i \(0.594126\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 14.0000 0.580818
\(582\) 0 0
\(583\) −13.0000 −0.538405
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −39.0000 −1.60970 −0.804851 0.593477i \(-0.797755\pi\)
−0.804851 + 0.593477i \(0.797755\pi\)
\(588\) 0 0
\(589\) −25.0000 −1.03011
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 22.0000 0.903432 0.451716 0.892162i \(-0.350812\pi\)
0.451716 + 0.892162i \(0.350812\pi\)
\(594\) 0 0
\(595\) −3.00000 −0.122988
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −27.0000 −1.10319 −0.551595 0.834112i \(-0.685981\pi\)
−0.551595 + 0.834112i \(0.685981\pi\)
\(600\) 0 0
\(601\) 14.0000 0.571072 0.285536 0.958368i \(-0.407828\pi\)
0.285536 + 0.958368i \(0.407828\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −1.00000 −0.0406558
\(606\) 0 0
\(607\) 21.0000 0.852364 0.426182 0.904638i \(-0.359858\pi\)
0.426182 + 0.904638i \(0.359858\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) −10.0000 −0.403896 −0.201948 0.979396i \(-0.564727\pi\)
−0.201948 + 0.979396i \(0.564727\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −12.0000 −0.483102 −0.241551 0.970388i \(-0.577656\pi\)
−0.241551 + 0.970388i \(0.577656\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 9.00000 0.360577
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.00000 0.119618
\(630\) 0 0
\(631\) −15.0000 −0.597141 −0.298570 0.954388i \(-0.596510\pi\)
−0.298570 + 0.954388i \(0.596510\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −8.00000 −0.317470
\(636\) 0 0
\(637\) 36.0000 1.42637
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 9.00000 0.355479 0.177739 0.984078i \(-0.443122\pi\)
0.177739 + 0.984078i \(0.443122\pi\)
\(642\) 0 0
\(643\) −7.00000 −0.276053 −0.138027 0.990429i \(-0.544076\pi\)
−0.138027 + 0.990429i \(0.544076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −6.00000 −0.235884 −0.117942 0.993020i \(-0.537630\pi\)
−0.117942 + 0.993020i \(0.537630\pi\)
\(648\) 0 0
\(649\) −2.00000 −0.0785069
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 19.0000 0.743527 0.371764 0.928327i \(-0.378753\pi\)
0.371764 + 0.928327i \(0.378753\pi\)
\(654\) 0 0
\(655\) −7.00000 −0.273513
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 49.0000 1.90877 0.954384 0.298580i \(-0.0965131\pi\)
0.954384 + 0.298580i \(0.0965131\pi\)
\(660\) 0 0
\(661\) −22.0000 −0.855701 −0.427850 0.903850i \(-0.640729\pi\)
−0.427850 + 0.903850i \(0.640729\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 5.00000 0.193892
\(666\) 0 0
\(667\) −10.0000 −0.387202
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −1.00000 −0.0386046
\(672\) 0 0
\(673\) −1.00000 −0.0385472 −0.0192736 0.999814i \(-0.506135\pi\)
−0.0192736 + 0.999814i \(0.506135\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 16.0000 0.614024
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −19.0000 −0.727015 −0.363507 0.931591i \(-0.618421\pi\)
−0.363507 + 0.931591i \(0.618421\pi\)
\(684\) 0 0
\(685\) 12.0000 0.458496
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −78.0000 −2.97156
\(690\) 0 0
\(691\) −34.0000 −1.29342 −0.646710 0.762736i \(-0.723856\pi\)
−0.646710 + 0.762736i \(0.723856\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.00000 −0.151729
\(696\) 0 0
\(697\) −6.00000 −0.227266
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.0000 1.17085 0.585427 0.810725i \(-0.300927\pi\)
0.585427 + 0.810725i \(0.300927\pi\)
\(702\) 0 0
\(703\) −5.00000 −0.188579
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −10.0000 −0.376089
\(708\) 0 0
\(709\) 46.0000 1.72757 0.863783 0.503864i \(-0.168089\pi\)
0.863783 + 0.503864i \(0.168089\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 10.0000 0.374503
\(714\) 0 0
\(715\) −6.00000 −0.224387
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1.00000 0.0372937 0.0186469 0.999826i \(-0.494064\pi\)
0.0186469 + 0.999826i \(0.494064\pi\)
\(720\) 0 0
\(721\) −16.0000 −0.595871
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 5.00000 0.185695
\(726\) 0 0
\(727\) 26.0000 0.964287 0.482143 0.876092i \(-0.339858\pi\)
0.482143 + 0.876092i \(0.339858\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 36.0000 1.33151
\(732\) 0 0
\(733\) −32.0000 −1.18195 −0.590973 0.806691i \(-0.701256\pi\)
−0.590973 + 0.806691i \(0.701256\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 16.0000 0.589368
\(738\) 0 0
\(739\) 8.00000 0.294285 0.147142 0.989115i \(-0.452992\pi\)
0.147142 + 0.989115i \(0.452992\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 33.0000 1.21065 0.605326 0.795977i \(-0.293043\pi\)
0.605326 + 0.795977i \(0.293043\pi\)
\(744\) 0 0
\(745\) −15.0000 −0.549557
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 4.00000 0.146157
\(750\) 0 0
\(751\) 7.00000 0.255434 0.127717 0.991811i \(-0.459235\pi\)
0.127717 + 0.991811i \(0.459235\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 18.0000 0.655087
\(756\) 0 0
\(757\) −2.00000 −0.0726912 −0.0363456 0.999339i \(-0.511572\pi\)
−0.0363456 + 0.999339i \(0.511572\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 30.0000 1.08750 0.543750 0.839248i \(-0.317004\pi\)
0.543750 + 0.839248i \(0.317004\pi\)
\(762\) 0 0
\(763\) −10.0000 −0.362024
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −12.0000 −0.433295
\(768\) 0 0
\(769\) 10.0000 0.360609 0.180305 0.983611i \(-0.442292\pi\)
0.180305 + 0.983611i \(0.442292\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 9.00000 0.323708 0.161854 0.986815i \(-0.448253\pi\)
0.161854 + 0.986815i \(0.448253\pi\)
\(774\) 0 0
\(775\) −5.00000 −0.179605
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 10.0000 0.358287
\(780\) 0 0
\(781\) −15.0000 −0.536742
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −7.00000 −0.249841
\(786\) 0 0
\(787\) 48.0000 1.71102 0.855508 0.517790i \(-0.173245\pi\)
0.855508 + 0.517790i \(0.173245\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −16.0000 −0.568895
\(792\) 0 0
\(793\) −6.00000 −0.213066
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −34.0000 −1.20434 −0.602171 0.798367i \(-0.705697\pi\)
−0.602171 + 0.798367i \(0.705697\pi\)
\(798\) 0 0
\(799\) 6.00000 0.212265
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −10.0000 −0.352892
\(804\) 0 0
\(805\) −2.00000 −0.0704907
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 6.00000 0.210949 0.105474 0.994422i \(-0.466364\pi\)
0.105474 + 0.994422i \(0.466364\pi\)
\(810\) 0 0
\(811\) −1.00000 −0.0351147 −0.0175574 0.999846i \(-0.505589\pi\)
−0.0175574 + 0.999846i \(0.505589\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.00000 −0.0350285
\(816\) 0 0
\(817\) −60.0000 −2.09913
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −50.0000 −1.74501 −0.872506 0.488603i \(-0.837507\pi\)
−0.872506 + 0.488603i \(0.837507\pi\)
\(822\) 0 0
\(823\) −44.0000 −1.53374 −0.766872 0.641800i \(-0.778188\pi\)
−0.766872 + 0.641800i \(0.778188\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −52.0000 −1.80822 −0.904109 0.427303i \(-0.859464\pi\)
−0.904109 + 0.427303i \(0.859464\pi\)
\(828\) 0 0
\(829\) 4.00000 0.138926 0.0694629 0.997585i \(-0.477871\pi\)
0.0694629 + 0.997585i \(0.477871\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 18.0000 0.623663
\(834\) 0 0
\(835\) −1.00000 −0.0346064
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −23.0000 −0.791224
\(846\) 0 0
\(847\) −1.00000 −0.0343604
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.00000 0.0685591
\(852\) 0 0
\(853\) 22.0000 0.753266 0.376633 0.926363i \(-0.377082\pi\)
0.376633 + 0.926363i \(0.377082\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 21.0000 0.717346 0.358673 0.933463i \(-0.383229\pi\)
0.358673 + 0.933463i \(0.383229\pi\)
\(858\) 0 0
\(859\) 22.0000 0.750630 0.375315 0.926897i \(-0.377534\pi\)
0.375315 + 0.926897i \(0.377534\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −46.0000 −1.56586 −0.782929 0.622111i \(-0.786275\pi\)
−0.782929 + 0.622111i \(0.786275\pi\)
\(864\) 0 0
\(865\) −6.00000 −0.204006
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 2.00000 0.0678454
\(870\) 0 0
\(871\) 96.0000 3.25284
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 1.00000 0.0338062
\(876\) 0 0
\(877\) 2.00000 0.0675352 0.0337676 0.999430i \(-0.489249\pi\)
0.0337676 + 0.999430i \(0.489249\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −50.0000 −1.68454 −0.842271 0.539054i \(-0.818782\pi\)
−0.842271 + 0.539054i \(0.818782\pi\)
\(882\) 0 0
\(883\) −5.00000 −0.168263 −0.0841317 0.996455i \(-0.526812\pi\)
−0.0841317 + 0.996455i \(0.526812\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −40.0000 −1.34307 −0.671534 0.740973i \(-0.734364\pi\)
−0.671534 + 0.740973i \(0.734364\pi\)
\(888\) 0 0
\(889\) −8.00000 −0.268311
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −10.0000 −0.334637
\(894\) 0 0
\(895\) −4.00000 −0.133705
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −25.0000 −0.833797
\(900\) 0 0
\(901\) −39.0000 −1.29928
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −22.0000 −0.731305
\(906\) 0 0
\(907\) 29.0000 0.962929 0.481465 0.876466i \(-0.340105\pi\)
0.481465 + 0.876466i \(0.340105\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 3.00000 0.0993944 0.0496972 0.998764i \(-0.484174\pi\)
0.0496972 + 0.998764i \(0.484174\pi\)
\(912\) 0 0
\(913\) 14.0000 0.463332
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.00000 −0.231160
\(918\) 0 0
\(919\) 32.0000 1.05558 0.527791 0.849374i \(-0.323020\pi\)
0.527791 + 0.849374i \(0.323020\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −90.0000 −2.96239
\(924\) 0 0
\(925\) −1.00000 −0.0328798
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −59.0000 −1.93573 −0.967864 0.251476i \(-0.919084\pi\)
−0.967864 + 0.251476i \(0.919084\pi\)
\(930\) 0 0
\(931\) −30.0000 −0.983210
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −3.00000 −0.0981105
\(936\) 0 0
\(937\) 10.0000 0.326686 0.163343 0.986569i \(-0.447772\pi\)
0.163343 + 0.986569i \(0.447772\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 41.0000 1.33656 0.668281 0.743909i \(-0.267030\pi\)
0.668281 + 0.743909i \(0.267030\pi\)
\(942\) 0 0
\(943\) −4.00000 −0.130258
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 41.0000 1.33232 0.666160 0.745808i \(-0.267937\pi\)
0.666160 + 0.745808i \(0.267937\pi\)
\(948\) 0 0
\(949\) −60.0000 −1.94768
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −29.0000 −0.939402 −0.469701 0.882826i \(-0.655638\pi\)
−0.469701 + 0.882826i \(0.655638\pi\)
\(954\) 0 0
\(955\) −12.0000 −0.388311
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 12.0000 0.387500
\(960\) 0 0
\(961\) −6.00000 −0.193548
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −7.00000 −0.225338
\(966\) 0 0
\(967\) −55.0000 −1.76868 −0.884340 0.466843i \(-0.845391\pi\)
−0.884340 + 0.466843i \(0.845391\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 44.0000 1.41203 0.706014 0.708198i \(-0.250492\pi\)
0.706014 + 0.708198i \(0.250492\pi\)
\(972\) 0 0
\(973\) −4.00000 −0.128234
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 8.00000 0.255943 0.127971 0.991778i \(-0.459153\pi\)
0.127971 + 0.991778i \(0.459153\pi\)
\(978\) 0 0
\(979\) 9.00000 0.287641
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −14.0000 −0.446531 −0.223265 0.974758i \(-0.571672\pi\)
−0.223265 + 0.974758i \(0.571672\pi\)
\(984\) 0 0
\(985\) −24.0000 −0.764704
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 24.0000 0.763156
\(990\) 0 0
\(991\) −16.0000 −0.508257 −0.254128 0.967170i \(-0.581789\pi\)
−0.254128 + 0.967170i \(0.581789\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −1.00000 −0.0317021
\(996\) 0 0
\(997\) 8.00000 0.253363 0.126681 0.991943i \(-0.459567\pi\)
0.126681 + 0.991943i \(0.459567\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7920.2.a.e.1.1 1
3.2 odd 2 880.2.a.a.1.1 1
4.3 odd 2 3960.2.a.f.1.1 1
12.11 even 2 440.2.a.d.1.1 1
15.2 even 4 4400.2.b.a.4049.2 2
15.8 even 4 4400.2.b.a.4049.1 2
15.14 odd 2 4400.2.a.be.1.1 1
24.5 odd 2 3520.2.a.bh.1.1 1
24.11 even 2 3520.2.a.a.1.1 1
33.32 even 2 9680.2.a.a.1.1 1
60.23 odd 4 2200.2.b.b.1849.2 2
60.47 odd 4 2200.2.b.b.1849.1 2
60.59 even 2 2200.2.a.a.1.1 1
132.131 odd 2 4840.2.a.i.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
440.2.a.d.1.1 1 12.11 even 2
880.2.a.a.1.1 1 3.2 odd 2
2200.2.a.a.1.1 1 60.59 even 2
2200.2.b.b.1849.1 2 60.47 odd 4
2200.2.b.b.1849.2 2 60.23 odd 4
3520.2.a.a.1.1 1 24.11 even 2
3520.2.a.bh.1.1 1 24.5 odd 2
3960.2.a.f.1.1 1 4.3 odd 2
4400.2.a.be.1.1 1 15.14 odd 2
4400.2.b.a.4049.1 2 15.8 even 4
4400.2.b.a.4049.2 2 15.2 even 4
4840.2.a.i.1.1 1 132.131 odd 2
7920.2.a.e.1.1 1 1.1 even 1 trivial
9680.2.a.a.1.1 1 33.32 even 2