Properties

Label 7920.2.a.d
Level $7920$
Weight $2$
Character orbit 7920.a
Self dual yes
Analytic conductor $63.242$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7920 = 2^{4} \cdot 3^{2} \cdot 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7920.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(63.2415184009\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - q^{5} - 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q - q^{5} - 3 q^{7} + q^{11} - 6 q^{13} + 7 q^{17} - 5 q^{19} - 6 q^{23} + q^{25} - 5 q^{29} + 3 q^{31} + 3 q^{35} + 3 q^{37} - 2 q^{41} - 4 q^{43} - 2 q^{47} + 2 q^{49} + q^{53} - q^{55} - 10 q^{59} + 7 q^{61} + 6 q^{65} - 8 q^{67} + 7 q^{71} + 14 q^{73} - 3 q^{77} - 10 q^{79} - 6 q^{83} - 7 q^{85} + 15 q^{89} + 18 q^{91} + 5 q^{95} - 12 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 −1.00000 0 −3.00000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(11\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7920.2.a.d 1
3.b odd 2 1 880.2.a.i 1
4.b odd 2 1 990.2.a.d 1
12.b even 2 1 110.2.a.b 1
15.d odd 2 1 4400.2.a.l 1
15.e even 4 2 4400.2.b.i 2
20.d odd 2 1 4950.2.a.bc 1
20.e even 4 2 4950.2.c.m 2
24.f even 2 1 3520.2.a.y 1
24.h odd 2 1 3520.2.a.h 1
33.d even 2 1 9680.2.a.x 1
60.h even 2 1 550.2.a.f 1
60.l odd 4 2 550.2.b.a 2
84.h odd 2 1 5390.2.a.bf 1
132.d odd 2 1 1210.2.a.b 1
660.g odd 2 1 6050.2.a.bj 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
110.2.a.b 1 12.b even 2 1
550.2.a.f 1 60.h even 2 1
550.2.b.a 2 60.l odd 4 2
880.2.a.i 1 3.b odd 2 1
990.2.a.d 1 4.b odd 2 1
1210.2.a.b 1 132.d odd 2 1
3520.2.a.h 1 24.h odd 2 1
3520.2.a.y 1 24.f even 2 1
4400.2.a.l 1 15.d odd 2 1
4400.2.b.i 2 15.e even 4 2
4950.2.a.bc 1 20.d odd 2 1
4950.2.c.m 2 20.e even 4 2
5390.2.a.bf 1 84.h odd 2 1
6050.2.a.bj 1 660.g odd 2 1
7920.2.a.d 1 1.a even 1 1 trivial
9680.2.a.x 1 33.d even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7920))\):

\( T_{7} + 3 \) Copy content Toggle raw display
\( T_{13} + 6 \) Copy content Toggle raw display
\( T_{17} - 7 \) Copy content Toggle raw display
\( T_{19} + 5 \) Copy content Toggle raw display
\( T_{23} + 6 \) Copy content Toggle raw display
\( T_{29} + 5 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1 \) Copy content Toggle raw display
$7$ \( T + 3 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T + 6 \) Copy content Toggle raw display
$17$ \( T - 7 \) Copy content Toggle raw display
$19$ \( T + 5 \) Copy content Toggle raw display
$23$ \( T + 6 \) Copy content Toggle raw display
$29$ \( T + 5 \) Copy content Toggle raw display
$31$ \( T - 3 \) Copy content Toggle raw display
$37$ \( T - 3 \) Copy content Toggle raw display
$41$ \( T + 2 \) Copy content Toggle raw display
$43$ \( T + 4 \) Copy content Toggle raw display
$47$ \( T + 2 \) Copy content Toggle raw display
$53$ \( T - 1 \) Copy content Toggle raw display
$59$ \( T + 10 \) Copy content Toggle raw display
$61$ \( T - 7 \) Copy content Toggle raw display
$67$ \( T + 8 \) Copy content Toggle raw display
$71$ \( T - 7 \) Copy content Toggle raw display
$73$ \( T - 14 \) Copy content Toggle raw display
$79$ \( T + 10 \) Copy content Toggle raw display
$83$ \( T + 6 \) Copy content Toggle raw display
$89$ \( T - 15 \) Copy content Toggle raw display
$97$ \( T + 12 \) Copy content Toggle raw display
show more
show less