Properties

Label 792.2.f.g.397.7
Level $792$
Weight $2$
Character 792.397
Analytic conductor $6.324$
Analytic rank $0$
Dimension $10$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [792,2,Mod(397,792)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("792.397"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(792, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 792.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [10,0,0,-4,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.32415184009\)
Analytic rank: \(0\)
Dimension: \(10\)
Coefficient field: 10.0.578281160704.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{10} + 2x^{8} - 2x^{7} - 3x^{6} - 6x^{5} - 6x^{4} - 8x^{3} + 16x^{2} + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 88)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 397.7
Root \(-0.239536 + 1.39378i\) of defining polynomial
Character \(\chi\) \(=\) 792.397
Dual form 792.2.f.g.397.8

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.428185 - 1.34783i) q^{2} +(-1.63332 - 1.15424i) q^{4} -1.93119i q^{5} -1.83930 q^{7} +(-2.25509 + 1.70721i) q^{8} +(-2.60293 - 0.826906i) q^{10} -1.00000i q^{11} -0.160700i q^{13} +(-0.787560 + 2.47907i) q^{14} +(1.33544 + 3.77049i) q^{16} -5.41442 q^{17} -2.79744i q^{19} +(-2.22907 + 3.15424i) q^{20} +(-1.34783 - 0.428185i) q^{22} -4.44137 q^{23} +1.27050 q^{25} +(-0.216597 - 0.0688094i) q^{26} +(3.00416 + 2.12300i) q^{28} +8.34948i q^{29} -9.05835 q^{31} +(5.65381 - 0.185487i) q^{32} +(-2.31837 + 7.29774i) q^{34} +3.55204i q^{35} -0.602073i q^{37} +(-3.77049 - 1.19782i) q^{38} +(3.29695 + 4.35501i) q^{40} +11.7639 q^{41} -4.47936i q^{43} +(-1.15424 + 1.63332i) q^{44} +(-1.90173 + 5.98623i) q^{46} -6.29558 q^{47} -3.61698 q^{49} +(0.544010 - 1.71243i) q^{50} +(-0.185487 + 0.262474i) q^{52} -11.7211i q^{53} -1.93119 q^{55} +(4.14779 - 3.14007i) q^{56} +(11.2537 + 3.57512i) q^{58} +9.63102i q^{59} -3.32912i q^{61} +(-3.87865 + 12.2092i) q^{62} +(2.17087 - 7.69983i) q^{64} -0.310343 q^{65} -5.76864i q^{67} +(8.84346 + 6.24956i) q^{68} +(4.78756 + 1.52093i) q^{70} -9.62916 q^{71} -0.681940 q^{73} +(-0.811494 - 0.257798i) q^{74} +(-3.22893 + 4.56911i) q^{76} +1.83930i q^{77} +5.77867 q^{79} +(7.28154 - 2.57899i) q^{80} +(5.03712 - 15.8558i) q^{82} -2.92400i q^{83} +10.4563i q^{85} +(-6.03743 - 1.91799i) q^{86} +(1.70721 + 2.25509i) q^{88} -5.74214 q^{89} +0.295576i q^{91} +(7.25416 + 5.12643i) q^{92} +(-2.69567 + 8.48539i) q^{94} -5.40240 q^{95} -5.37829 q^{97} +(-1.54873 + 4.87509i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 10 q - 4 q^{4} + 10 q^{10} + 12 q^{14} + 4 q^{17} - 12 q^{20} + 12 q^{23} - 6 q^{25} + 20 q^{26} - 12 q^{28} - 4 q^{31} + 20 q^{32} - 8 q^{38} + 20 q^{40} - 4 q^{41} - 4 q^{44} + 2 q^{46} + 4 q^{47} - 6 q^{49}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/792\mathbb{Z}\right)^\times\).

\(n\) \(145\) \(199\) \(353\) \(397\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.428185 1.34783i 0.302772 0.953063i
\(3\) 0 0
\(4\) −1.63332 1.15424i −0.816658 0.577122i
\(5\) 1.93119i 0.863655i −0.901956 0.431827i \(-0.857869\pi\)
0.901956 0.431827i \(-0.142131\pi\)
\(6\) 0 0
\(7\) −1.83930 −0.695190 −0.347595 0.937645i \(-0.613002\pi\)
−0.347595 + 0.937645i \(0.613002\pi\)
\(8\) −2.25509 + 1.70721i −0.797295 + 0.603590i
\(9\) 0 0
\(10\) −2.60293 0.826906i −0.823117 0.261491i
\(11\) 1.00000i 0.301511i
\(12\) 0 0
\(13\) 0.160700i 0.0445702i −0.999752 0.0222851i \(-0.992906\pi\)
0.999752 0.0222851i \(-0.00709416\pi\)
\(14\) −0.787560 + 2.47907i −0.210484 + 0.662560i
\(15\) 0 0
\(16\) 1.33544 + 3.77049i 0.333860 + 0.942623i
\(17\) −5.41442 −1.31319 −0.656595 0.754243i \(-0.728004\pi\)
−0.656595 + 0.754243i \(0.728004\pi\)
\(18\) 0 0
\(19\) 2.79744i 0.641777i −0.947117 0.320889i \(-0.896018\pi\)
0.947117 0.320889i \(-0.103982\pi\)
\(20\) −2.22907 + 3.15424i −0.498434 + 0.705310i
\(21\) 0 0
\(22\) −1.34783 0.428185i −0.287359 0.0912893i
\(23\) −4.44137 −0.926090 −0.463045 0.886335i \(-0.653243\pi\)
−0.463045 + 0.886335i \(0.653243\pi\)
\(24\) 0 0
\(25\) 1.27050 0.254101
\(26\) −0.216597 0.0688094i −0.0424782 0.0134946i
\(27\) 0 0
\(28\) 3.00416 + 2.12300i 0.567732 + 0.401209i
\(29\) 8.34948i 1.55046i 0.631679 + 0.775230i \(0.282366\pi\)
−0.631679 + 0.775230i \(0.717634\pi\)
\(30\) 0 0
\(31\) −9.05835 −1.62693 −0.813464 0.581616i \(-0.802421\pi\)
−0.813464 + 0.581616i \(0.802421\pi\)
\(32\) 5.65381 0.185487i 0.999462 0.0327898i
\(33\) 0 0
\(34\) −2.31837 + 7.29774i −0.397597 + 1.25155i
\(35\) 3.55204i 0.600404i
\(36\) 0 0
\(37\) 0.602073i 0.0989801i −0.998775 0.0494901i \(-0.984240\pi\)
0.998775 0.0494901i \(-0.0157596\pi\)
\(38\) −3.77049 1.19782i −0.611654 0.194312i
\(39\) 0 0
\(40\) 3.29695 + 4.35501i 0.521293 + 0.688588i
\(41\) 11.7639 1.83721 0.918606 0.395174i \(-0.129316\pi\)
0.918606 + 0.395174i \(0.129316\pi\)
\(42\) 0 0
\(43\) 4.47936i 0.683096i −0.939864 0.341548i \(-0.889049\pi\)
0.939864 0.341548i \(-0.110951\pi\)
\(44\) −1.15424 + 1.63332i −0.174009 + 0.246232i
\(45\) 0 0
\(46\) −1.90173 + 5.98623i −0.280394 + 0.882622i
\(47\) −6.29558 −0.918304 −0.459152 0.888358i \(-0.651847\pi\)
−0.459152 + 0.888358i \(0.651847\pi\)
\(48\) 0 0
\(49\) −3.61698 −0.516711
\(50\) 0.544010 1.71243i 0.0769346 0.242174i
\(51\) 0 0
\(52\) −0.185487 + 0.262474i −0.0257225 + 0.0363986i
\(53\) 11.7211i 1.61001i −0.593268 0.805005i \(-0.702162\pi\)
0.593268 0.805005i \(-0.297838\pi\)
\(54\) 0 0
\(55\) −1.93119 −0.260402
\(56\) 4.14779 3.14007i 0.554271 0.419610i
\(57\) 0 0
\(58\) 11.2537 + 3.57512i 1.47769 + 0.469436i
\(59\) 9.63102i 1.25385i 0.779079 + 0.626926i \(0.215687\pi\)
−0.779079 + 0.626926i \(0.784313\pi\)
\(60\) 0 0
\(61\) 3.32912i 0.426250i −0.977025 0.213125i \(-0.931636\pi\)
0.977025 0.213125i \(-0.0683641\pi\)
\(62\) −3.87865 + 12.2092i −0.492589 + 1.55056i
\(63\) 0 0
\(64\) 2.17087 7.69983i 0.271359 0.962478i
\(65\) −0.310343 −0.0384933
\(66\) 0 0
\(67\) 5.76864i 0.704751i −0.935859 0.352376i \(-0.885374\pi\)
0.935859 0.352376i \(-0.114626\pi\)
\(68\) 8.84346 + 6.24956i 1.07243 + 0.757871i
\(69\) 0 0
\(70\) 4.78756 + 1.52093i 0.572223 + 0.181786i
\(71\) −9.62916 −1.14277 −0.571386 0.820682i \(-0.693594\pi\)
−0.571386 + 0.820682i \(0.693594\pi\)
\(72\) 0 0
\(73\) −0.681940 −0.0798150 −0.0399075 0.999203i \(-0.512706\pi\)
−0.0399075 + 0.999203i \(0.512706\pi\)
\(74\) −0.811494 0.257798i −0.0943343 0.0299684i
\(75\) 0 0
\(76\) −3.22893 + 4.56911i −0.370384 + 0.524113i
\(77\) 1.83930i 0.209608i
\(78\) 0 0
\(79\) 5.77867 0.650151 0.325075 0.945688i \(-0.394610\pi\)
0.325075 + 0.945688i \(0.394610\pi\)
\(80\) 7.28154 2.57899i 0.814100 0.288340i
\(81\) 0 0
\(82\) 5.03712 15.8558i 0.556257 1.75098i
\(83\) 2.92400i 0.320951i −0.987040 0.160476i \(-0.948697\pi\)
0.987040 0.160476i \(-0.0513028\pi\)
\(84\) 0 0
\(85\) 10.4563i 1.13414i
\(86\) −6.03743 1.91799i −0.651033 0.206822i
\(87\) 0 0
\(88\) 1.70721 + 2.25509i 0.181989 + 0.240393i
\(89\) −5.74214 −0.608666 −0.304333 0.952566i \(-0.598434\pi\)
−0.304333 + 0.952566i \(0.598434\pi\)
\(90\) 0 0
\(91\) 0.295576i 0.0309848i
\(92\) 7.25416 + 5.12643i 0.756299 + 0.534467i
\(93\) 0 0
\(94\) −2.69567 + 8.48539i −0.278037 + 0.875202i
\(95\) −5.40240 −0.554274
\(96\) 0 0
\(97\) −5.37829 −0.546082 −0.273041 0.962002i \(-0.588030\pi\)
−0.273041 + 0.962002i \(0.588030\pi\)
\(98\) −1.54873 + 4.87509i −0.156446 + 0.492458i
\(99\) 0 0
\(100\) −2.07513 1.46647i −0.207513 0.146647i
\(101\) 9.31868i 0.927244i −0.886033 0.463622i \(-0.846550\pi\)
0.886033 0.463622i \(-0.153450\pi\)
\(102\) 0 0
\(103\) 1.67860 0.165397 0.0826987 0.996575i \(-0.473646\pi\)
0.0826987 + 0.996575i \(0.473646\pi\)
\(104\) 0.274349 + 0.362394i 0.0269021 + 0.0355356i
\(105\) 0 0
\(106\) −15.7980 5.01878i −1.53444 0.487467i
\(107\) 11.2768i 1.09017i −0.838381 0.545085i \(-0.816497\pi\)
0.838381 0.545085i \(-0.183503\pi\)
\(108\) 0 0
\(109\) 19.6373i 1.88092i −0.339910 0.940458i \(-0.610397\pi\)
0.339910 0.940458i \(-0.389603\pi\)
\(110\) −0.826906 + 2.60293i −0.0788424 + 0.248179i
\(111\) 0 0
\(112\) −2.45628 6.93506i −0.232096 0.655302i
\(113\) 12.9156 1.21499 0.607497 0.794322i \(-0.292174\pi\)
0.607497 + 0.794322i \(0.292174\pi\)
\(114\) 0 0
\(115\) 8.57714i 0.799822i
\(116\) 9.63734 13.6373i 0.894805 1.26620i
\(117\) 0 0
\(118\) 12.9810 + 4.12385i 1.19500 + 0.379632i
\(119\) 9.95874 0.912916
\(120\) 0 0
\(121\) −1.00000 −0.0909091
\(122\) −4.48710 1.42548i −0.406243 0.129057i
\(123\) 0 0
\(124\) 14.7951 + 10.4555i 1.32864 + 0.938936i
\(125\) 12.1095i 1.08311i
\(126\) 0 0
\(127\) 1.12716 0.100019 0.0500096 0.998749i \(-0.484075\pi\)
0.0500096 + 0.998749i \(0.484075\pi\)
\(128\) −9.44856 6.22292i −0.835142 0.550034i
\(129\) 0 0
\(130\) −0.132884 + 0.418291i −0.0116547 + 0.0366865i
\(131\) 10.9554i 0.957178i −0.878039 0.478589i \(-0.841148\pi\)
0.878039 0.478589i \(-0.158852\pi\)
\(132\) 0 0
\(133\) 5.14534i 0.446157i
\(134\) −7.77517 2.47004i −0.671672 0.213379i
\(135\) 0 0
\(136\) 12.2100 9.24355i 1.04700 0.792628i
\(137\) 10.1753 0.869338 0.434669 0.900590i \(-0.356865\pi\)
0.434669 + 0.900590i \(0.356865\pi\)
\(138\) 0 0
\(139\) 18.3347i 1.55513i 0.628802 + 0.777565i \(0.283545\pi\)
−0.628802 + 0.777565i \(0.716455\pi\)
\(140\) 4.09992 5.80160i 0.346506 0.490325i
\(141\) 0 0
\(142\) −4.12306 + 12.9785i −0.345999 + 1.08913i
\(143\) −0.160700 −0.0134384
\(144\) 0 0
\(145\) 16.1244 1.33906
\(146\) −0.291996 + 0.919142i −0.0241658 + 0.0760687i
\(147\) 0 0
\(148\) −0.694939 + 0.983375i −0.0571236 + 0.0808329i
\(149\) 8.46892i 0.693801i 0.937902 + 0.346901i \(0.112766\pi\)
−0.937902 + 0.346901i \(0.887234\pi\)
\(150\) 0 0
\(151\) −10.0705 −0.819528 −0.409764 0.912191i \(-0.634389\pi\)
−0.409764 + 0.912191i \(0.634389\pi\)
\(152\) 4.77582 + 6.30849i 0.387370 + 0.511686i
\(153\) 0 0
\(154\) 2.47907 + 0.787560i 0.199769 + 0.0634634i
\(155\) 17.4934i 1.40510i
\(156\) 0 0
\(157\) 8.73969i 0.697503i −0.937215 0.348752i \(-0.886606\pi\)
0.937215 0.348752i \(-0.113394\pi\)
\(158\) 2.47434 7.78869i 0.196848 0.619635i
\(159\) 0 0
\(160\) −0.358211 10.9186i −0.0283191 0.863190i
\(161\) 8.16901 0.643809
\(162\) 0 0
\(163\) 24.4237i 1.91301i −0.291710 0.956507i \(-0.594224\pi\)
0.291710 0.956507i \(-0.405776\pi\)
\(164\) −19.2142 13.5784i −1.50037 1.06030i
\(165\) 0 0
\(166\) −3.94107 1.25201i −0.305887 0.0971751i
\(167\) 7.36485 0.569909 0.284954 0.958541i \(-0.408022\pi\)
0.284954 + 0.958541i \(0.408022\pi\)
\(168\) 0 0
\(169\) 12.9742 0.998013
\(170\) 14.0933 + 4.47722i 1.08091 + 0.343387i
\(171\) 0 0
\(172\) −5.17027 + 7.31621i −0.394230 + 0.557855i
\(173\) 1.38302i 0.105149i 0.998617 + 0.0525747i \(0.0167428\pi\)
−0.998617 + 0.0525747i \(0.983257\pi\)
\(174\) 0 0
\(175\) −2.33684 −0.176648
\(176\) 3.77049 1.33544i 0.284211 0.100663i
\(177\) 0 0
\(178\) −2.45870 + 7.73946i −0.184287 + 0.580097i
\(179\) 9.89679i 0.739720i 0.929087 + 0.369860i \(0.120594\pi\)
−0.929087 + 0.369860i \(0.879406\pi\)
\(180\) 0 0
\(181\) 11.6803i 0.868192i −0.900867 0.434096i \(-0.857068\pi\)
0.900867 0.434096i \(-0.142932\pi\)
\(182\) 0.398387 + 0.126561i 0.0295304 + 0.00938133i
\(183\) 0 0
\(184\) 10.0157 7.58235i 0.738367 0.558979i
\(185\) −1.16272 −0.0854846
\(186\) 0 0
\(187\) 5.41442i 0.395942i
\(188\) 10.2827 + 7.26663i 0.749940 + 0.529974i
\(189\) 0 0
\(190\) −2.31322 + 7.28154i −0.167819 + 0.528258i
\(191\) −12.0902 −0.874814 −0.437407 0.899264i \(-0.644103\pi\)
−0.437407 + 0.899264i \(0.644103\pi\)
\(192\) 0 0
\(193\) −13.2620 −0.954622 −0.477311 0.878734i \(-0.658388\pi\)
−0.477311 + 0.878734i \(0.658388\pi\)
\(194\) −2.30290 + 7.24904i −0.165339 + 0.520451i
\(195\) 0 0
\(196\) 5.90766 + 4.17487i 0.421976 + 0.298205i
\(197\) 11.6835i 0.832415i −0.909270 0.416208i \(-0.863359\pi\)
0.909270 0.416208i \(-0.136641\pi\)
\(198\) 0 0
\(199\) −24.9329 −1.76745 −0.883725 0.468007i \(-0.844972\pi\)
−0.883725 + 0.468007i \(0.844972\pi\)
\(200\) −2.86510 + 2.16901i −0.202593 + 0.153373i
\(201\) 0 0
\(202\) −12.5600 3.99012i −0.883721 0.280744i
\(203\) 15.3572i 1.07786i
\(204\) 0 0
\(205\) 22.7183i 1.58672i
\(206\) 0.718751 2.26247i 0.0500777 0.157634i
\(207\) 0 0
\(208\) 0.605919 0.214606i 0.0420129 0.0148802i
\(209\) −2.79744 −0.193503
\(210\) 0 0
\(211\) 5.96245i 0.410472i 0.978713 + 0.205236i \(0.0657962\pi\)
−0.978713 + 0.205236i \(0.934204\pi\)
\(212\) −13.5290 + 19.1442i −0.929173 + 1.31483i
\(213\) 0 0
\(214\) −15.1993 4.82855i −1.03900 0.330073i
\(215\) −8.65049 −0.589959
\(216\) 0 0
\(217\) 16.6610 1.13102
\(218\) −26.4679 8.40841i −1.79263 0.569489i
\(219\) 0 0
\(220\) 3.15424 + 2.22907i 0.212659 + 0.150284i
\(221\) 0.870099i 0.0585292i
\(222\) 0 0
\(223\) 1.03801 0.0695103 0.0347552 0.999396i \(-0.488935\pi\)
0.0347552 + 0.999396i \(0.488935\pi\)
\(224\) −10.3991 + 0.341167i −0.694816 + 0.0227952i
\(225\) 0 0
\(226\) 5.53024 17.4080i 0.367866 1.15797i
\(227\) 6.65612i 0.441782i −0.975299 0.220891i \(-0.929104\pi\)
0.975299 0.220891i \(-0.0708965\pi\)
\(228\) 0 0
\(229\) 16.3885i 1.08298i 0.840707 + 0.541491i \(0.182140\pi\)
−0.840707 + 0.541491i \(0.817860\pi\)
\(230\) 11.5606 + 3.67260i 0.762281 + 0.242164i
\(231\) 0 0
\(232\) −14.2543 18.8288i −0.935842 1.23617i
\(233\) 16.0742 1.05306 0.526529 0.850157i \(-0.323493\pi\)
0.526529 + 0.850157i \(0.323493\pi\)
\(234\) 0 0
\(235\) 12.1580i 0.793098i
\(236\) 11.1165 15.7305i 0.723625 1.02397i
\(237\) 0 0
\(238\) 4.26418 13.4227i 0.276406 0.870067i
\(239\) 2.52062 0.163045 0.0815226 0.996671i \(-0.474022\pi\)
0.0815226 + 0.996671i \(0.474022\pi\)
\(240\) 0 0
\(241\) 6.11179 0.393695 0.196848 0.980434i \(-0.436930\pi\)
0.196848 + 0.980434i \(0.436930\pi\)
\(242\) −0.428185 + 1.34783i −0.0275248 + 0.0866421i
\(243\) 0 0
\(244\) −3.84261 + 5.43750i −0.245998 + 0.348100i
\(245\) 6.98507i 0.446260i
\(246\) 0 0
\(247\) −0.449550 −0.0286042
\(248\) 20.4274 15.4645i 1.29714 0.981997i
\(249\) 0 0
\(250\) −16.3217 5.18512i −1.03227 0.327936i
\(251\) 0.489390i 0.0308900i −0.999881 0.0154450i \(-0.995084\pi\)
0.999881 0.0154450i \(-0.00491649\pi\)
\(252\) 0 0
\(253\) 4.44137i 0.279227i
\(254\) 0.482632 1.51922i 0.0302830 0.0953245i
\(255\) 0 0
\(256\) −12.4332 + 10.0705i −0.777075 + 0.629408i
\(257\) −10.0886 −0.629311 −0.314655 0.949206i \(-0.601889\pi\)
−0.314655 + 0.949206i \(0.601889\pi\)
\(258\) 0 0
\(259\) 1.10739i 0.0688100i
\(260\) 0.506888 + 0.358211i 0.0314359 + 0.0222153i
\(261\) 0 0
\(262\) −14.7661 4.69093i −0.912251 0.289807i
\(263\) −3.98466 −0.245705 −0.122852 0.992425i \(-0.539204\pi\)
−0.122852 + 0.992425i \(0.539204\pi\)
\(264\) 0 0
\(265\) −22.6356 −1.39049
\(266\) 6.93506 + 2.20315i 0.425216 + 0.135084i
\(267\) 0 0
\(268\) −6.65841 + 9.42200i −0.406727 + 0.575540i
\(269\) 2.70069i 0.164664i 0.996605 + 0.0823320i \(0.0262368\pi\)
−0.996605 + 0.0823320i \(0.973763\pi\)
\(270\) 0 0
\(271\) 22.3611 1.35834 0.679170 0.733981i \(-0.262340\pi\)
0.679170 + 0.733981i \(0.262340\pi\)
\(272\) −7.23064 20.4150i −0.438422 1.23784i
\(273\) 0 0
\(274\) 4.35692 13.7147i 0.263211 0.828534i
\(275\) 1.27050i 0.0766142i
\(276\) 0 0
\(277\) 31.4865i 1.89184i 0.324396 + 0.945921i \(0.394839\pi\)
−0.324396 + 0.945921i \(0.605161\pi\)
\(278\) 24.7122 + 7.85064i 1.48214 + 0.470850i
\(279\) 0 0
\(280\) −6.06407 8.01017i −0.362398 0.478699i
\(281\) 9.57079 0.570945 0.285473 0.958387i \(-0.407849\pi\)
0.285473 + 0.958387i \(0.407849\pi\)
\(282\) 0 0
\(283\) 16.3997i 0.974860i −0.873162 0.487430i \(-0.837934\pi\)
0.873162 0.487430i \(-0.162066\pi\)
\(284\) 15.7275 + 11.1144i 0.933253 + 0.659519i
\(285\) 0 0
\(286\) −0.0688094 + 0.216597i −0.00406878 + 0.0128077i
\(287\) −21.6373 −1.27721
\(288\) 0 0
\(289\) 12.3159 0.724467
\(290\) 6.90424 21.7331i 0.405431 1.27621i
\(291\) 0 0
\(292\) 1.11382 + 0.787125i 0.0651816 + 0.0460630i
\(293\) 10.0087i 0.584715i 0.956309 + 0.292357i \(0.0944397\pi\)
−0.956309 + 0.292357i \(0.905560\pi\)
\(294\) 0 0
\(295\) 18.5993 1.08289
\(296\) 1.02786 + 1.35773i 0.0597434 + 0.0789164i
\(297\) 0 0
\(298\) 11.4147 + 3.62626i 0.661236 + 0.210064i
\(299\) 0.713730i 0.0412761i
\(300\) 0 0
\(301\) 8.23888i 0.474881i
\(302\) −4.31205 + 13.5734i −0.248131 + 0.781062i
\(303\) 0 0
\(304\) 10.5477 3.73582i 0.604954 0.214264i
\(305\) −6.42916 −0.368133
\(306\) 0 0
\(307\) 18.8436i 1.07546i 0.843117 + 0.537731i \(0.180718\pi\)
−0.843117 + 0.537731i \(0.819282\pi\)
\(308\) 2.12300 3.00416i 0.120969 0.171178i
\(309\) 0 0
\(310\) 23.5782 + 7.49040i 1.33915 + 0.425426i
\(311\) 1.59661 0.0905356 0.0452678 0.998975i \(-0.485586\pi\)
0.0452678 + 0.998975i \(0.485586\pi\)
\(312\) 0 0
\(313\) 3.94136 0.222779 0.111389 0.993777i \(-0.464470\pi\)
0.111389 + 0.993777i \(0.464470\pi\)
\(314\) −11.7797 3.74220i −0.664765 0.211185i
\(315\) 0 0
\(316\) −9.43839 6.66999i −0.530951 0.375216i
\(317\) 1.94384i 0.109177i 0.998509 + 0.0545884i \(0.0173847\pi\)
−0.998509 + 0.0545884i \(0.982615\pi\)
\(318\) 0 0
\(319\) 8.34948 0.467481
\(320\) −14.8698 4.19236i −0.831249 0.234360i
\(321\) 0 0
\(322\) 3.49785 11.0105i 0.194927 0.613590i
\(323\) 15.1465i 0.842776i
\(324\) 0 0
\(325\) 0.204170i 0.0113253i
\(326\) −32.9191 10.4579i −1.82322 0.579208i
\(327\) 0 0
\(328\) −26.5287 + 20.0834i −1.46480 + 1.10892i
\(329\) 11.5795 0.638396
\(330\) 0 0
\(331\) 7.52148i 0.413418i −0.978402 0.206709i \(-0.933725\pi\)
0.978402 0.206709i \(-0.0662753\pi\)
\(332\) −3.37501 + 4.77582i −0.185228 + 0.262107i
\(333\) 0 0
\(334\) 3.15351 9.92659i 0.172553 0.543159i
\(335\) −11.1403 −0.608662
\(336\) 0 0
\(337\) −8.47233 −0.461517 −0.230759 0.973011i \(-0.574121\pi\)
−0.230759 + 0.973011i \(0.574121\pi\)
\(338\) 5.55534 17.4870i 0.302171 0.951170i
\(339\) 0 0
\(340\) 12.0691 17.0784i 0.654539 0.926206i
\(341\) 9.05835i 0.490537i
\(342\) 0 0
\(343\) 19.5278 1.05440
\(344\) 7.64720 + 10.1014i 0.412310 + 0.544629i
\(345\) 0 0
\(346\) 1.86409 + 0.592189i 0.100214 + 0.0318363i
\(347\) 17.2487i 0.925960i 0.886369 + 0.462980i \(0.153220\pi\)
−0.886369 + 0.462980i \(0.846780\pi\)
\(348\) 0 0
\(349\) 4.67588i 0.250294i 0.992138 + 0.125147i \(0.0399403\pi\)
−0.992138 + 0.125147i \(0.960060\pi\)
\(350\) −1.00060 + 3.14967i −0.0534842 + 0.168357i
\(351\) 0 0
\(352\) −0.185487 5.65381i −0.00988651 0.301349i
\(353\) 5.45055 0.290104 0.145052 0.989424i \(-0.453665\pi\)
0.145052 + 0.989424i \(0.453665\pi\)
\(354\) 0 0
\(355\) 18.5957i 0.986960i
\(356\) 9.37873 + 6.62783i 0.497072 + 0.351275i
\(357\) 0 0
\(358\) 13.3392 + 4.23765i 0.705000 + 0.223967i
\(359\) 28.0176 1.47871 0.739357 0.673313i \(-0.235129\pi\)
0.739357 + 0.673313i \(0.235129\pi\)
\(360\) 0 0
\(361\) 11.1743 0.588122
\(362\) −15.7431 5.00134i −0.827441 0.262864i
\(363\) 0 0
\(364\) 0.341167 0.482769i 0.0178820 0.0253040i
\(365\) 1.31696i 0.0689326i
\(366\) 0 0
\(367\) −28.8393 −1.50540 −0.752699 0.658365i \(-0.771248\pi\)
−0.752699 + 0.658365i \(0.771248\pi\)
\(368\) −5.93119 16.7462i −0.309185 0.872953i
\(369\) 0 0
\(370\) −0.497858 + 1.56715i −0.0258824 + 0.0814722i
\(371\) 21.5585i 1.11926i
\(372\) 0 0
\(373\) 1.34080i 0.0694239i 0.999397 + 0.0347119i \(0.0110514\pi\)
−0.999397 + 0.0347119i \(0.988949\pi\)
\(374\) 7.29774 + 2.31837i 0.377357 + 0.119880i
\(375\) 0 0
\(376\) 14.1971 10.7479i 0.732159 0.554279i
\(377\) 1.34176 0.0691044
\(378\) 0 0
\(379\) 8.72245i 0.448042i −0.974584 0.224021i \(-0.928082\pi\)
0.974584 0.224021i \(-0.0719184\pi\)
\(380\) 8.82382 + 6.23568i 0.452652 + 0.319884i
\(381\) 0 0
\(382\) −5.17682 + 16.2955i −0.264869 + 0.833752i
\(383\) −7.76275 −0.396658 −0.198329 0.980136i \(-0.563551\pi\)
−0.198329 + 0.980136i \(0.563551\pi\)
\(384\) 0 0
\(385\) 3.55204 0.181029
\(386\) −5.67860 + 17.8750i −0.289033 + 0.909815i
\(387\) 0 0
\(388\) 8.78444 + 6.20786i 0.445963 + 0.315156i
\(389\) 38.5938i 1.95678i 0.206760 + 0.978392i \(0.433708\pi\)
−0.206760 + 0.978392i \(0.566292\pi\)
\(390\) 0 0
\(391\) 24.0475 1.21613
\(392\) 8.15661 6.17494i 0.411971 0.311881i
\(393\) 0 0
\(394\) −15.7474 5.00270i −0.793344 0.252032i
\(395\) 11.1597i 0.561506i
\(396\) 0 0
\(397\) 20.4200i 1.02485i 0.858732 + 0.512426i \(0.171253\pi\)
−0.858732 + 0.512426i \(0.828747\pi\)
\(398\) −10.6759 + 33.6055i −0.535135 + 1.68449i
\(399\) 0 0
\(400\) 1.69668 + 4.79042i 0.0848341 + 0.239521i
\(401\) −4.96247 −0.247814 −0.123907 0.992294i \(-0.539542\pi\)
−0.123907 + 0.992294i \(0.539542\pi\)
\(402\) 0 0
\(403\) 1.45568i 0.0725125i
\(404\) −10.7560 + 15.2204i −0.535133 + 0.757241i
\(405\) 0 0
\(406\) −20.6990 6.57572i −1.02727 0.326347i
\(407\) −0.602073 −0.0298436
\(408\) 0 0
\(409\) 15.3418 0.758601 0.379301 0.925273i \(-0.376165\pi\)
0.379301 + 0.925273i \(0.376165\pi\)
\(410\) −30.6206 9.72764i −1.51224 0.480414i
\(411\) 0 0
\(412\) −2.74168 1.93751i −0.135073 0.0954544i
\(413\) 17.7143i 0.871665i
\(414\) 0 0
\(415\) −5.64681 −0.277191
\(416\) −0.0298079 0.908569i −0.00146145 0.0445463i
\(417\) 0 0
\(418\) −1.19782 + 3.77049i −0.0585874 + 0.184421i
\(419\) 12.0628i 0.589306i −0.955604 0.294653i \(-0.904796\pi\)
0.955604 0.294653i \(-0.0952041\pi\)
\(420\) 0 0
\(421\) 14.3042i 0.697143i 0.937282 + 0.348572i \(0.113333\pi\)
−0.937282 + 0.348572i \(0.886667\pi\)
\(422\) 8.03640 + 2.55303i 0.391206 + 0.124280i
\(423\) 0 0
\(424\) 20.0103 + 26.4320i 0.971786 + 1.28365i
\(425\) −6.87904 −0.333682
\(426\) 0 0
\(427\) 6.12325i 0.296325i
\(428\) −13.0162 + 18.4186i −0.629161 + 0.890296i
\(429\) 0 0
\(430\) −3.70401 + 11.6594i −0.178623 + 0.562268i
\(431\) 18.9520 0.912885 0.456443 0.889753i \(-0.349123\pi\)
0.456443 + 0.889753i \(0.349123\pi\)
\(432\) 0 0
\(433\) −16.4130 −0.788760 −0.394380 0.918948i \(-0.629041\pi\)
−0.394380 + 0.918948i \(0.629041\pi\)
\(434\) 7.13399 22.4563i 0.342443 1.07794i
\(435\) 0 0
\(436\) −22.6663 + 32.0740i −1.08552 + 1.53606i
\(437\) 12.4245i 0.594344i
\(438\) 0 0
\(439\) −24.5482 −1.17162 −0.585810 0.810448i \(-0.699224\pi\)
−0.585810 + 0.810448i \(0.699224\pi\)
\(440\) 4.35501 3.29695i 0.207617 0.157176i
\(441\) 0 0
\(442\) 1.17275 + 0.372563i 0.0557820 + 0.0177210i
\(443\) 11.0679i 0.525854i 0.964816 + 0.262927i \(0.0846878\pi\)
−0.964816 + 0.262927i \(0.915312\pi\)
\(444\) 0 0
\(445\) 11.0892i 0.525677i
\(446\) 0.444460 1.39907i 0.0210458 0.0662477i
\(447\) 0 0
\(448\) −3.99288 + 14.1623i −0.188646 + 0.669105i
\(449\) −26.6647 −1.25838 −0.629192 0.777250i \(-0.716614\pi\)
−0.629192 + 0.777250i \(0.716614\pi\)
\(450\) 0 0
\(451\) 11.7639i 0.553940i
\(452\) −21.0952 14.9077i −0.992234 0.701200i
\(453\) 0 0
\(454\) −8.97134 2.85005i −0.421046 0.133759i
\(455\) 0.570814 0.0267602
\(456\) 0 0
\(457\) 3.28296 0.153570 0.0767851 0.997048i \(-0.475534\pi\)
0.0767851 + 0.997048i \(0.475534\pi\)
\(458\) 22.0890 + 7.01730i 1.03215 + 0.327897i
\(459\) 0 0
\(460\) 9.90011 14.0092i 0.461595 0.653181i
\(461\) 3.17514i 0.147881i −0.997263 0.0739406i \(-0.976442\pi\)
0.997263 0.0739406i \(-0.0235575\pi\)
\(462\) 0 0
\(463\) 21.8696 1.01637 0.508184 0.861248i \(-0.330317\pi\)
0.508184 + 0.861248i \(0.330317\pi\)
\(464\) −31.4816 + 11.1502i −1.46150 + 0.517637i
\(465\) 0 0
\(466\) 6.88274 21.6654i 0.318837 1.00363i
\(467\) 4.95735i 0.229399i −0.993400 0.114699i \(-0.963410\pi\)
0.993400 0.114699i \(-0.0365905\pi\)
\(468\) 0 0
\(469\) 10.6103i 0.489936i
\(470\) 16.3869 + 5.20585i 0.755872 + 0.240128i
\(471\) 0 0
\(472\) −16.4422 21.7188i −0.756812 0.999690i
\(473\) −4.47936 −0.205961
\(474\) 0 0
\(475\) 3.55416i 0.163076i
\(476\) −16.2658 11.4948i −0.745540 0.526864i
\(477\) 0 0
\(478\) 1.07929 3.39737i 0.0493656 0.155392i
\(479\) 35.5423 1.62397 0.811984 0.583680i \(-0.198388\pi\)
0.811984 + 0.583680i \(0.198388\pi\)
\(480\) 0 0
\(481\) −0.0967532 −0.00441157
\(482\) 2.61698 8.23769i 0.119200 0.375216i
\(483\) 0 0
\(484\) 1.63332 + 1.15424i 0.0742416 + 0.0524656i
\(485\) 10.3865i 0.471627i
\(486\) 0 0
\(487\) 10.1547 0.460153 0.230076 0.973173i \(-0.426102\pi\)
0.230076 + 0.973173i \(0.426102\pi\)
\(488\) 5.68350 + 7.50746i 0.257280 + 0.339847i
\(489\) 0 0
\(490\) 9.41472 + 2.99090i 0.425314 + 0.135115i
\(491\) 0.367564i 0.0165879i −0.999966 0.00829395i \(-0.997360\pi\)
0.999966 0.00829395i \(-0.00264008\pi\)
\(492\) 0 0
\(493\) 45.2076i 2.03605i
\(494\) −0.192490 + 0.605919i −0.00866055 + 0.0272616i
\(495\) 0 0
\(496\) −12.0969 34.1544i −0.543166 1.53358i
\(497\) 17.7109 0.794443
\(498\) 0 0
\(499\) 31.1824i 1.39591i 0.716140 + 0.697957i \(0.245907\pi\)
−0.716140 + 0.697957i \(0.754093\pi\)
\(500\) −13.9774 + 19.7787i −0.625087 + 0.884530i
\(501\) 0 0
\(502\) −0.659617 0.209549i −0.0294401 0.00935264i
\(503\) −20.2004 −0.900692 −0.450346 0.892854i \(-0.648699\pi\)
−0.450346 + 0.892854i \(0.648699\pi\)
\(504\) 0 0
\(505\) −17.9962 −0.800818
\(506\) 5.98623 + 1.90173i 0.266121 + 0.0845421i
\(507\) 0 0
\(508\) −1.84101 1.30102i −0.0816814 0.0577232i
\(509\) 22.0209i 0.976058i −0.872827 0.488029i \(-0.837716\pi\)
0.872827 0.488029i \(-0.162284\pi\)
\(510\) 0 0
\(511\) 1.25429 0.0554866
\(512\) 8.24971 + 21.0699i 0.364589 + 0.931168i
\(513\) 0 0
\(514\) −4.31979 + 13.5978i −0.190538 + 0.599773i
\(515\) 3.24170i 0.142846i
\(516\) 0 0
\(517\) 6.29558i 0.276879i
\(518\) 1.49258 + 0.474168i 0.0655802 + 0.0208338i
\(519\) 0 0
\(520\) 0.699851 0.529820i 0.0306905 0.0232342i
\(521\) −36.1120 −1.58209 −0.791047 0.611755i \(-0.790464\pi\)
−0.791047 + 0.611755i \(0.790464\pi\)
\(522\) 0 0
\(523\) 34.5388i 1.51028i 0.655565 + 0.755139i \(0.272431\pi\)
−0.655565 + 0.755139i \(0.727569\pi\)
\(524\) −12.6452 + 17.8936i −0.552408 + 0.781687i
\(525\) 0 0
\(526\) −1.70617 + 5.37066i −0.0743926 + 0.234172i
\(527\) 49.0457 2.13646
\(528\) 0 0
\(529\) −3.27421 −0.142357
\(530\) −9.69221 + 30.5090i −0.421003 + 1.32523i
\(531\) 0 0
\(532\) 5.93897 8.40396i 0.257487 0.364358i
\(533\) 1.89046i 0.0818850i
\(534\) 0 0
\(535\) −21.7777 −0.941530
\(536\) 9.84827 + 13.0088i 0.425381 + 0.561894i
\(537\) 0 0
\(538\) 3.64008 + 1.15639i 0.156935 + 0.0498557i
\(539\) 3.61698i 0.155794i
\(540\) 0 0
\(541\) 6.14527i 0.264206i −0.991236 0.132103i \(-0.957827\pi\)
0.991236 0.132103i \(-0.0421729\pi\)
\(542\) 9.57468 30.1391i 0.411268 1.29458i
\(543\) 0 0
\(544\) −30.6121 + 1.00431i −1.31248 + 0.0430593i
\(545\) −37.9234 −1.62446
\(546\) 0 0
\(547\) 17.3331i 0.741110i −0.928811 0.370555i \(-0.879168\pi\)
0.928811 0.370555i \(-0.120832\pi\)
\(548\) −16.6195 11.7448i −0.709952 0.501714i
\(549\) 0 0
\(550\) −1.71243 0.544010i −0.0730182 0.0231967i
\(551\) 23.3572 0.995050
\(552\) 0 0
\(553\) −10.6287 −0.451978
\(554\) 42.4386 + 13.4821i 1.80305 + 0.572798i
\(555\) 0 0
\(556\) 21.1627 29.9464i 0.897500 1.27001i
\(557\) 38.1630i 1.61702i −0.588485 0.808508i \(-0.700275\pi\)
0.588485 0.808508i \(-0.299725\pi\)
\(558\) 0 0
\(559\) −0.719834 −0.0304457
\(560\) −13.3929 + 4.74354i −0.565954 + 0.200451i
\(561\) 0 0
\(562\) 4.09806 12.8998i 0.172866 0.544147i
\(563\) 33.2131i 1.39976i −0.714258 0.699882i \(-0.753236\pi\)
0.714258 0.699882i \(-0.246764\pi\)
\(564\) 0 0
\(565\) 24.9424i 1.04934i
\(566\) −22.1041 7.02209i −0.929103 0.295160i
\(567\) 0 0
\(568\) 21.7146 16.4390i 0.911126 0.689765i
\(569\) −8.23504 −0.345231 −0.172615 0.984989i \(-0.555222\pi\)
−0.172615 + 0.984989i \(0.555222\pi\)
\(570\) 0 0
\(571\) 32.7618i 1.37104i −0.728055 0.685518i \(-0.759576\pi\)
0.728055 0.685518i \(-0.240424\pi\)
\(572\) 0.262474 + 0.185487i 0.0109746 + 0.00775562i
\(573\) 0 0
\(574\) −9.26478 + 29.1636i −0.386704 + 1.21726i
\(575\) −5.64278 −0.235320
\(576\) 0 0
\(577\) −6.50814 −0.270937 −0.135469 0.990782i \(-0.543254\pi\)
−0.135469 + 0.990782i \(0.543254\pi\)
\(578\) 5.27350 16.5998i 0.219349 0.690463i
\(579\) 0 0
\(580\) −26.3363 18.6115i −1.09356 0.772802i
\(581\) 5.37812i 0.223122i
\(582\) 0 0
\(583\) −11.7211 −0.485436
\(584\) 1.53784 1.16421i 0.0636361 0.0481755i
\(585\) 0 0
\(586\) 13.4901 + 4.28558i 0.557270 + 0.177035i
\(587\) 9.95325i 0.410815i 0.978677 + 0.205407i \(0.0658519\pi\)
−0.978677 + 0.205407i \(0.934148\pi\)
\(588\) 0 0
\(589\) 25.3402i 1.04413i
\(590\) 7.96395 25.0688i 0.327871 1.03207i
\(591\) 0 0
\(592\) 2.27011 0.804032i 0.0933009 0.0330455i
\(593\) −8.80877 −0.361733 −0.180867 0.983508i \(-0.557890\pi\)
−0.180867 + 0.983508i \(0.557890\pi\)
\(594\) 0 0
\(595\) 19.2322i 0.788444i
\(596\) 9.77520 13.8324i 0.400408 0.566598i
\(597\) 0 0
\(598\) 0.961990 + 0.305608i 0.0393387 + 0.0124972i
\(599\) −31.9145 −1.30399 −0.651996 0.758223i \(-0.726068\pi\)
−0.651996 + 0.758223i \(0.726068\pi\)
\(600\) 0 0
\(601\) 11.0314 0.449981 0.224991 0.974361i \(-0.427765\pi\)
0.224991 + 0.974361i \(0.427765\pi\)
\(602\) 11.1046 + 3.52776i 0.452592 + 0.143781i
\(603\) 0 0
\(604\) 16.4484 + 11.6239i 0.669274 + 0.472968i
\(605\) 1.93119i 0.0785141i
\(606\) 0 0
\(607\) 12.2159 0.495828 0.247914 0.968782i \(-0.420255\pi\)
0.247914 + 0.968782i \(0.420255\pi\)
\(608\) −0.518890 15.8162i −0.0210438 0.641432i
\(609\) 0 0
\(610\) −2.75287 + 8.66545i −0.111460 + 0.350854i
\(611\) 1.01170i 0.0409290i
\(612\) 0 0
\(613\) 3.57482i 0.144386i 0.997391 + 0.0721928i \(0.0229997\pi\)
−0.997391 + 0.0721928i \(0.977000\pi\)
\(614\) 25.3981 + 8.06854i 1.02498 + 0.325620i
\(615\) 0 0
\(616\) −3.14007 4.14779i −0.126517 0.167119i
\(617\) −30.5057 −1.22811 −0.614057 0.789262i \(-0.710463\pi\)
−0.614057 + 0.789262i \(0.710463\pi\)
\(618\) 0 0
\(619\) 10.6118i 0.426526i 0.976995 + 0.213263i \(0.0684091\pi\)
−0.976995 + 0.213263i \(0.931591\pi\)
\(620\) 20.1917 28.5722i 0.810916 1.14749i
\(621\) 0 0
\(622\) 0.683645 2.15197i 0.0274117 0.0862861i
\(623\) 10.5615 0.423138
\(624\) 0 0
\(625\) −17.0333 −0.681332
\(626\) 1.68763 5.31230i 0.0674513 0.212322i
\(627\) 0 0
\(628\) −10.0877 + 14.2747i −0.402545 + 0.569622i
\(629\) 3.25987i 0.129980i
\(630\) 0 0
\(631\) 4.29235 0.170876 0.0854379 0.996343i \(-0.472771\pi\)
0.0854379 + 0.996343i \(0.472771\pi\)
\(632\) −13.0314 + 9.86540i −0.518362 + 0.392424i
\(633\) 0 0
\(634\) 2.61997 + 0.832321i 0.104052 + 0.0330557i
\(635\) 2.17676i 0.0863820i
\(636\) 0 0
\(637\) 0.581249i 0.0230299i
\(638\) 3.57512 11.2537i 0.141540 0.445539i
\(639\) 0 0
\(640\) −12.0176 + 18.2470i −0.475039 + 0.721275i
\(641\) 26.5606 1.04908 0.524540 0.851386i \(-0.324237\pi\)
0.524540 + 0.851386i \(0.324237\pi\)
\(642\) 0 0
\(643\) 28.0614i 1.10663i −0.832971 0.553317i \(-0.813362\pi\)
0.832971 0.553317i \(-0.186638\pi\)
\(644\) −13.3426 9.42904i −0.525771 0.371556i
\(645\) 0 0
\(646\) 20.4150 + 6.48551i 0.803218 + 0.255169i
\(647\) 32.2983 1.26978 0.634888 0.772604i \(-0.281046\pi\)
0.634888 + 0.772604i \(0.281046\pi\)
\(648\) 0 0
\(649\) 9.63102 0.378050
\(650\) −0.275188 0.0874225i −0.0107937 0.00342899i
\(651\) 0 0
\(652\) −28.1909 + 39.8917i −1.10404 + 1.56228i
\(653\) 32.9200i 1.28826i −0.764916 0.644130i \(-0.777220\pi\)
0.764916 0.644130i \(-0.222780\pi\)
\(654\) 0 0
\(655\) −21.1570 −0.826671
\(656\) 15.7100 + 44.3557i 0.613372 + 1.73180i
\(657\) 0 0
\(658\) 4.95814 15.6072i 0.193289 0.608431i
\(659\) 3.99602i 0.155663i 0.996967 + 0.0778314i \(0.0247996\pi\)
−0.996967 + 0.0778314i \(0.975200\pi\)
\(660\) 0 0
\(661\) 19.2377i 0.748258i −0.927377 0.374129i \(-0.877942\pi\)
0.927377 0.374129i \(-0.122058\pi\)
\(662\) −10.1377 3.22058i −0.394013 0.125171i
\(663\) 0 0
\(664\) 4.99189 + 6.59390i 0.193723 + 0.255893i
\(665\) 9.93663 0.385326
\(666\) 0 0
\(667\) 37.0832i 1.43587i
\(668\) −12.0291 8.50083i −0.465421 0.328907i
\(669\) 0 0
\(670\) −4.77012 + 15.0153i −0.184286 + 0.580093i
\(671\) −3.32912 −0.128519
\(672\) 0 0
\(673\) 5.41202 0.208618 0.104309 0.994545i \(-0.466737\pi\)
0.104309 + 0.994545i \(0.466737\pi\)
\(674\) −3.62772 + 11.4193i −0.139735 + 0.439855i
\(675\) 0 0
\(676\) −21.1909 14.9754i −0.815036 0.575976i
\(677\) 41.1062i 1.57984i 0.613209 + 0.789921i \(0.289878\pi\)
−0.613209 + 0.789921i \(0.710122\pi\)
\(678\) 0 0
\(679\) 9.89229 0.379631
\(680\) −17.8511 23.5799i −0.684557 0.904246i
\(681\) 0 0
\(682\) 12.2092 + 3.87865i 0.467513 + 0.148521i
\(683\) 35.8592i 1.37211i −0.727548 0.686057i \(-0.759340\pi\)
0.727548 0.686057i \(-0.240660\pi\)
\(684\) 0 0
\(685\) 19.6505i 0.750808i
\(686\) 8.36151 26.3202i 0.319244 1.00491i
\(687\) 0 0
\(688\) 16.8894 5.98192i 0.643901 0.228058i
\(689\) −1.88358 −0.0717585
\(690\) 0 0
\(691\) 45.1462i 1.71744i 0.512444 + 0.858721i \(0.328740\pi\)
−0.512444 + 0.858721i \(0.671260\pi\)
\(692\) 1.59635 2.25891i 0.0606840 0.0858710i
\(693\) 0 0
\(694\) 23.2484 + 7.38564i 0.882498 + 0.280355i
\(695\) 35.4078 1.34310
\(696\) 0 0
\(697\) −63.6947 −2.41261
\(698\) 6.30231 + 2.00214i 0.238546 + 0.0757821i
\(699\) 0 0
\(700\) 3.81679 + 2.69728i 0.144261 + 0.101948i
\(701\) 18.5867i 0.702009i 0.936374 + 0.351005i \(0.114160\pi\)
−0.936374 + 0.351005i \(0.885840\pi\)
\(702\) 0 0
\(703\) −1.68426 −0.0635232
\(704\) −7.69983 2.17087i −0.290198 0.0818177i
\(705\) 0 0
\(706\) 2.33384 7.34644i 0.0878353 0.276487i
\(707\) 17.1399i 0.644610i
\(708\) 0 0
\(709\) 27.2703i 1.02416i 0.858938 + 0.512079i \(0.171124\pi\)
−0.858938 + 0.512079i \(0.828876\pi\)
\(710\) 25.0640 + 7.96241i 0.940635 + 0.298824i
\(711\) 0 0
\(712\) 12.9491 9.80304i 0.485286 0.367385i
\(713\) 40.2315 1.50668
\(714\) 0 0
\(715\) 0.310343i 0.0116062i
\(716\) 11.4233 16.1646i 0.426909 0.604099i
\(717\) 0 0
\(718\) 11.9967 37.7631i 0.447714 1.40931i
\(719\) −34.1800 −1.27470 −0.637349 0.770575i \(-0.719969\pi\)
−0.637349 + 0.770575i \(0.719969\pi\)
\(720\) 0 0
\(721\) −3.08745 −0.114983
\(722\) 4.78467 15.0611i 0.178067 0.560517i
\(723\) 0 0
\(724\) −13.4819 + 19.0777i −0.501053 + 0.709016i
\(725\) 10.6080i 0.393973i
\(726\) 0 0
\(727\) −25.0380 −0.928608 −0.464304 0.885676i \(-0.653696\pi\)
−0.464304 + 0.885676i \(0.653696\pi\)
\(728\) −0.504610 0.666551i −0.0187021 0.0247040i
\(729\) 0 0
\(730\) 1.77504 + 0.563900i 0.0656971 + 0.0208709i
\(731\) 24.2531i 0.897034i
\(732\) 0 0
\(733\) 17.2695i 0.637862i −0.947778 0.318931i \(-0.896676\pi\)
0.947778 0.318931i \(-0.103324\pi\)
\(734\) −12.3485 + 38.8706i −0.455793 + 1.43474i
\(735\) 0 0
\(736\) −25.1107 + 0.823818i −0.925592 + 0.0303663i
\(737\) −5.76864 −0.212490
\(738\) 0 0
\(739\) 17.2687i 0.635240i −0.948218 0.317620i \(-0.897116\pi\)
0.948218 0.317620i \(-0.102884\pi\)
\(740\) 1.89908 + 1.34206i 0.0698117 + 0.0493351i
\(741\) 0 0
\(742\) 29.0573 + 9.23103i 1.06673 + 0.338882i
\(743\) −34.6374 −1.27072 −0.635361 0.772215i \(-0.719149\pi\)
−0.635361 + 0.772215i \(0.719149\pi\)
\(744\) 0 0
\(745\) 16.3551 0.599205
\(746\) 1.80717 + 0.574109i 0.0661653 + 0.0210196i
\(747\) 0 0
\(748\) 6.24956 8.84346i 0.228507 0.323349i
\(749\) 20.7414i 0.757875i
\(750\) 0 0
\(751\) 51.5526 1.88118 0.940591 0.339543i \(-0.110272\pi\)
0.940591 + 0.339543i \(0.110272\pi\)
\(752\) −8.40737 23.7374i −0.306585 0.865614i
\(753\) 0 0
\(754\) 0.574523 1.80848i 0.0209229 0.0658608i
\(755\) 19.4481i 0.707790i
\(756\) 0 0
\(757\) 32.6049i 1.18504i −0.805554 0.592522i \(-0.798132\pi\)
0.805554 0.592522i \(-0.201868\pi\)
\(758\) −11.7564 3.73482i −0.427012 0.135655i
\(759\) 0 0
\(760\) 12.1829 9.22302i 0.441920 0.334554i
\(761\) 2.79094 0.101172 0.0505858 0.998720i \(-0.483891\pi\)
0.0505858 + 0.998720i \(0.483891\pi\)
\(762\) 0 0
\(763\) 36.1190i 1.30759i
\(764\) 19.7471 + 13.9550i 0.714423 + 0.504874i
\(765\) 0 0
\(766\) −3.32389 + 10.4629i −0.120097 + 0.378040i
\(767\) 1.54771 0.0558845
\(768\) 0 0
\(769\) 23.1604 0.835187 0.417593 0.908634i \(-0.362874\pi\)
0.417593 + 0.908634i \(0.362874\pi\)
\(770\) 1.52093 4.78756i 0.0548105 0.172532i
\(771\) 0 0
\(772\) 21.6611 + 15.3076i 0.779600 + 0.550933i
\(773\) 20.7913i 0.747811i −0.927467 0.373905i \(-0.878018\pi\)
0.927467 0.373905i \(-0.121982\pi\)
\(774\) 0 0
\(775\) −11.5087 −0.413403
\(776\) 12.1285 9.18187i 0.435389 0.329610i
\(777\) 0 0
\(778\) 52.0181 + 16.5253i 1.86494 + 0.592460i
\(779\) 32.9088i 1.17908i
\(780\) 0 0
\(781\) 9.62916i 0.344559i
\(782\) 10.2968 32.4120i 0.368211 1.15905i
\(783\) 0 0
\(784\) −4.83026 13.6378i −0.172509 0.487063i
\(785\) −16.8780 −0.602402
\(786\) 0 0
\(787\) 40.3874i 1.43965i −0.694153 0.719827i \(-0.744221\pi\)
0.694153 0.719827i \(-0.255779\pi\)
\(788\) −13.4856 + 19.0828i −0.480405 + 0.679798i
\(789\) 0 0
\(790\) −15.0414 4.77842i −0.535150 0.170008i
\(791\) −23.7556 −0.844651
\(792\) 0 0
\(793\) −0.534990 −0.0189981
\(794\) 27.5228 + 8.74354i 0.976748 + 0.310297i
\(795\) 0 0
\(796\) 40.7234 + 28.7787i 1.44340 + 1.02003i
\(797\) 31.1190i 1.10229i −0.834409 0.551145i \(-0.814191\pi\)
0.834409 0.551145i \(-0.185809\pi\)
\(798\) 0 0
\(799\) 34.0869 1.20591
\(800\) 7.18318 0.235662i 0.253964 0.00833192i
\(801\) 0 0
\(802\) −2.12486 + 6.68859i −0.0750313 + 0.236182i
\(803\) 0.681940i 0.0240651i
\(804\) 0 0
\(805\) 15.7759i 0.556028i
\(806\) 1.96201 + 0.623299i 0.0691090 + 0.0219548i
\(807\) 0 0
\(808\) 15.9089 + 21.0145i 0.559675 + 0.739287i
\(809\) −23.6252 −0.830619 −0.415309 0.909680i \(-0.636327\pi\)
−0.415309 + 0.909680i \(0.636327\pi\)
\(810\) 0 0
\(811\) 26.2978i 0.923442i −0.887025 0.461721i \(-0.847232\pi\)
0.887025 0.461721i \(-0.152768\pi\)
\(812\) −17.7260 + 25.0832i −0.622059 + 0.880246i
\(813\) 0 0
\(814\) −0.257798 + 0.811494i −0.00903582 + 0.0284429i
\(815\) −47.1669 −1.65218
\(816\) 0 0
\(817\) −12.5307 −0.438395
\(818\) 6.56911 20.6782i 0.229683 0.722995i
\(819\) 0 0
\(820\) −26.2225 + 37.1062i −0.915730 + 1.29581i
\(821\) 55.6264i 1.94137i −0.240348 0.970687i \(-0.577262\pi\)
0.240348 0.970687i \(-0.422738\pi\)
\(822\) 0 0
\(823\) 28.0971 0.979402 0.489701 0.871890i \(-0.337106\pi\)
0.489701 + 0.871890i \(0.337106\pi\)
\(824\) −3.78539 + 2.86572i −0.131870 + 0.0998321i
\(825\) 0 0
\(826\) −23.8760 7.58500i −0.830752 0.263916i
\(827\) 38.5555i 1.34070i −0.742043 0.670352i \(-0.766143\pi\)
0.742043 0.670352i \(-0.233857\pi\)
\(828\) 0 0
\(829\) 44.4581i 1.54409i −0.635566 0.772047i \(-0.719233\pi\)
0.635566 0.772047i \(-0.280767\pi\)
\(830\) −2.41788 + 7.61096i −0.0839257 + 0.264180i
\(831\) 0 0
\(832\) −1.23736 0.348859i −0.0428979 0.0120945i
\(833\) 19.5838 0.678539
\(834\) 0 0
\(835\) 14.2229i 0.492204i
\(836\) 4.56911 + 3.22893i 0.158026 + 0.111675i
\(837\) 0 0
\(838\) −16.2586 5.16510i −0.561646 0.178426i
\(839\) 39.7880 1.37364 0.686818 0.726830i \(-0.259007\pi\)
0.686818 + 0.726830i \(0.259007\pi\)
\(840\) 0 0
\(841\) −40.7138 −1.40393
\(842\) 19.2797 + 6.12483i 0.664422 + 0.211076i
\(843\) 0 0
\(844\) 6.88212 9.73856i 0.236892 0.335215i
\(845\) 25.0556i 0.861939i
\(846\) 0 0
\(847\) 1.83930 0.0631991
\(848\) 44.1941 15.6528i 1.51763 0.537518i
\(849\) 0 0
\(850\) −2.94550 + 9.27180i −0.101030 + 0.318020i
\(851\) 2.67403i 0.0916645i
\(852\) 0 0
\(853\) 4.19523i 0.143642i 0.997418 + 0.0718210i \(0.0228810\pi\)
−0.997418 + 0.0718210i \(0.977119\pi\)
\(854\) 8.25312 + 2.62188i 0.282416 + 0.0897189i
\(855\) 0 0
\(856\) 19.2519 + 25.4302i 0.658015 + 0.869187i
\(857\) −43.4106 −1.48288 −0.741438 0.671021i \(-0.765856\pi\)
−0.741438 + 0.671021i \(0.765856\pi\)
\(858\) 0 0
\(859\) 31.7672i 1.08388i −0.840416 0.541941i \(-0.817690\pi\)
0.840416 0.541941i \(-0.182310\pi\)
\(860\) 14.1290 + 9.98478i 0.481794 + 0.340478i
\(861\) 0 0
\(862\) 8.11495 25.5441i 0.276396 0.870037i
\(863\) 51.0969 1.73936 0.869679 0.493618i \(-0.164326\pi\)
0.869679 + 0.493618i \(0.164326\pi\)
\(864\) 0 0
\(865\) 2.67088 0.0908127
\(866\) −7.02781 + 22.1220i −0.238815 + 0.751738i
\(867\) 0 0
\(868\) −27.2127 19.2309i −0.923659 0.652739i
\(869\) 5.77867i 0.196028i
\(870\) 0 0
\(871\) −0.927021 −0.0314109
\(872\) 33.5251 + 44.2840i 1.13530 + 1.49964i
\(873\) 0 0
\(874\) 16.7462 + 5.31997i 0.566447 + 0.179951i
\(875\) 22.2731i 0.752967i
\(876\) 0 0
\(877\) 45.8912i 1.54963i 0.632185 + 0.774817i \(0.282158\pi\)
−0.632185 + 0.774817i \(0.717842\pi\)
\(878\) −10.5111 + 33.0869i −0.354734 + 1.11663i
\(879\) 0 0
\(880\) −2.57899 7.28154i −0.0869378 0.245461i
\(881\) 19.3333 0.651356 0.325678 0.945481i \(-0.394407\pi\)
0.325678 + 0.945481i \(0.394407\pi\)
\(882\) 0 0
\(883\) 22.5862i 0.760088i 0.924968 + 0.380044i \(0.124091\pi\)
−0.924968 + 0.380044i \(0.875909\pi\)
\(884\) 1.00431 1.42115i 0.0337785 0.0477983i
\(885\) 0 0
\(886\) 14.9178 + 4.73912i 0.501172 + 0.159214i
\(887\) 34.2005 1.14834 0.574170 0.818736i \(-0.305325\pi\)
0.574170 + 0.818736i \(0.305325\pi\)
\(888\) 0 0
\(889\) −2.07318 −0.0695323
\(890\) 14.9464 + 4.74821i 0.501003 + 0.159160i
\(891\) 0 0
\(892\) −1.69540 1.19812i −0.0567662 0.0401159i
\(893\) 17.6115i 0.589347i
\(894\) 0 0
\(895\) 19.1126 0.638863
\(896\) 17.3787 + 11.4458i 0.580583 + 0.382378i
\(897\) 0 0
\(898\) −11.4174 + 35.9396i −0.381004 + 1.19932i
\(899\) 75.6325i 2.52249i
\(900\) 0 0
\(901\) 63.4627i 2.11425i
\(902\) −15.8558 5.03712i −0.527940 0.167718i
\(903\) 0 0
\(904\) −29.1258 + 22.0496i −0.968708 + 0.733358i
\(905\) −22.5569 −0.749818
\(906\) 0 0
\(907\) 17.2305i 0.572129i −0.958210 0.286065i \(-0.907653\pi\)
0.958210 0.286065i \(-0.0923472\pi\)
\(908\) −7.68278 + 10.8715i −0.254962 + 0.360785i
\(909\) 0 0
\(910\) 0.244414 0.769362i 0.00810223 0.0255041i
\(911\) 28.1534 0.932763 0.466382 0.884584i \(-0.345557\pi\)
0.466382 + 0.884584i \(0.345557\pi\)
\(912\) 0 0
\(913\) −2.92400 −0.0967704
\(914\) 1.40571 4.42488i 0.0464968 0.146362i
\(915\) 0 0
\(916\) 18.9163 26.7676i 0.625012 0.884425i
\(917\) 20.1503i 0.665420i
\(918\) 0 0
\(919\) 1.87464 0.0618387 0.0309193 0.999522i \(-0.490157\pi\)
0.0309193 + 0.999522i \(0.490157\pi\)
\(920\) −14.6430 19.3422i −0.482764 0.637694i
\(921\) 0 0
\(922\) −4.27957 1.35955i −0.140940 0.0447743i
\(923\) 1.54741i 0.0509336i
\(924\) 0 0
\(925\) 0.764935i 0.0251509i
\(926\) 9.36424 29.4767i 0.307728 0.968663i
\(927\) 0 0
\(928\) 1.54872 + 47.2064i 0.0508393 + 1.54963i
\(929\) −23.2555 −0.762989 −0.381495 0.924371i \(-0.624591\pi\)
−0.381495 + 0.924371i \(0.624591\pi\)
\(930\) 0 0
\(931\) 10.1183i 0.331613i
\(932\) −26.2543 18.5536i −0.859989 0.607743i
\(933\) 0 0
\(934\) −6.68168 2.12266i −0.218631 0.0694555i
\(935\) 10.4563 0.341957
\(936\) 0 0
\(937\) −11.1266 −0.363490 −0.181745 0.983346i \(-0.558174\pi\)
−0.181745 + 0.983346i \(0.558174\pi\)
\(938\) 14.3009 + 4.54315i 0.466940 + 0.148339i
\(939\) 0 0
\(940\) 14.0333 19.8578i 0.457714 0.647689i
\(941\) 23.5923i 0.769088i 0.923107 + 0.384544i \(0.125641\pi\)
−0.923107 + 0.384544i \(0.874359\pi\)
\(942\) 0 0
\(943\) −52.2479 −1.70142
\(944\) −36.3137 + 12.8617i −1.18191 + 0.418611i
\(945\) 0 0
\(946\) −1.91799 + 6.03743i −0.0623593 + 0.196294i
\(947\) 23.1038i 0.750772i −0.926869 0.375386i \(-0.877510\pi\)
0.926869 0.375386i \(-0.122490\pi\)
\(948\) 0 0
\(949\) 0.109588i 0.00355737i
\(950\) −4.79042 1.52184i −0.155422 0.0493749i
\(951\) 0 0
\(952\) −22.4579 + 17.0017i −0.727864 + 0.551027i
\(953\) −2.75964 −0.0893934 −0.0446967 0.999001i \(-0.514232\pi\)
−0.0446967 + 0.999001i \(0.514232\pi\)
\(954\) 0 0
\(955\) 23.3484i 0.755537i
\(956\) −4.11696 2.90941i −0.133152 0.0940970i
\(957\) 0 0
\(958\) 15.2187 47.9051i 0.491692 1.54774i
\(959\) −18.7155 −0.604355
\(960\) 0 0
\(961\) 51.0537 1.64689
\(962\) −0.0414282 + 0.130407i −0.00133570 + 0.00420450i
\(963\) 0 0
\(964\) −9.98249 7.05450i −0.321514 0.227210i
\(965\) 25.6115i 0.824464i
\(966\) 0 0
\(967\) 50.7176 1.63097 0.815484 0.578780i \(-0.196471\pi\)
0.815484 + 0.578780i \(0.196471\pi\)
\(968\) 2.25509 1.70721i 0.0724814 0.0548718i
\(969\) 0 0
\(970\) 13.9993 + 4.44734i 0.449490 + 0.142795i
\(971\) 38.8913i 1.24808i −0.781392 0.624041i \(-0.785490\pi\)
0.781392 0.624041i \(-0.214510\pi\)
\(972\) 0 0
\(973\) 33.7230i 1.08111i
\(974\) 4.34808 13.6868i 0.139321 0.438554i
\(975\) 0 0
\(976\) 12.5524 4.44584i 0.401793 0.142308i
\(977\) 17.1186 0.547673 0.273837 0.961776i \(-0.411707\pi\)
0.273837 + 0.961776i \(0.411707\pi\)
\(978\) 0 0
\(979\) 5.74214i 0.183520i
\(980\) 8.06248 11.4088i 0.257546 0.364442i
\(981\) 0 0
\(982\) −0.495415 0.157385i −0.0158093 0.00502236i
\(983\) 5.78625 0.184553 0.0922763 0.995733i \(-0.470586\pi\)
0.0922763 + 0.995733i \(0.470586\pi\)
\(984\) 0 0
\(985\) −22.5631 −0.718919
\(986\) −60.9324 19.3572i −1.94048 0.616459i
\(987\) 0 0
\(988\) 0.734257 + 0.518890i 0.0233598 + 0.0165081i
\(989\) 19.8945i 0.632608i
\(990\) 0 0
\(991\) −4.97362 −0.157992 −0.0789961 0.996875i \(-0.525171\pi\)
−0.0789961 + 0.996875i \(0.525171\pi\)
\(992\) −51.2142 + 1.68021i −1.62605 + 0.0533467i
\(993\) 0 0
\(994\) 7.58354 23.8714i 0.240535 0.757154i
\(995\) 48.1503i 1.52647i
\(996\) 0 0
\(997\) 22.3402i 0.707521i −0.935336 0.353760i \(-0.884903\pi\)
0.935336 0.353760i \(-0.115097\pi\)
\(998\) 42.0287 + 13.3518i 1.33039 + 0.422644i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 792.2.f.g.397.7 10
3.2 odd 2 88.2.c.a.45.4 yes 10
4.3 odd 2 3168.2.f.g.1585.3 10
8.3 odd 2 3168.2.f.g.1585.8 10
8.5 even 2 inner 792.2.f.g.397.8 10
12.11 even 2 352.2.c.a.177.4 10
24.5 odd 2 88.2.c.a.45.3 10
24.11 even 2 352.2.c.a.177.7 10
33.2 even 10 968.2.o.h.565.2 40
33.5 odd 10 968.2.o.g.245.5 40
33.8 even 10 968.2.o.h.493.3 40
33.14 odd 10 968.2.o.g.493.8 40
33.17 even 10 968.2.o.h.245.6 40
33.20 odd 10 968.2.o.g.565.9 40
33.26 odd 10 968.2.o.g.269.1 40
33.29 even 10 968.2.o.h.269.10 40
33.32 even 2 968.2.c.d.485.7 10
48.5 odd 4 2816.2.a.o.1.4 5
48.11 even 4 2816.2.a.p.1.2 5
48.29 odd 4 2816.2.a.r.1.2 5
48.35 even 4 2816.2.a.q.1.4 5
132.131 odd 2 3872.2.c.f.1937.4 10
264.5 odd 10 968.2.o.g.245.9 40
264.29 even 10 968.2.o.h.269.3 40
264.53 odd 10 968.2.o.g.565.5 40
264.101 even 10 968.2.o.h.565.6 40
264.125 odd 10 968.2.o.g.269.8 40
264.131 odd 2 3872.2.c.f.1937.7 10
264.149 even 10 968.2.o.h.245.2 40
264.173 even 10 968.2.o.h.493.10 40
264.197 even 2 968.2.c.d.485.8 10
264.245 odd 10 968.2.o.g.493.1 40
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
88.2.c.a.45.3 10 24.5 odd 2
88.2.c.a.45.4 yes 10 3.2 odd 2
352.2.c.a.177.4 10 12.11 even 2
352.2.c.a.177.7 10 24.11 even 2
792.2.f.g.397.7 10 1.1 even 1 trivial
792.2.f.g.397.8 10 8.5 even 2 inner
968.2.c.d.485.7 10 33.32 even 2
968.2.c.d.485.8 10 264.197 even 2
968.2.o.g.245.5 40 33.5 odd 10
968.2.o.g.245.9 40 264.5 odd 10
968.2.o.g.269.1 40 33.26 odd 10
968.2.o.g.269.8 40 264.125 odd 10
968.2.o.g.493.1 40 264.245 odd 10
968.2.o.g.493.8 40 33.14 odd 10
968.2.o.g.565.5 40 264.53 odd 10
968.2.o.g.565.9 40 33.20 odd 10
968.2.o.h.245.2 40 264.149 even 10
968.2.o.h.245.6 40 33.17 even 10
968.2.o.h.269.3 40 264.29 even 10
968.2.o.h.269.10 40 33.29 even 10
968.2.o.h.493.3 40 33.8 even 10
968.2.o.h.493.10 40 264.173 even 10
968.2.o.h.565.2 40 33.2 even 10
968.2.o.h.565.6 40 264.101 even 10
2816.2.a.o.1.4 5 48.5 odd 4
2816.2.a.p.1.2 5 48.11 even 4
2816.2.a.q.1.4 5 48.35 even 4
2816.2.a.r.1.2 5 48.29 odd 4
3168.2.f.g.1585.3 10 4.3 odd 2
3168.2.f.g.1585.8 10 8.3 odd 2
3872.2.c.f.1937.4 10 132.131 odd 2
3872.2.c.f.1937.7 10 264.131 odd 2