Defining parameters
| Level: | \( N \) | \(=\) | \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 792.b (of order \(2\) and degree \(1\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 33 \) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 2 \) | ||
| Sturm bound: | \(288\) | ||
| Trace bound: | \(11\) | ||
| Distinguishing \(T_p\): | \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(792, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 160 | 12 | 148 |
| Cusp forms | 128 | 12 | 116 |
| Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(792, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
| 792.2.b.a | $6$ | $6.324$ | 6.0.12781568.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{5}+(\beta _{2}+\beta _{4})q^{7}+(\beta _{3}-\beta _{4})q^{11}+\cdots\) |
| 792.2.b.b | $6$ | $6.324$ | 6.0.12781568.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{5}+(-\beta _{2}-\beta _{4})q^{7}+(-\beta _{3}-\beta _{4}+\cdots)q^{11}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(792, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(792, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(33, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(66, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(99, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(132, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(198, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(264, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(396, [\chi])\)\(^{\oplus 2}\)