Defining parameters
Level: | \( N \) | \(=\) | \( 792 = 2^{3} \cdot 3^{2} \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 792.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(288\) | ||
Trace bound: | \(11\) | ||
Distinguishing \(T_p\): | \(5\), \(7\), \(17\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(792))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 160 | 13 | 147 |
Cusp forms | 129 | 13 | 116 |
Eisenstein series | 31 | 0 | 31 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(11\) | Fricke | Dim |
---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(1\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(2\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(1\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(2\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(2\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(3\) |
Plus space | \(+\) | \(5\) | ||
Minus space | \(-\) | \(8\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(792))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(792))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(792)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(11))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(33))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(36))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(44))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(66))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(72))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(88))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(99))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(132))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(198))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(264))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(396))\)\(^{\oplus 2}\)