Properties

Label 7840.2.a.bf
Level $7840$
Weight $2$
Character orbit 7840.a
Self dual yes
Analytic conductor $62.603$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [7840,2,Mod(1,7840)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7840, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("7840.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 7840 = 2^{5} \cdot 5 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7840.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,-2,0,0,0,10,0,0,0,4,0,0,0,-4,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(19)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(62.6027151847\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{2}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 160)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{2}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{3} - q^{5} + 5 q^{9} + 2 \beta q^{11} + 2 q^{13} - \beta q^{15} - 2 q^{17} - \beta q^{23} + q^{25} + 2 \beta q^{27} + 6 q^{29} + 2 \beta q^{31} + 16 q^{33} - 10 q^{37} + 2 \beta q^{39} - 2 q^{41} + \cdots + 10 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{5} + 10 q^{9} + 4 q^{13} - 4 q^{17} + 2 q^{25} + 12 q^{29} + 32 q^{33} - 20 q^{37} - 4 q^{41} - 10 q^{45} + 12 q^{53} + 4 q^{61} - 4 q^{65} - 16 q^{69} + 12 q^{73} + 2 q^{81} + 4 q^{85} - 20 q^{89}+ \cdots - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.41421
1.41421
0 −2.82843 0 −1.00000 0 0 0 5.00000 0
1.2 0 2.82843 0 −1.00000 0 0 0 5.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(5\) \( +1 \)
\(7\) \( -1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7840.2.a.bf 2
4.b odd 2 1 inner 7840.2.a.bf 2
7.b odd 2 1 160.2.a.c 2
21.c even 2 1 1440.2.a.o 2
28.d even 2 1 160.2.a.c 2
35.c odd 2 1 800.2.a.m 2
35.f even 4 2 800.2.c.f 4
56.e even 2 1 320.2.a.g 2
56.h odd 2 1 320.2.a.g 2
84.h odd 2 1 1440.2.a.o 2
105.g even 2 1 7200.2.a.cm 2
105.k odd 4 2 7200.2.f.bh 4
112.j even 4 2 1280.2.d.l 4
112.l odd 4 2 1280.2.d.l 4
140.c even 2 1 800.2.a.m 2
140.j odd 4 2 800.2.c.f 4
168.e odd 2 1 2880.2.a.bk 2
168.i even 2 1 2880.2.a.bk 2
280.c odd 2 1 1600.2.a.bc 2
280.n even 2 1 1600.2.a.bc 2
280.s even 4 2 1600.2.c.n 4
280.y odd 4 2 1600.2.c.n 4
420.o odd 2 1 7200.2.a.cm 2
420.w even 4 2 7200.2.f.bh 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
160.2.a.c 2 7.b odd 2 1
160.2.a.c 2 28.d even 2 1
320.2.a.g 2 56.e even 2 1
320.2.a.g 2 56.h odd 2 1
800.2.a.m 2 35.c odd 2 1
800.2.a.m 2 140.c even 2 1
800.2.c.f 4 35.f even 4 2
800.2.c.f 4 140.j odd 4 2
1280.2.d.l 4 112.j even 4 2
1280.2.d.l 4 112.l odd 4 2
1440.2.a.o 2 21.c even 2 1
1440.2.a.o 2 84.h odd 2 1
1600.2.a.bc 2 280.c odd 2 1
1600.2.a.bc 2 280.n even 2 1
1600.2.c.n 4 280.s even 4 2
1600.2.c.n 4 280.y odd 4 2
2880.2.a.bk 2 168.e odd 2 1
2880.2.a.bk 2 168.i even 2 1
7200.2.a.cm 2 105.g even 2 1
7200.2.a.cm 2 420.o odd 2 1
7200.2.f.bh 4 105.k odd 4 2
7200.2.f.bh 4 420.w even 4 2
7840.2.a.bf 2 1.a even 1 1 trivial
7840.2.a.bf 2 4.b odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7840))\):

\( T_{3}^{2} - 8 \) Copy content Toggle raw display
\( T_{11}^{2} - 32 \) Copy content Toggle raw display
\( T_{13} - 2 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 8 \) Copy content Toggle raw display
$5$ \( (T + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} \) Copy content Toggle raw display
$11$ \( T^{2} - 32 \) Copy content Toggle raw display
$13$ \( (T - 2)^{2} \) Copy content Toggle raw display
$17$ \( (T + 2)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 8 \) Copy content Toggle raw display
$29$ \( (T - 6)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 32 \) Copy content Toggle raw display
$37$ \( (T + 10)^{2} \) Copy content Toggle raw display
$41$ \( (T + 2)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 72 \) Copy content Toggle raw display
$47$ \( T^{2} - 8 \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 128 \) Copy content Toggle raw display
$61$ \( (T - 2)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 8 \) Copy content Toggle raw display
$71$ \( T^{2} - 32 \) Copy content Toggle raw display
$73$ \( (T - 6)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 128 \) Copy content Toggle raw display
$83$ \( T^{2} - 8 \) Copy content Toggle raw display
$89$ \( (T + 10)^{2} \) Copy content Toggle raw display
$97$ \( (T + 2)^{2} \) Copy content Toggle raw display
show more
show less