Properties

Label 784.6.f.c.783.5
Level $784$
Weight $6$
Character 784.783
Analytic conductor $125.741$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(783,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 1])) N = Newforms(chi, 6, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.783"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.f (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14,0,-18] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(14\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} - 3 x^{13} + 691 x^{12} - 8602 x^{11} + 416261 x^{10} - 3521447 x^{9} + 66162087 x^{8} + \cdots + 17213603549184 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{43}]\)
Coefficient ring index: \( 2^{27}\cdot 3^{6}\cdot 7^{4} \)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 783.5
Root \(-1.05545 + 1.82809i\) of defining polynomial
Character \(\chi\) \(=\) 784.783
Dual form 784.6.f.c.783.6

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.95216 q^{3} -71.7457i q^{5} -162.859 q^{9} +153.533i q^{11} -891.047i q^{13} +642.279i q^{15} +1521.01i q^{17} +1768.03 q^{19} -3837.69i q^{23} -2022.45 q^{25} +3633.31 q^{27} -2658.88 q^{29} +6179.19 q^{31} -1374.45i q^{33} +8528.02 q^{37} +7976.79i q^{39} -18788.9i q^{41} -19232.2i q^{43} +11684.4i q^{45} -7081.56 q^{47} -13616.3i q^{51} +25162.9 q^{53} +11015.3 q^{55} -15827.6 q^{57} -1291.54 q^{59} +23945.3i q^{61} -63928.8 q^{65} -16460.2i q^{67} +34355.6i q^{69} -25824.7i q^{71} -10443.1i q^{73} +18105.3 q^{75} -17196.2i q^{79} +7048.71 q^{81} +53986.4 q^{83} +109126. q^{85} +23802.7 q^{87} -30675.3i q^{89} -55317.1 q^{93} -126848. i q^{95} +70219.1i q^{97} -25004.2i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q - 18 q^{3} + 1076 q^{9} - 4270 q^{19} - 10868 q^{25} - 17910 q^{27} + 684 q^{29} + 6238 q^{31} - 6862 q^{37} + 16818 q^{47} - 3414 q^{53} + 56622 q^{55} + 68450 q^{57} - 98610 q^{59} - 34896 q^{65}+ \cdots - 585746 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.95216 −0.574281 −0.287141 0.957888i \(-0.592705\pi\)
−0.287141 + 0.957888i \(0.592705\pi\)
\(4\) 0 0
\(5\) − 71.7457i − 1.28343i −0.766945 0.641713i \(-0.778224\pi\)
0.766945 0.641713i \(-0.221776\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −162.859 −0.670201
\(10\) 0 0
\(11\) 153.533i 0.382578i 0.981534 + 0.191289i \(0.0612668\pi\)
−0.981534 + 0.191289i \(0.938733\pi\)
\(12\) 0 0
\(13\) − 891.047i − 1.46232i −0.682207 0.731159i \(-0.738980\pi\)
0.682207 0.731159i \(-0.261020\pi\)
\(14\) 0 0
\(15\) 642.279i 0.737048i
\(16\) 0 0
\(17\) 1521.01i 1.27646i 0.769844 + 0.638232i \(0.220334\pi\)
−0.769844 + 0.638232i \(0.779666\pi\)
\(18\) 0 0
\(19\) 1768.03 1.12358 0.561791 0.827279i \(-0.310113\pi\)
0.561791 + 0.827279i \(0.310113\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) − 3837.69i − 1.51269i −0.654172 0.756346i \(-0.726983\pi\)
0.654172 0.756346i \(-0.273017\pi\)
\(24\) 0 0
\(25\) −2022.45 −0.647184
\(26\) 0 0
\(27\) 3633.31 0.959165
\(28\) 0 0
\(29\) −2658.88 −0.587089 −0.293544 0.955945i \(-0.594835\pi\)
−0.293544 + 0.955945i \(0.594835\pi\)
\(30\) 0 0
\(31\) 6179.19 1.15485 0.577427 0.816442i \(-0.304057\pi\)
0.577427 + 0.816442i \(0.304057\pi\)
\(32\) 0 0
\(33\) − 1374.45i − 0.219707i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 8528.02 1.02410 0.512052 0.858955i \(-0.328886\pi\)
0.512052 + 0.858955i \(0.328886\pi\)
\(38\) 0 0
\(39\) 7976.79i 0.839782i
\(40\) 0 0
\(41\) − 18788.9i − 1.74559i −0.488090 0.872793i \(-0.662306\pi\)
0.488090 0.872793i \(-0.337694\pi\)
\(42\) 0 0
\(43\) − 19232.2i − 1.58620i −0.609090 0.793101i \(-0.708465\pi\)
0.609090 0.793101i \(-0.291535\pi\)
\(44\) 0 0
\(45\) 11684.4i 0.860154i
\(46\) 0 0
\(47\) −7081.56 −0.467611 −0.233805 0.972283i \(-0.575118\pi\)
−0.233805 + 0.972283i \(0.575118\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) − 13616.3i − 0.733049i
\(52\) 0 0
\(53\) 25162.9 1.23047 0.615236 0.788343i \(-0.289061\pi\)
0.615236 + 0.788343i \(0.289061\pi\)
\(54\) 0 0
\(55\) 11015.3 0.491011
\(56\) 0 0
\(57\) −15827.6 −0.645252
\(58\) 0 0
\(59\) −1291.54 −0.0483036 −0.0241518 0.999708i \(-0.507688\pi\)
−0.0241518 + 0.999708i \(0.507688\pi\)
\(60\) 0 0
\(61\) 23945.3i 0.823939i 0.911198 + 0.411970i \(0.135159\pi\)
−0.911198 + 0.411970i \(0.864841\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −63928.8 −1.87678
\(66\) 0 0
\(67\) − 16460.2i − 0.447968i −0.974593 0.223984i \(-0.928094\pi\)
0.974593 0.223984i \(-0.0719064\pi\)
\(68\) 0 0
\(69\) 34355.6i 0.868710i
\(70\) 0 0
\(71\) − 25824.7i − 0.607980i −0.952675 0.303990i \(-0.901681\pi\)
0.952675 0.303990i \(-0.0983190\pi\)
\(72\) 0 0
\(73\) − 10443.1i − 0.229363i −0.993402 0.114681i \(-0.963415\pi\)
0.993402 0.114681i \(-0.0365847\pi\)
\(74\) 0 0
\(75\) 18105.3 0.371665
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) − 17196.2i − 0.310003i −0.987914 0.155001i \(-0.950462\pi\)
0.987914 0.155001i \(-0.0495382\pi\)
\(80\) 0 0
\(81\) 7048.71 0.119370
\(82\) 0 0
\(83\) 53986.4 0.860180 0.430090 0.902786i \(-0.358482\pi\)
0.430090 + 0.902786i \(0.358482\pi\)
\(84\) 0 0
\(85\) 109126. 1.63825
\(86\) 0 0
\(87\) 23802.7 0.337154
\(88\) 0 0
\(89\) − 30675.3i − 0.410501i −0.978709 0.205250i \(-0.934199\pi\)
0.978709 0.205250i \(-0.0658009\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −55317.1 −0.663211
\(94\) 0 0
\(95\) − 126848.i − 1.44203i
\(96\) 0 0
\(97\) 70219.1i 0.757750i 0.925448 + 0.378875i \(0.123689\pi\)
−0.925448 + 0.378875i \(0.876311\pi\)
\(98\) 0 0
\(99\) − 25004.2i − 0.256404i
\(100\) 0 0
\(101\) 63822.6i 0.622545i 0.950321 + 0.311273i \(0.100755\pi\)
−0.950321 + 0.311273i \(0.899245\pi\)
\(102\) 0 0
\(103\) −107712. −1.00039 −0.500197 0.865912i \(-0.666739\pi\)
−0.500197 + 0.865912i \(0.666739\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 131897.i 1.11372i 0.830607 + 0.556860i \(0.187994\pi\)
−0.830607 + 0.556860i \(0.812006\pi\)
\(108\) 0 0
\(109\) 95557.8 0.770371 0.385186 0.922839i \(-0.374137\pi\)
0.385186 + 0.922839i \(0.374137\pi\)
\(110\) 0 0
\(111\) −76344.2 −0.588124
\(112\) 0 0
\(113\) −37554.2 −0.276670 −0.138335 0.990385i \(-0.544175\pi\)
−0.138335 + 0.990385i \(0.544175\pi\)
\(114\) 0 0
\(115\) −275338. −1.94143
\(116\) 0 0
\(117\) 145115.i 0.980047i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 137479. 0.853634
\(122\) 0 0
\(123\) 168201.i 1.00246i
\(124\) 0 0
\(125\) − 79103.3i − 0.452814i
\(126\) 0 0
\(127\) 358280.i 1.97112i 0.169318 + 0.985561i \(0.445844\pi\)
−0.169318 + 0.985561i \(0.554156\pi\)
\(128\) 0 0
\(129\) 172170.i 0.910926i
\(130\) 0 0
\(131\) −166872. −0.849580 −0.424790 0.905292i \(-0.639652\pi\)
−0.424790 + 0.905292i \(0.639652\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) − 260675.i − 1.23102i
\(136\) 0 0
\(137\) −254808. −1.15987 −0.579937 0.814661i \(-0.696923\pi\)
−0.579937 + 0.814661i \(0.696923\pi\)
\(138\) 0 0
\(139\) −190751. −0.837393 −0.418696 0.908126i \(-0.637513\pi\)
−0.418696 + 0.908126i \(0.637513\pi\)
\(140\) 0 0
\(141\) 63395.3 0.268540
\(142\) 0 0
\(143\) 136805. 0.559451
\(144\) 0 0
\(145\) 190763.i 0.753485i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −87373.5 −0.322414 −0.161207 0.986921i \(-0.551539\pi\)
−0.161207 + 0.986921i \(0.551539\pi\)
\(150\) 0 0
\(151\) − 183085.i − 0.653446i −0.945120 0.326723i \(-0.894056\pi\)
0.945120 0.326723i \(-0.105944\pi\)
\(152\) 0 0
\(153\) − 247709.i − 0.855488i
\(154\) 0 0
\(155\) − 443330.i − 1.48217i
\(156\) 0 0
\(157\) 300184.i 0.971939i 0.873976 + 0.485969i \(0.161533\pi\)
−0.873976 + 0.485969i \(0.838467\pi\)
\(158\) 0 0
\(159\) −225263. −0.706637
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) − 594455.i − 1.75247i −0.481887 0.876233i \(-0.660048\pi\)
0.481887 0.876233i \(-0.339952\pi\)
\(164\) 0 0
\(165\) −98611.0 −0.281978
\(166\) 0 0
\(167\) 336959. 0.934946 0.467473 0.884007i \(-0.345165\pi\)
0.467473 + 0.884007i \(0.345165\pi\)
\(168\) 0 0
\(169\) −422671. −1.13838
\(170\) 0 0
\(171\) −287939. −0.753025
\(172\) 0 0
\(173\) − 75109.9i − 0.190802i −0.995439 0.0954008i \(-0.969587\pi\)
0.995439 0.0954008i \(-0.0304133\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 11562.1 0.0277398
\(178\) 0 0
\(179\) − 185323.i − 0.432312i −0.976359 0.216156i \(-0.930648\pi\)
0.976359 0.216156i \(-0.0693520\pi\)
\(180\) 0 0
\(181\) − 302350.i − 0.685984i −0.939338 0.342992i \(-0.888560\pi\)
0.939338 0.342992i \(-0.111440\pi\)
\(182\) 0 0
\(183\) − 214362.i − 0.473173i
\(184\) 0 0
\(185\) − 611849.i − 1.31436i
\(186\) 0 0
\(187\) −233525. −0.488347
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) − 900500.i − 1.78608i −0.449979 0.893039i \(-0.648568\pi\)
0.449979 0.893039i \(-0.351432\pi\)
\(192\) 0 0
\(193\) −616078. −1.19054 −0.595268 0.803528i \(-0.702954\pi\)
−0.595268 + 0.803528i \(0.702954\pi\)
\(194\) 0 0
\(195\) 572301. 1.07780
\(196\) 0 0
\(197\) −698830. −1.28294 −0.641469 0.767149i \(-0.721675\pi\)
−0.641469 + 0.767149i \(0.721675\pi\)
\(198\) 0 0
\(199\) −728210. −1.30354 −0.651769 0.758418i \(-0.725973\pi\)
−0.651769 + 0.758418i \(0.725973\pi\)
\(200\) 0 0
\(201\) 147354.i 0.257260i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.34802e6 −2.24033
\(206\) 0 0
\(207\) 625002.i 1.01381i
\(208\) 0 0
\(209\) 271450.i 0.429857i
\(210\) 0 0
\(211\) − 504855.i − 0.780657i −0.920676 0.390329i \(-0.872361\pi\)
0.920676 0.390329i \(-0.127639\pi\)
\(212\) 0 0
\(213\) 231187.i 0.349152i
\(214\) 0 0
\(215\) −1.37983e6 −2.03577
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 93488.4i 0.131719i
\(220\) 0 0
\(221\) 1.35529e6 1.86660
\(222\) 0 0
\(223\) 1.06011e6 1.42755 0.713774 0.700377i \(-0.246985\pi\)
0.713774 + 0.700377i \(0.246985\pi\)
\(224\) 0 0
\(225\) 329374. 0.433743
\(226\) 0 0
\(227\) −926821. −1.19380 −0.596899 0.802316i \(-0.703601\pi\)
−0.596899 + 0.802316i \(0.703601\pi\)
\(228\) 0 0
\(229\) 1.03321e6i 1.30196i 0.759093 + 0.650982i \(0.225643\pi\)
−0.759093 + 0.650982i \(0.774357\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −677767. −0.817882 −0.408941 0.912561i \(-0.634102\pi\)
−0.408941 + 0.912561i \(0.634102\pi\)
\(234\) 0 0
\(235\) 508072.i 0.600144i
\(236\) 0 0
\(237\) 153943.i 0.178029i
\(238\) 0 0
\(239\) − 447964.i − 0.507281i −0.967299 0.253640i \(-0.918372\pi\)
0.967299 0.253640i \(-0.0816280\pi\)
\(240\) 0 0
\(241\) − 335760.i − 0.372380i −0.982514 0.186190i \(-0.940386\pi\)
0.982514 0.186190i \(-0.0596140\pi\)
\(242\) 0 0
\(243\) −945996. −1.02772
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) − 1.57539e6i − 1.64303i
\(248\) 0 0
\(249\) −483295. −0.493985
\(250\) 0 0
\(251\) 702313. 0.703633 0.351816 0.936069i \(-0.385564\pi\)
0.351816 + 0.936069i \(0.385564\pi\)
\(252\) 0 0
\(253\) 589212. 0.578722
\(254\) 0 0
\(255\) −976910. −0.940815
\(256\) 0 0
\(257\) − 304895.i − 0.287951i −0.989581 0.143975i \(-0.954011\pi\)
0.989581 0.143975i \(-0.0459886\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 433022. 0.393467
\(262\) 0 0
\(263\) − 1.89594e6i − 1.69019i −0.534618 0.845094i \(-0.679545\pi\)
0.534618 0.845094i \(-0.320455\pi\)
\(264\) 0 0
\(265\) − 1.80533e6i − 1.57922i
\(266\) 0 0
\(267\) 274610.i 0.235743i
\(268\) 0 0
\(269\) 1.54749e6i 1.30391i 0.758258 + 0.651955i \(0.226051\pi\)
−0.758258 + 0.651955i \(0.773949\pi\)
\(270\) 0 0
\(271\) 1.56683e6 1.29598 0.647989 0.761650i \(-0.275610\pi\)
0.647989 + 0.761650i \(0.275610\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) − 310513.i − 0.247598i
\(276\) 0 0
\(277\) −1.87694e6 −1.46978 −0.734888 0.678188i \(-0.762765\pi\)
−0.734888 + 0.678188i \(0.762765\pi\)
\(278\) 0 0
\(279\) −1.00634e6 −0.773985
\(280\) 0 0
\(281\) −1.48022e6 −1.11831 −0.559155 0.829063i \(-0.688874\pi\)
−0.559155 + 0.829063i \(0.688874\pi\)
\(282\) 0 0
\(283\) 373510. 0.277227 0.138614 0.990347i \(-0.455735\pi\)
0.138614 + 0.990347i \(0.455735\pi\)
\(284\) 0 0
\(285\) 1.13557e6i 0.828133i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −893603. −0.629361
\(290\) 0 0
\(291\) − 628613.i − 0.435162i
\(292\) 0 0
\(293\) 1.51194e6i 1.02888i 0.857525 + 0.514442i \(0.172001\pi\)
−0.857525 + 0.514442i \(0.827999\pi\)
\(294\) 0 0
\(295\) 92662.7i 0.0619941i
\(296\) 0 0
\(297\) 557833.i 0.366955i
\(298\) 0 0
\(299\) −3.41956e6 −2.21204
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) − 571350.i − 0.357516i
\(304\) 0 0
\(305\) 1.71797e6 1.05747
\(306\) 0 0
\(307\) −1.02264e6 −0.619267 −0.309634 0.950856i \(-0.600206\pi\)
−0.309634 + 0.950856i \(0.600206\pi\)
\(308\) 0 0
\(309\) 964254. 0.574507
\(310\) 0 0
\(311\) −1.06266e6 −0.623006 −0.311503 0.950245i \(-0.600832\pi\)
−0.311503 + 0.950245i \(0.600832\pi\)
\(312\) 0 0
\(313\) 357351.i 0.206174i 0.994672 + 0.103087i \(0.0328721\pi\)
−0.994672 + 0.103087i \(0.967128\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 433980. 0.242561 0.121281 0.992618i \(-0.461300\pi\)
0.121281 + 0.992618i \(0.461300\pi\)
\(318\) 0 0
\(319\) − 408226.i − 0.224607i
\(320\) 0 0
\(321\) − 1.18076e6i − 0.639588i
\(322\) 0 0
\(323\) 2.68918e6i 1.43421i
\(324\) 0 0
\(325\) 1.80210e6i 0.946389i
\(326\) 0 0
\(327\) −855449. −0.442410
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) − 3.29209e6i − 1.65159i −0.563971 0.825795i \(-0.690727\pi\)
0.563971 0.825795i \(-0.309273\pi\)
\(332\) 0 0
\(333\) −1.38886e6 −0.686355
\(334\) 0 0
\(335\) −1.18095e6 −0.574934
\(336\) 0 0
\(337\) 1.52754e6 0.732684 0.366342 0.930480i \(-0.380610\pi\)
0.366342 + 0.930480i \(0.380610\pi\)
\(338\) 0 0
\(339\) 336191. 0.158887
\(340\) 0 0
\(341\) 948709.i 0.441822i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.46487e6 1.11493
\(346\) 0 0
\(347\) 1.32088e6i 0.588898i 0.955667 + 0.294449i \(0.0951362\pi\)
−0.955667 + 0.294449i \(0.904864\pi\)
\(348\) 0 0
\(349\) 196028.i 0.0861498i 0.999072 + 0.0430749i \(0.0137154\pi\)
−0.999072 + 0.0430749i \(0.986285\pi\)
\(350\) 0 0
\(351\) − 3.23745e6i − 1.40261i
\(352\) 0 0
\(353\) 4.46351e6i 1.90651i 0.302162 + 0.953257i \(0.402292\pi\)
−0.302162 + 0.953257i \(0.597708\pi\)
\(354\) 0 0
\(355\) −1.85281e6 −0.780298
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.43460e6i 1.40650i 0.710943 + 0.703250i \(0.248269\pi\)
−0.710943 + 0.703250i \(0.751731\pi\)
\(360\) 0 0
\(361\) 649815. 0.262435
\(362\) 0 0
\(363\) −1.23073e6 −0.490226
\(364\) 0 0
\(365\) −749249. −0.294370
\(366\) 0 0
\(367\) 142703. 0.0553053 0.0276527 0.999618i \(-0.491197\pi\)
0.0276527 + 0.999618i \(0.491197\pi\)
\(368\) 0 0
\(369\) 3.05994e6i 1.16989i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.98908e6 −0.740252 −0.370126 0.928981i \(-0.620686\pi\)
−0.370126 + 0.928981i \(0.620686\pi\)
\(374\) 0 0
\(375\) 708145.i 0.260042i
\(376\) 0 0
\(377\) 2.36919e6i 0.858511i
\(378\) 0 0
\(379\) − 2.27226e6i − 0.812568i −0.913747 0.406284i \(-0.866824\pi\)
0.913747 0.406284i \(-0.133176\pi\)
\(380\) 0 0
\(381\) − 3.20738e6i − 1.13198i
\(382\) 0 0
\(383\) 1.50492e6 0.524223 0.262112 0.965038i \(-0.415581\pi\)
0.262112 + 0.965038i \(0.415581\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.13214e6i 1.06307i
\(388\) 0 0
\(389\) 2.83982e6 0.951518 0.475759 0.879576i \(-0.342173\pi\)
0.475759 + 0.879576i \(0.342173\pi\)
\(390\) 0 0
\(391\) 5.83715e6 1.93090
\(392\) 0 0
\(393\) 1.49386e6 0.487898
\(394\) 0 0
\(395\) −1.23376e6 −0.397866
\(396\) 0 0
\(397\) − 3.22840e6i − 1.02804i −0.857777 0.514022i \(-0.828155\pi\)
0.857777 0.514022i \(-0.171845\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −6.04298e6 −1.87668 −0.938340 0.345715i \(-0.887637\pi\)
−0.938340 + 0.345715i \(0.887637\pi\)
\(402\) 0 0
\(403\) − 5.50594e6i − 1.68876i
\(404\) 0 0
\(405\) − 505715.i − 0.153203i
\(406\) 0 0
\(407\) 1.30933e6i 0.391800i
\(408\) 0 0
\(409\) − 2.89551e6i − 0.855888i −0.903805 0.427944i \(-0.859238\pi\)
0.903805 0.427944i \(-0.140762\pi\)
\(410\) 0 0
\(411\) 2.28108e6 0.666094
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) − 3.87330e6i − 1.10398i
\(416\) 0 0
\(417\) 1.70763e6 0.480899
\(418\) 0 0
\(419\) 3.80628e6 1.05917 0.529585 0.848257i \(-0.322348\pi\)
0.529585 + 0.848257i \(0.322348\pi\)
\(420\) 0 0
\(421\) −4.30950e6 −1.18501 −0.592504 0.805567i \(-0.701861\pi\)
−0.592504 + 0.805567i \(0.701861\pi\)
\(422\) 0 0
\(423\) 1.15330e6 0.313393
\(424\) 0 0
\(425\) − 3.07616e6i − 0.826107i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.22470e6 −0.321282
\(430\) 0 0
\(431\) 2.69850e6i 0.699727i 0.936801 + 0.349863i \(0.113772\pi\)
−0.936801 + 0.349863i \(0.886228\pi\)
\(432\) 0 0
\(433\) − 3.11101e6i − 0.797410i −0.917079 0.398705i \(-0.869460\pi\)
0.917079 0.398705i \(-0.130540\pi\)
\(434\) 0 0
\(435\) − 1.70774e6i − 0.432712i
\(436\) 0 0
\(437\) − 6.78513e6i − 1.69963i
\(438\) 0 0
\(439\) 6.68403e6 1.65530 0.827651 0.561243i \(-0.189677\pi\)
0.827651 + 0.561243i \(0.189677\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 1.03501e6i − 0.250573i −0.992121 0.125287i \(-0.960015\pi\)
0.992121 0.125287i \(-0.0399851\pi\)
\(444\) 0 0
\(445\) −2.20082e6 −0.526848
\(446\) 0 0
\(447\) 782181. 0.185156
\(448\) 0 0
\(449\) 5.42168e6 1.26917 0.634583 0.772855i \(-0.281172\pi\)
0.634583 + 0.772855i \(0.281172\pi\)
\(450\) 0 0
\(451\) 2.88471e6 0.667823
\(452\) 0 0
\(453\) 1.63900e6i 0.375262i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.76733e6 0.619828 0.309914 0.950765i \(-0.399700\pi\)
0.309914 + 0.950765i \(0.399700\pi\)
\(458\) 0 0
\(459\) 5.52629e6i 1.22434i
\(460\) 0 0
\(461\) − 414792.i − 0.0909029i −0.998967 0.0454515i \(-0.985527\pi\)
0.998967 0.0454515i \(-0.0144726\pi\)
\(462\) 0 0
\(463\) 3.28204e6i 0.711526i 0.934576 + 0.355763i \(0.115779\pi\)
−0.934576 + 0.355763i \(0.884221\pi\)
\(464\) 0 0
\(465\) 3.96876e6i 0.851183i
\(466\) 0 0
\(467\) −3.30005e6 −0.700210 −0.350105 0.936710i \(-0.613854\pi\)
−0.350105 + 0.936710i \(0.613854\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) − 2.68730e6i − 0.558166i
\(472\) 0 0
\(473\) 2.95278e6 0.606846
\(474\) 0 0
\(475\) −3.57574e6 −0.727164
\(476\) 0 0
\(477\) −4.09801e6 −0.824663
\(478\) 0 0
\(479\) −2.33933e6 −0.465857 −0.232928 0.972494i \(-0.574831\pi\)
−0.232928 + 0.972494i \(0.574831\pi\)
\(480\) 0 0
\(481\) − 7.59886e6i − 1.49757i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 5.03792e6 0.972517
\(486\) 0 0
\(487\) − 3.06869e6i − 0.586314i −0.956064 0.293157i \(-0.905294\pi\)
0.956064 0.293157i \(-0.0947058\pi\)
\(488\) 0 0
\(489\) 5.32165e6i 1.00641i
\(490\) 0 0
\(491\) − 4.39524e6i − 0.822770i −0.911462 0.411385i \(-0.865045\pi\)
0.911462 0.411385i \(-0.134955\pi\)
\(492\) 0 0
\(493\) − 4.04417e6i − 0.749398i
\(494\) 0 0
\(495\) −1.79394e6 −0.329076
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.77470e6i 1.39776i 0.715240 + 0.698879i \(0.246318\pi\)
−0.715240 + 0.698879i \(0.753682\pi\)
\(500\) 0 0
\(501\) −3.01651e6 −0.536922
\(502\) 0 0
\(503\) −5.37075e6 −0.946488 −0.473244 0.880931i \(-0.656917\pi\)
−0.473244 + 0.880931i \(0.656917\pi\)
\(504\) 0 0
\(505\) 4.57900e6 0.798991
\(506\) 0 0
\(507\) 3.78382e6 0.653748
\(508\) 0 0
\(509\) 2.18473e6i 0.373769i 0.982382 + 0.186884i \(0.0598389\pi\)
−0.982382 + 0.186884i \(0.940161\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.42379e6 1.07770
\(514\) 0 0
\(515\) 7.72787e6i 1.28393i
\(516\) 0 0
\(517\) − 1.08725e6i − 0.178898i
\(518\) 0 0
\(519\) 672396.i 0.109574i
\(520\) 0 0
\(521\) 4.97007e6i 0.802174i 0.916040 + 0.401087i \(0.131367\pi\)
−0.916040 + 0.401087i \(0.868633\pi\)
\(522\) 0 0
\(523\) 1.17726e7 1.88199 0.940997 0.338416i \(-0.109891\pi\)
0.940997 + 0.338416i \(0.109891\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.39858e6i 1.47413i
\(528\) 0 0
\(529\) −8.29153e6 −1.28824
\(530\) 0 0
\(531\) 210339. 0.0323731
\(532\) 0 0
\(533\) −1.67418e7 −2.55260
\(534\) 0 0
\(535\) 9.46305e6 1.42938
\(536\) 0 0
\(537\) 1.65904e6i 0.248269i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 6.46645e6 0.949889 0.474945 0.880016i \(-0.342468\pi\)
0.474945 + 0.880016i \(0.342468\pi\)
\(542\) 0 0
\(543\) 2.70669e6i 0.393948i
\(544\) 0 0
\(545\) − 6.85586e6i − 0.988715i
\(546\) 0 0
\(547\) 1.14808e7i 1.64061i 0.571927 + 0.820305i \(0.306196\pi\)
−0.571927 + 0.820305i \(0.693804\pi\)
\(548\) 0 0
\(549\) − 3.89970e6i − 0.552205i
\(550\) 0 0
\(551\) −4.70097e6 −0.659642
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 5.47737e6i 0.754813i
\(556\) 0 0
\(557\) −9.06301e6 −1.23775 −0.618877 0.785488i \(-0.712412\pi\)
−0.618877 + 0.785488i \(0.712412\pi\)
\(558\) 0 0
\(559\) −1.71368e7 −2.31953
\(560\) 0 0
\(561\) 2.09055e6 0.280449
\(562\) 0 0
\(563\) 2.64960e6 0.352297 0.176148 0.984364i \(-0.443636\pi\)
0.176148 + 0.984364i \(0.443636\pi\)
\(564\) 0 0
\(565\) 2.69435e6i 0.355086i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.08250e6 1.17605 0.588023 0.808844i \(-0.299906\pi\)
0.588023 + 0.808844i \(0.299906\pi\)
\(570\) 0 0
\(571\) − 1.53684e6i − 0.197260i −0.995124 0.0986299i \(-0.968554\pi\)
0.995124 0.0986299i \(-0.0314460\pi\)
\(572\) 0 0
\(573\) 8.06142e6i 1.02571i
\(574\) 0 0
\(575\) 7.76153e6i 0.978989i
\(576\) 0 0
\(577\) − 4.23757e6i − 0.529880i −0.964265 0.264940i \(-0.914648\pi\)
0.964265 0.264940i \(-0.0853522\pi\)
\(578\) 0 0
\(579\) 5.51523e6 0.683702
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 3.86334e6i 0.470751i
\(584\) 0 0
\(585\) 1.04114e7 1.25782
\(586\) 0 0
\(587\) −1.20181e7 −1.43960 −0.719799 0.694182i \(-0.755766\pi\)
−0.719799 + 0.694182i \(0.755766\pi\)
\(588\) 0 0
\(589\) 1.09250e7 1.29757
\(590\) 0 0
\(591\) 6.25604e6 0.736768
\(592\) 0 0
\(593\) − 1.43625e7i − 1.67723i −0.544722 0.838617i \(-0.683365\pi\)
0.544722 0.838617i \(-0.316635\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 6.51905e6 0.748597
\(598\) 0 0
\(599\) − 1.05888e7i − 1.20581i −0.797813 0.602905i \(-0.794010\pi\)
0.797813 0.602905i \(-0.205990\pi\)
\(600\) 0 0
\(601\) − 2.68606e6i − 0.303340i −0.988431 0.151670i \(-0.951535\pi\)
0.988431 0.151670i \(-0.0484652\pi\)
\(602\) 0 0
\(603\) 2.68068e6i 0.300229i
\(604\) 0 0
\(605\) − 9.86350e6i − 1.09558i
\(606\) 0 0
\(607\) 8.02313e6 0.883836 0.441918 0.897055i \(-0.354298\pi\)
0.441918 + 0.897055i \(0.354298\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 6.31000e6i 0.683796i
\(612\) 0 0
\(613\) 8.22402e6 0.883961 0.441980 0.897025i \(-0.354276\pi\)
0.441980 + 0.897025i \(0.354276\pi\)
\(614\) 0 0
\(615\) 1.20677e7 1.28658
\(616\) 0 0
\(617\) 1.44777e7 1.53104 0.765519 0.643414i \(-0.222482\pi\)
0.765519 + 0.643414i \(0.222482\pi\)
\(618\) 0 0
\(619\) −1.18114e7 −1.23901 −0.619507 0.784991i \(-0.712668\pi\)
−0.619507 + 0.784991i \(0.712668\pi\)
\(620\) 0 0
\(621\) − 1.39435e7i − 1.45092i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.19955e7 −1.22834
\(626\) 0 0
\(627\) − 2.43006e6i − 0.246859i
\(628\) 0 0
\(629\) 1.29712e7i 1.30723i
\(630\) 0 0
\(631\) 1.17328e7i 1.17308i 0.809920 + 0.586540i \(0.199510\pi\)
−0.809920 + 0.586540i \(0.800490\pi\)
\(632\) 0 0
\(633\) 4.51954e6i 0.448317i
\(634\) 0 0
\(635\) 2.57051e7 2.52979
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 4.20578e6i 0.407469i
\(640\) 0 0
\(641\) −760587. −0.0731145 −0.0365573 0.999332i \(-0.511639\pi\)
−0.0365573 + 0.999332i \(0.511639\pi\)
\(642\) 0 0
\(643\) 6.37262e6 0.607842 0.303921 0.952697i \(-0.401704\pi\)
0.303921 + 0.952697i \(0.401704\pi\)
\(644\) 0 0
\(645\) 1.23525e7 1.16911
\(646\) 0 0
\(647\) 7.88333e6 0.740371 0.370185 0.928958i \(-0.379294\pi\)
0.370185 + 0.928958i \(0.379294\pi\)
\(648\) 0 0
\(649\) − 198295.i − 0.0184799i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.21936e6 −0.111905 −0.0559524 0.998433i \(-0.517820\pi\)
−0.0559524 + 0.998433i \(0.517820\pi\)
\(654\) 0 0
\(655\) 1.19723e7i 1.09037i
\(656\) 0 0
\(657\) 1.70075e6i 0.153719i
\(658\) 0 0
\(659\) − 7.56715e6i − 0.678764i −0.940649 0.339382i \(-0.889782\pi\)
0.940649 0.339382i \(-0.110218\pi\)
\(660\) 0 0
\(661\) 4.26736e6i 0.379888i 0.981795 + 0.189944i \(0.0608307\pi\)
−0.981795 + 0.189944i \(0.939169\pi\)
\(662\) 0 0
\(663\) −1.21327e7 −1.07195
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.02040e7i 0.888084i
\(668\) 0 0
\(669\) −9.49031e6 −0.819814
\(670\) 0 0
\(671\) −3.67639e6 −0.315221
\(672\) 0 0
\(673\) −1.12574e7 −0.958075 −0.479038 0.877794i \(-0.659014\pi\)
−0.479038 + 0.877794i \(0.659014\pi\)
\(674\) 0 0
\(675\) −7.34819e6 −0.620756
\(676\) 0 0
\(677\) 1.84659e7i 1.54846i 0.632907 + 0.774228i \(0.281861\pi\)
−0.632907 + 0.774228i \(0.718139\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 8.29704e6 0.685576
\(682\) 0 0
\(683\) − 1.58950e6i − 0.130380i −0.997873 0.0651898i \(-0.979235\pi\)
0.997873 0.0651898i \(-0.0207653\pi\)
\(684\) 0 0
\(685\) 1.82814e7i 1.48861i
\(686\) 0 0
\(687\) − 9.24944e6i − 0.747694i
\(688\) 0 0
\(689\) − 2.24213e7i − 1.79934i
\(690\) 0 0
\(691\) −5.56539e6 −0.443405 −0.221703 0.975114i \(-0.571161\pi\)
−0.221703 + 0.975114i \(0.571161\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.36855e7i 1.07473i
\(696\) 0 0
\(697\) 2.85780e7 2.22818
\(698\) 0 0
\(699\) 6.06748e6 0.469694
\(700\) 0 0
\(701\) −1.20878e7 −0.929078 −0.464539 0.885553i \(-0.653780\pi\)
−0.464539 + 0.885553i \(0.653780\pi\)
\(702\) 0 0
\(703\) 1.50778e7 1.15066
\(704\) 0 0
\(705\) − 4.54834e6i − 0.344651i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.58055e7 −1.18085 −0.590423 0.807094i \(-0.701039\pi\)
−0.590423 + 0.807094i \(0.701039\pi\)
\(710\) 0 0
\(711\) 2.80056e6i 0.207764i
\(712\) 0 0
\(713\) − 2.37138e7i − 1.74694i
\(714\) 0 0
\(715\) − 9.81517e6i − 0.718014i
\(716\) 0 0
\(717\) 4.01024e6i 0.291322i
\(718\) 0 0
\(719\) 2.10607e7 1.51932 0.759661 0.650319i \(-0.225365\pi\)
0.759661 + 0.650319i \(0.225365\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.00577e6i 0.213851i
\(724\) 0 0
\(725\) 5.37745e6 0.379954
\(726\) 0 0
\(727\) 1.07408e7 0.753701 0.376851 0.926274i \(-0.377007\pi\)
0.376851 + 0.926274i \(0.377007\pi\)
\(728\) 0 0
\(729\) 6.75587e6 0.470828
\(730\) 0 0
\(731\) 2.92523e7 2.02473
\(732\) 0 0
\(733\) − 1.10904e7i − 0.762408i −0.924491 0.381204i \(-0.875509\pi\)
0.924491 0.381204i \(-0.124491\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 2.52718e6 0.171383
\(738\) 0 0
\(739\) − 1.01206e7i − 0.681702i −0.940117 0.340851i \(-0.889285\pi\)
0.940117 0.340851i \(-0.110715\pi\)
\(740\) 0 0
\(741\) 1.41032e7i 0.943563i
\(742\) 0 0
\(743\) − 1.69668e7i − 1.12753i −0.825934 0.563766i \(-0.809352\pi\)
0.825934 0.563766i \(-0.190648\pi\)
\(744\) 0 0
\(745\) 6.26868e6i 0.413795i
\(746\) 0 0
\(747\) −8.79217e6 −0.576494
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) − 764861.i − 0.0494861i −0.999694 0.0247430i \(-0.992123\pi\)
0.999694 0.0247430i \(-0.00787676\pi\)
\(752\) 0 0
\(753\) −6.28721e6 −0.404083
\(754\) 0 0
\(755\) −1.31356e7 −0.838650
\(756\) 0 0
\(757\) −1.42566e7 −0.904223 −0.452112 0.891961i \(-0.649329\pi\)
−0.452112 + 0.891961i \(0.649329\pi\)
\(758\) 0 0
\(759\) −5.27472e6 −0.332349
\(760\) 0 0
\(761\) 5.12974e6i 0.321095i 0.987028 + 0.160548i \(0.0513260\pi\)
−0.987028 + 0.160548i \(0.948674\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −1.77721e7 −1.09796
\(766\) 0 0
\(767\) 1.15083e6i 0.0706352i
\(768\) 0 0
\(769\) − 2.22364e7i − 1.35596i −0.735079 0.677982i \(-0.762855\pi\)
0.735079 0.677982i \(-0.237145\pi\)
\(770\) 0 0
\(771\) 2.72947e6i 0.165365i
\(772\) 0 0
\(773\) 2.91884e7i 1.75696i 0.477780 + 0.878480i \(0.341442\pi\)
−0.477780 + 0.878480i \(0.658558\pi\)
\(774\) 0 0
\(775\) −1.24971e7 −0.747403
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) − 3.32192e7i − 1.96131i
\(780\) 0 0
\(781\) 3.96494e6 0.232600
\(782\) 0 0
\(783\) −9.66054e6 −0.563115
\(784\) 0 0
\(785\) 2.15369e7 1.24741
\(786\) 0 0
\(787\) 1.53766e7 0.884962 0.442481 0.896778i \(-0.354098\pi\)
0.442481 + 0.896778i \(0.354098\pi\)
\(788\) 0 0
\(789\) 1.69727e7i 0.970643i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 2.13364e7 1.20486
\(794\) 0 0
\(795\) 1.61616e7i 0.906916i
\(796\) 0 0
\(797\) − 1.57429e7i − 0.877887i −0.898515 0.438943i \(-0.855353\pi\)
0.898515 0.438943i \(-0.144647\pi\)
\(798\) 0 0
\(799\) − 1.07711e7i − 0.596888i
\(800\) 0 0
\(801\) 4.99575e6i 0.275118i
\(802\) 0 0
\(803\) 1.60336e6 0.0877492
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 1.38534e7i − 0.748811i
\(808\) 0 0
\(809\) −3.42322e7 −1.83892 −0.919461 0.393180i \(-0.871375\pi\)
−0.919461 + 0.393180i \(0.871375\pi\)
\(810\) 0 0
\(811\) 2.08905e7 1.11531 0.557656 0.830072i \(-0.311701\pi\)
0.557656 + 0.830072i \(0.311701\pi\)
\(812\) 0 0
\(813\) −1.40265e7 −0.744256
\(814\) 0 0
\(815\) −4.26496e7 −2.24916
\(816\) 0 0
\(817\) − 3.40031e7i − 1.78223i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.50646e7 1.29779 0.648894 0.760879i \(-0.275232\pi\)
0.648894 + 0.760879i \(0.275232\pi\)
\(822\) 0 0
\(823\) 1.59750e7i 0.822132i 0.911606 + 0.411066i \(0.134843\pi\)
−0.911606 + 0.411066i \(0.865157\pi\)
\(824\) 0 0
\(825\) 2.77976e6i 0.142191i
\(826\) 0 0
\(827\) 8.71482e6i 0.443093i 0.975150 + 0.221546i \(0.0711104\pi\)
−0.975150 + 0.221546i \(0.928890\pi\)
\(828\) 0 0
\(829\) − 1.98070e7i − 1.00100i −0.865738 0.500498i \(-0.833150\pi\)
0.865738 0.500498i \(-0.166850\pi\)
\(830\) 0 0
\(831\) 1.68027e7 0.844065
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) − 2.41754e7i − 1.19993i
\(836\) 0 0
\(837\) 2.24509e7 1.10770
\(838\) 0 0
\(839\) 2.72849e6 0.133819 0.0669094 0.997759i \(-0.478686\pi\)
0.0669094 + 0.997759i \(0.478686\pi\)
\(840\) 0 0
\(841\) −1.34415e7 −0.655327
\(842\) 0 0
\(843\) 1.32512e7 0.642224
\(844\) 0 0
\(845\) 3.03248e7i 1.46102i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.34372e6 −0.159206
\(850\) 0 0
\(851\) − 3.27279e7i − 1.54915i
\(852\) 0 0
\(853\) 1.50708e7i 0.709194i 0.935019 + 0.354597i \(0.115382\pi\)
−0.935019 + 0.354597i \(0.884618\pi\)
\(854\) 0 0
\(855\) 2.06584e7i 0.966453i
\(856\) 0 0
\(857\) 1.67499e7i 0.779041i 0.921018 + 0.389521i \(0.127359\pi\)
−0.921018 + 0.389521i \(0.872641\pi\)
\(858\) 0 0
\(859\) −9.42985e6 −0.436036 −0.218018 0.975945i \(-0.569959\pi\)
−0.218018 + 0.975945i \(0.569959\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 6.11236e6i 0.279371i 0.990196 + 0.139686i \(0.0446092\pi\)
−0.990196 + 0.139686i \(0.955391\pi\)
\(864\) 0 0
\(865\) −5.38882e6 −0.244880
\(866\) 0 0
\(867\) 7.99967e6 0.361430
\(868\) 0 0
\(869\) 2.64019e6 0.118600
\(870\) 0 0
\(871\) −1.46668e7 −0.655072
\(872\) 0 0
\(873\) − 1.14358e7i − 0.507845i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.90816e7 −0.837751 −0.418875 0.908044i \(-0.637576\pi\)
−0.418875 + 0.908044i \(0.637576\pi\)
\(878\) 0 0
\(879\) − 1.35352e7i − 0.590869i
\(880\) 0 0
\(881\) − 1.21256e7i − 0.526338i −0.964750 0.263169i \(-0.915232\pi\)
0.964750 0.263169i \(-0.0847676\pi\)
\(882\) 0 0
\(883\) 2.06429e7i 0.890980i 0.895287 + 0.445490i \(0.146971\pi\)
−0.895287 + 0.445490i \(0.853029\pi\)
\(884\) 0 0
\(885\) − 829532.i − 0.0356020i
\(886\) 0 0
\(887\) −3.74806e6 −0.159955 −0.0799774 0.996797i \(-0.525485\pi\)
−0.0799774 + 0.996797i \(0.525485\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.08221e6i 0.0456685i
\(892\) 0 0
\(893\) −1.25204e7 −0.525399
\(894\) 0 0
\(895\) −1.32962e7 −0.554841
\(896\) 0 0
\(897\) 3.06125e7 1.27033
\(898\) 0 0
\(899\) −1.64297e7 −0.678002
\(900\) 0 0
\(901\) 3.82730e7i 1.57065i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.16923e7 −0.880410
\(906\) 0 0
\(907\) 4.18102e6i 0.168758i 0.996434 + 0.0843790i \(0.0268906\pi\)
−0.996434 + 0.0843790i \(0.973109\pi\)
\(908\) 0 0
\(909\) − 1.03941e7i − 0.417231i
\(910\) 0 0
\(911\) − 1.56891e6i − 0.0626329i −0.999510 0.0313165i \(-0.990030\pi\)
0.999510 0.0313165i \(-0.00996997\pi\)
\(912\) 0 0
\(913\) 8.28870e6i 0.329086i
\(914\) 0 0
\(915\) −1.53796e7 −0.607283
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 3.71605e7i 1.45142i 0.688000 + 0.725710i \(0.258489\pi\)
−0.688000 + 0.725710i \(0.741511\pi\)
\(920\) 0 0
\(921\) 9.15487e6 0.355634
\(922\) 0 0
\(923\) −2.30110e7 −0.889061
\(924\) 0 0
\(925\) −1.72475e7 −0.662783
\(926\) 0 0
\(927\) 1.75418e7 0.670464
\(928\) 0 0
\(929\) − 2.34333e7i − 0.890827i −0.895325 0.445414i \(-0.853057\pi\)
0.895325 0.445414i \(-0.146943\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 9.51308e6 0.357781
\(934\) 0 0
\(935\) 1.67544e7i 0.626758i
\(936\) 0 0
\(937\) − 1.07872e7i − 0.401383i −0.979654 0.200692i \(-0.935681\pi\)
0.979654 0.200692i \(-0.0643189\pi\)
\(938\) 0 0
\(939\) − 3.19907e6i − 0.118402i
\(940\) 0 0
\(941\) − 5.01857e6i − 0.184759i −0.995724 0.0923795i \(-0.970553\pi\)
0.995724 0.0923795i \(-0.0294473\pi\)
\(942\) 0 0
\(943\) −7.21059e7 −2.64053
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 7.28354e6i − 0.263917i −0.991255 0.131959i \(-0.957873\pi\)
0.991255 0.131959i \(-0.0421266\pi\)
\(948\) 0 0
\(949\) −9.30530e6 −0.335402
\(950\) 0 0
\(951\) −3.88506e6 −0.139298
\(952\) 0 0
\(953\) −3.16792e6 −0.112991 −0.0564953 0.998403i \(-0.517993\pi\)
−0.0564953 + 0.998403i \(0.517993\pi\)
\(954\) 0 0
\(955\) −6.46071e7 −2.29230
\(956\) 0 0
\(957\) 3.65450e6i 0.128988i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 9.55321e6 0.333688
\(962\) 0 0
\(963\) − 2.14806e7i − 0.746416i
\(964\) 0 0
\(965\) 4.42009e7i 1.52796i
\(966\) 0 0
\(967\) − 4.48807e7i − 1.54345i −0.635954 0.771727i \(-0.719393\pi\)
0.635954 0.771727i \(-0.280607\pi\)
\(968\) 0 0
\(969\) − 2.40739e7i − 0.823641i
\(970\) 0 0
\(971\) −3.40577e7 −1.15922 −0.579611 0.814893i \(-0.696796\pi\)
−0.579611 + 0.814893i \(0.696796\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) − 1.61327e7i − 0.543493i
\(976\) 0 0
\(977\) −3.68984e7 −1.23672 −0.618359 0.785895i \(-0.712202\pi\)
−0.618359 + 0.785895i \(0.712202\pi\)
\(978\) 0 0
\(979\) 4.70967e6 0.157049
\(980\) 0 0
\(981\) −1.55624e7 −0.516303
\(982\) 0 0
\(983\) −4.60333e7 −1.51946 −0.759729 0.650240i \(-0.774668\pi\)
−0.759729 + 0.650240i \(0.774668\pi\)
\(984\) 0 0
\(985\) 5.01381e7i 1.64656i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −7.38074e7 −2.39943
\(990\) 0 0
\(991\) − 190022.i − 0.00614638i −0.999995 0.00307319i \(-0.999022\pi\)
0.999995 0.00307319i \(-0.000978228\pi\)
\(992\) 0 0
\(993\) 2.94713e7i 0.948477i
\(994\) 0 0
\(995\) 5.22459e7i 1.67300i
\(996\) 0 0
\(997\) − 1.93385e7i − 0.616148i −0.951362 0.308074i \(-0.900316\pi\)
0.951362 0.308074i \(-0.0996844\pi\)
\(998\) 0 0
\(999\) 3.09850e7 0.982285
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.f.c.783.5 14
4.3 odd 2 784.6.f.d.783.9 14
7.2 even 3 112.6.p.c.31.5 yes 14
7.3 odd 6 112.6.p.b.47.3 yes 14
7.6 odd 2 784.6.f.d.783.10 14
28.3 even 6 112.6.p.c.47.5 yes 14
28.23 odd 6 112.6.p.b.31.3 14
28.27 even 2 inner 784.6.f.c.783.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.6.p.b.31.3 14 28.23 odd 6
112.6.p.b.47.3 yes 14 7.3 odd 6
112.6.p.c.31.5 yes 14 7.2 even 3
112.6.p.c.47.5 yes 14 28.3 even 6
784.6.f.c.783.5 14 1.1 even 1 trivial
784.6.f.c.783.6 14 28.27 even 2 inner
784.6.f.d.783.9 14 4.3 odd 2
784.6.f.d.783.10 14 7.6 odd 2