Properties

Label 784.6.a.z.1.1
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,762] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{39}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 39 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 49)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-6.24500\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-24.9800 q^{3} +74.9400 q^{5} +381.000 q^{9} +284.000 q^{11} +524.580 q^{13} -1872.00 q^{15} -149.880 q^{17} -2173.26 q^{19} -1496.00 q^{23} +2491.00 q^{25} -3447.24 q^{27} -4366.00 q^{29} +6444.84 q^{31} -7094.32 q^{33} -12630.0 q^{37} -13104.0 q^{39} -9442.44 q^{41} +1356.00 q^{43} +28552.1 q^{45} -10042.0 q^{47} +3744.00 q^{51} +14150.0 q^{53} +21283.0 q^{55} +54288.0 q^{57} +37395.0 q^{59} -35596.5 q^{61} +39312.0 q^{65} +3644.00 q^{67} +37370.1 q^{69} -35632.0 q^{71} +40767.3 q^{73} -62225.2 q^{75} +54616.0 q^{79} -6471.00 q^{81} +524.580 q^{83} -11232.0 q^{85} +109063. q^{87} -20383.7 q^{89} -160992. q^{93} -162864. q^{95} +183603. q^{97} +108204. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 762 q^{9} + 568 q^{11} - 3744 q^{15} - 2992 q^{23} + 4982 q^{25} - 8732 q^{29} - 25260 q^{37} - 26208 q^{39} + 2712 q^{43} + 7488 q^{51} + 28300 q^{53} + 108576 q^{57} + 78624 q^{65} + 7288 q^{67}+ \cdots + 216408 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −24.9800 −1.60247 −0.801234 0.598352i \(-0.795823\pi\)
−0.801234 + 0.598352i \(0.795823\pi\)
\(4\) 0 0
\(5\) 74.9400 1.34057 0.670284 0.742105i \(-0.266172\pi\)
0.670284 + 0.742105i \(0.266172\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 381.000 1.56790
\(10\) 0 0
\(11\) 284.000 0.707680 0.353840 0.935306i \(-0.384876\pi\)
0.353840 + 0.935306i \(0.384876\pi\)
\(12\) 0 0
\(13\) 524.580 0.860901 0.430450 0.902614i \(-0.358355\pi\)
0.430450 + 0.902614i \(0.358355\pi\)
\(14\) 0 0
\(15\) −1872.00 −2.14821
\(16\) 0 0
\(17\) −149.880 −0.125783 −0.0628914 0.998020i \(-0.520032\pi\)
−0.0628914 + 0.998020i \(0.520032\pi\)
\(18\) 0 0
\(19\) −2173.26 −1.38111 −0.690554 0.723281i \(-0.742633\pi\)
−0.690554 + 0.723281i \(0.742633\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −1496.00 −0.589674 −0.294837 0.955548i \(-0.595265\pi\)
−0.294837 + 0.955548i \(0.595265\pi\)
\(24\) 0 0
\(25\) 2491.00 0.797120
\(26\) 0 0
\(27\) −3447.24 −0.910043
\(28\) 0 0
\(29\) −4366.00 −0.964026 −0.482013 0.876164i \(-0.660094\pi\)
−0.482013 + 0.876164i \(0.660094\pi\)
\(30\) 0 0
\(31\) 6444.84 1.20450 0.602251 0.798307i \(-0.294271\pi\)
0.602251 + 0.798307i \(0.294271\pi\)
\(32\) 0 0
\(33\) −7094.32 −1.13403
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −12630.0 −1.51670 −0.758349 0.651849i \(-0.773994\pi\)
−0.758349 + 0.651849i \(0.773994\pi\)
\(38\) 0 0
\(39\) −13104.0 −1.37957
\(40\) 0 0
\(41\) −9442.44 −0.877252 −0.438626 0.898670i \(-0.644535\pi\)
−0.438626 + 0.898670i \(0.644535\pi\)
\(42\) 0 0
\(43\) 1356.00 0.111838 0.0559189 0.998435i \(-0.482191\pi\)
0.0559189 + 0.998435i \(0.482191\pi\)
\(44\) 0 0
\(45\) 28552.1 2.10188
\(46\) 0 0
\(47\) −10042.0 −0.663092 −0.331546 0.943439i \(-0.607570\pi\)
−0.331546 + 0.943439i \(0.607570\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 3744.00 0.201563
\(52\) 0 0
\(53\) 14150.0 0.691937 0.345969 0.938246i \(-0.387550\pi\)
0.345969 + 0.938246i \(0.387550\pi\)
\(54\) 0 0
\(55\) 21283.0 0.948692
\(56\) 0 0
\(57\) 54288.0 2.21318
\(58\) 0 0
\(59\) 37395.0 1.39857 0.699285 0.714843i \(-0.253502\pi\)
0.699285 + 0.714843i \(0.253502\pi\)
\(60\) 0 0
\(61\) −35596.5 −1.22485 −0.612425 0.790529i \(-0.709806\pi\)
−0.612425 + 0.790529i \(0.709806\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 39312.0 1.15410
\(66\) 0 0
\(67\) 3644.00 0.0991725 0.0495863 0.998770i \(-0.484210\pi\)
0.0495863 + 0.998770i \(0.484210\pi\)
\(68\) 0 0
\(69\) 37370.1 0.944933
\(70\) 0 0
\(71\) −35632.0 −0.838869 −0.419435 0.907786i \(-0.637772\pi\)
−0.419435 + 0.907786i \(0.637772\pi\)
\(72\) 0 0
\(73\) 40767.3 0.895376 0.447688 0.894190i \(-0.352248\pi\)
0.447688 + 0.894190i \(0.352248\pi\)
\(74\) 0 0
\(75\) −62225.2 −1.27736
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 54616.0 0.984583 0.492291 0.870431i \(-0.336159\pi\)
0.492291 + 0.870431i \(0.336159\pi\)
\(80\) 0 0
\(81\) −6471.00 −0.109587
\(82\) 0 0
\(83\) 524.580 0.00835827 0.00417913 0.999991i \(-0.498670\pi\)
0.00417913 + 0.999991i \(0.498670\pi\)
\(84\) 0 0
\(85\) −11232.0 −0.168620
\(86\) 0 0
\(87\) 109063. 1.54482
\(88\) 0 0
\(89\) −20383.7 −0.272777 −0.136388 0.990655i \(-0.543550\pi\)
−0.136388 + 0.990655i \(0.543550\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −160992. −1.93018
\(94\) 0 0
\(95\) −162864. −1.85147
\(96\) 0 0
\(97\) 183603. 1.98130 0.990650 0.136427i \(-0.0435619\pi\)
0.990650 + 0.136427i \(0.0435619\pi\)
\(98\) 0 0
\(99\) 108204. 1.10957
\(100\) 0 0
\(101\) 75914.2 0.740491 0.370245 0.928934i \(-0.379274\pi\)
0.370245 + 0.928934i \(0.379274\pi\)
\(102\) 0 0
\(103\) 10941.2 0.101619 0.0508093 0.998708i \(-0.483820\pi\)
0.0508093 + 0.998708i \(0.483820\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −218188. −1.84235 −0.921173 0.389152i \(-0.872768\pi\)
−0.921173 + 0.389152i \(0.872768\pi\)
\(108\) 0 0
\(109\) −96030.0 −0.774178 −0.387089 0.922042i \(-0.626519\pi\)
−0.387089 + 0.922042i \(0.626519\pi\)
\(110\) 0 0
\(111\) 315497. 2.43046
\(112\) 0 0
\(113\) −137422. −1.01242 −0.506209 0.862411i \(-0.668954\pi\)
−0.506209 + 0.862411i \(0.668954\pi\)
\(114\) 0 0
\(115\) −112110. −0.790498
\(116\) 0 0
\(117\) 199865. 1.34981
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −80395.0 −0.499190
\(122\) 0 0
\(123\) 235872. 1.40577
\(124\) 0 0
\(125\) −47511.9 −0.271974
\(126\) 0 0
\(127\) −170368. −0.937300 −0.468650 0.883384i \(-0.655259\pi\)
−0.468650 + 0.883384i \(0.655259\pi\)
\(128\) 0 0
\(129\) −33872.9 −0.179216
\(130\) 0 0
\(131\) 348246. 1.77300 0.886498 0.462732i \(-0.153131\pi\)
0.886498 + 0.462732i \(0.153131\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −258336. −1.21997
\(136\) 0 0
\(137\) −75562.0 −0.343955 −0.171978 0.985101i \(-0.555016\pi\)
−0.171978 + 0.985101i \(0.555016\pi\)
\(138\) 0 0
\(139\) −97047.3 −0.426036 −0.213018 0.977048i \(-0.568329\pi\)
−0.213018 + 0.977048i \(0.568329\pi\)
\(140\) 0 0
\(141\) 250848. 1.06258
\(142\) 0 0
\(143\) 148981. 0.609242
\(144\) 0 0
\(145\) −327188. −1.29234
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 361030. 1.33223 0.666113 0.745851i \(-0.267957\pi\)
0.666113 + 0.745851i \(0.267957\pi\)
\(150\) 0 0
\(151\) −32280.0 −0.115210 −0.0576051 0.998339i \(-0.518346\pi\)
−0.0576051 + 0.998339i \(0.518346\pi\)
\(152\) 0 0
\(153\) −57104.3 −0.197215
\(154\) 0 0
\(155\) 482976. 1.61472
\(156\) 0 0
\(157\) −132869. −0.430203 −0.215101 0.976592i \(-0.569008\pi\)
−0.215101 + 0.976592i \(0.569008\pi\)
\(158\) 0 0
\(159\) −353467. −1.10881
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 61364.0 0.180903 0.0904513 0.995901i \(-0.471169\pi\)
0.0904513 + 0.995901i \(0.471169\pi\)
\(164\) 0 0
\(165\) −531648. −1.52025
\(166\) 0 0
\(167\) −380845. −1.05671 −0.528356 0.849023i \(-0.677192\pi\)
−0.528356 + 0.849023i \(0.677192\pi\)
\(168\) 0 0
\(169\) −96109.0 −0.258849
\(170\) 0 0
\(171\) −828012. −2.16544
\(172\) 0 0
\(173\) 517311. 1.31412 0.657062 0.753837i \(-0.271799\pi\)
0.657062 + 0.753837i \(0.271799\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −934128. −2.24116
\(178\) 0 0
\(179\) −610564. −1.42429 −0.712145 0.702032i \(-0.752276\pi\)
−0.712145 + 0.702032i \(0.752276\pi\)
\(180\) 0 0
\(181\) −433828. −0.984285 −0.492142 0.870515i \(-0.663786\pi\)
−0.492142 + 0.870515i \(0.663786\pi\)
\(182\) 0 0
\(183\) 889200. 1.96278
\(184\) 0 0
\(185\) −946492. −2.03324
\(186\) 0 0
\(187\) −42565.9 −0.0890139
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −341192. −0.676730 −0.338365 0.941015i \(-0.609874\pi\)
−0.338365 + 0.941015i \(0.609874\pi\)
\(192\) 0 0
\(193\) −616158. −1.19069 −0.595345 0.803470i \(-0.702985\pi\)
−0.595345 + 0.803470i \(0.702985\pi\)
\(194\) 0 0
\(195\) −982013. −1.84940
\(196\) 0 0
\(197\) 231478. 0.424956 0.212478 0.977166i \(-0.431847\pi\)
0.212478 + 0.977166i \(0.431847\pi\)
\(198\) 0 0
\(199\) 405126. 0.725199 0.362599 0.931945i \(-0.381889\pi\)
0.362599 + 0.931945i \(0.381889\pi\)
\(200\) 0 0
\(201\) −91027.1 −0.158921
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −707616. −1.17602
\(206\) 0 0
\(207\) −569976. −0.924551
\(208\) 0 0
\(209\) −617206. −0.977382
\(210\) 0 0
\(211\) −776820. −1.20120 −0.600599 0.799551i \(-0.705071\pi\)
−0.600599 + 0.799551i \(0.705071\pi\)
\(212\) 0 0
\(213\) 890087. 1.34426
\(214\) 0 0
\(215\) 101619. 0.149926
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.01837e6 −1.43481
\(220\) 0 0
\(221\) −78624.0 −0.108287
\(222\) 0 0
\(223\) −81834.5 −0.110198 −0.0550990 0.998481i \(-0.517547\pi\)
−0.0550990 + 0.998481i \(0.517547\pi\)
\(224\) 0 0
\(225\) 949071. 1.24981
\(226\) 0 0
\(227\) −753671. −0.970772 −0.485386 0.874300i \(-0.661321\pi\)
−0.485386 + 0.874300i \(0.661321\pi\)
\(228\) 0 0
\(229\) 26303.9 0.0331461 0.0165730 0.999863i \(-0.494724\pi\)
0.0165730 + 0.999863i \(0.494724\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 47542.0 0.0573704 0.0286852 0.999588i \(-0.490868\pi\)
0.0286852 + 0.999588i \(0.490868\pi\)
\(234\) 0 0
\(235\) −752544. −0.888919
\(236\) 0 0
\(237\) −1.36431e6 −1.57776
\(238\) 0 0
\(239\) −1.08899e6 −1.23319 −0.616595 0.787281i \(-0.711488\pi\)
−0.616595 + 0.787281i \(0.711488\pi\)
\(240\) 0 0
\(241\) −1.34937e6 −1.49654 −0.748270 0.663395i \(-0.769115\pi\)
−0.748270 + 0.663395i \(0.769115\pi\)
\(242\) 0 0
\(243\) 999325. 1.08565
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.14005e6 −1.18900
\(248\) 0 0
\(249\) −13104.0 −0.0133939
\(250\) 0 0
\(251\) −630020. −0.631205 −0.315602 0.948892i \(-0.602207\pi\)
−0.315602 + 0.948892i \(0.602207\pi\)
\(252\) 0 0
\(253\) −424864. −0.417300
\(254\) 0 0
\(255\) 280575. 0.270208
\(256\) 0 0
\(257\) −1.93405e6 −1.82656 −0.913282 0.407327i \(-0.866461\pi\)
−0.913282 + 0.407327i \(0.866461\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.66345e6 −1.51150
\(262\) 0 0
\(263\) 1.11712e6 0.995888 0.497944 0.867209i \(-0.334089\pi\)
0.497944 + 0.867209i \(0.334089\pi\)
\(264\) 0 0
\(265\) 1.06040e6 0.927588
\(266\) 0 0
\(267\) 509184. 0.437116
\(268\) 0 0
\(269\) 1.52061e6 1.28126 0.640629 0.767851i \(-0.278674\pi\)
0.640629 + 0.767851i \(0.278674\pi\)
\(270\) 0 0
\(271\) −1.02038e6 −0.843995 −0.421997 0.906597i \(-0.638671\pi\)
−0.421997 + 0.906597i \(0.638671\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 707444. 0.564105
\(276\) 0 0
\(277\) 1.89642e6 1.48503 0.742516 0.669829i \(-0.233633\pi\)
0.742516 + 0.669829i \(0.233633\pi\)
\(278\) 0 0
\(279\) 2.45548e6 1.88854
\(280\) 0 0
\(281\) 1.31911e6 0.996587 0.498293 0.867008i \(-0.333960\pi\)
0.498293 + 0.867008i \(0.333960\pi\)
\(282\) 0 0
\(283\) −478792. −0.355370 −0.177685 0.984087i \(-0.556861\pi\)
−0.177685 + 0.984087i \(0.556861\pi\)
\(284\) 0 0
\(285\) 4.06834e6 2.96692
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.39739e6 −0.984179
\(290\) 0 0
\(291\) −4.58640e6 −3.17497
\(292\) 0 0
\(293\) 1.50187e6 1.02203 0.511015 0.859572i \(-0.329270\pi\)
0.511015 + 0.859572i \(0.329270\pi\)
\(294\) 0 0
\(295\) 2.80238e6 1.87488
\(296\) 0 0
\(297\) −979016. −0.644019
\(298\) 0 0
\(299\) −784771. −0.507651
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.89634e6 −1.18661
\(304\) 0 0
\(305\) −2.66760e6 −1.64199
\(306\) 0 0
\(307\) 1.19657e6 0.724588 0.362294 0.932064i \(-0.381994\pi\)
0.362294 + 0.932064i \(0.381994\pi\)
\(308\) 0 0
\(309\) −273312. −0.162841
\(310\) 0 0
\(311\) 1.31475e6 0.770799 0.385400 0.922750i \(-0.374064\pi\)
0.385400 + 0.922750i \(0.374064\pi\)
\(312\) 0 0
\(313\) −2.65273e6 −1.53049 −0.765247 0.643737i \(-0.777383\pi\)
−0.765247 + 0.643737i \(0.777383\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.59992e6 −0.894233 −0.447116 0.894476i \(-0.647549\pi\)
−0.447116 + 0.894476i \(0.647549\pi\)
\(318\) 0 0
\(319\) −1.23994e6 −0.682221
\(320\) 0 0
\(321\) 5.45033e6 2.95230
\(322\) 0 0
\(323\) 325728. 0.173720
\(324\) 0 0
\(325\) 1.30673e6 0.686241
\(326\) 0 0
\(327\) 2.39883e6 1.24059
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 111708. 0.0560421 0.0280210 0.999607i \(-0.491079\pi\)
0.0280210 + 0.999607i \(0.491079\pi\)
\(332\) 0 0
\(333\) −4.81203e6 −2.37803
\(334\) 0 0
\(335\) 273081. 0.132947
\(336\) 0 0
\(337\) 1.59301e6 0.764087 0.382043 0.924144i \(-0.375220\pi\)
0.382043 + 0.924144i \(0.375220\pi\)
\(338\) 0 0
\(339\) 3.43280e6 1.62237
\(340\) 0 0
\(341\) 1.83033e6 0.852402
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 2.80051e6 1.26675
\(346\) 0 0
\(347\) 3.33676e6 1.48765 0.743827 0.668372i \(-0.233009\pi\)
0.743827 + 0.668372i \(0.233009\pi\)
\(348\) 0 0
\(349\) −1.60259e6 −0.704303 −0.352151 0.935943i \(-0.614550\pi\)
−0.352151 + 0.935943i \(0.614550\pi\)
\(350\) 0 0
\(351\) −1.80835e6 −0.783457
\(352\) 0 0
\(353\) 1.80965e6 0.772962 0.386481 0.922297i \(-0.373691\pi\)
0.386481 + 0.922297i \(0.373691\pi\)
\(354\) 0 0
\(355\) −2.67026e6 −1.12456
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −920792. −0.377073 −0.188536 0.982066i \(-0.560374\pi\)
−0.188536 + 0.982066i \(0.560374\pi\)
\(360\) 0 0
\(361\) 2.24696e6 0.907458
\(362\) 0 0
\(363\) 2.00827e6 0.799935
\(364\) 0 0
\(365\) 3.05510e6 1.20031
\(366\) 0 0
\(367\) −1.34802e6 −0.522434 −0.261217 0.965280i \(-0.584124\pi\)
−0.261217 + 0.965280i \(0.584124\pi\)
\(368\) 0 0
\(369\) −3.59757e6 −1.37544
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 3.13773e6 1.16773 0.583867 0.811849i \(-0.301539\pi\)
0.583867 + 0.811849i \(0.301539\pi\)
\(374\) 0 0
\(375\) 1.18685e6 0.435830
\(376\) 0 0
\(377\) −2.29032e6 −0.829931
\(378\) 0 0
\(379\) 1.83188e6 0.655088 0.327544 0.944836i \(-0.393779\pi\)
0.327544 + 0.944836i \(0.393779\pi\)
\(380\) 0 0
\(381\) 4.25579e6 1.50199
\(382\) 0 0
\(383\) 27727.8 0.00965869 0.00482935 0.999988i \(-0.498463\pi\)
0.00482935 + 0.999988i \(0.498463\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 516636. 0.175351
\(388\) 0 0
\(389\) −548342. −0.183729 −0.0918645 0.995772i \(-0.529283\pi\)
−0.0918645 + 0.995772i \(0.529283\pi\)
\(390\) 0 0
\(391\) 224220. 0.0741708
\(392\) 0 0
\(393\) −8.69918e6 −2.84117
\(394\) 0 0
\(395\) 4.09292e6 1.31990
\(396\) 0 0
\(397\) −403852. −0.128601 −0.0643007 0.997931i \(-0.520482\pi\)
−0.0643007 + 0.997931i \(0.520482\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −4.16427e6 −1.29324 −0.646619 0.762813i \(-0.723818\pi\)
−0.646619 + 0.762813i \(0.723818\pi\)
\(402\) 0 0
\(403\) 3.38083e6 1.03696
\(404\) 0 0
\(405\) −484937. −0.146909
\(406\) 0 0
\(407\) −3.58692e6 −1.07334
\(408\) 0 0
\(409\) −2.54121e6 −0.751161 −0.375581 0.926790i \(-0.622557\pi\)
−0.375581 + 0.926790i \(0.622557\pi\)
\(410\) 0 0
\(411\) 1.88754e6 0.551177
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 39312.0 0.0112048
\(416\) 0 0
\(417\) 2.42424e6 0.682709
\(418\) 0 0
\(419\) 2.30133e6 0.640389 0.320195 0.947352i \(-0.396252\pi\)
0.320195 + 0.947352i \(0.396252\pi\)
\(420\) 0 0
\(421\) −2.79991e6 −0.769909 −0.384955 0.922936i \(-0.625783\pi\)
−0.384955 + 0.922936i \(0.625783\pi\)
\(422\) 0 0
\(423\) −3.82599e6 −1.03966
\(424\) 0 0
\(425\) −373351. −0.100264
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −3.72154e6 −0.976290
\(430\) 0 0
\(431\) −954320. −0.247458 −0.123729 0.992316i \(-0.539485\pi\)
−0.123729 + 0.992316i \(0.539485\pi\)
\(432\) 0 0
\(433\) 519334. 0.133115 0.0665575 0.997783i \(-0.478798\pi\)
0.0665575 + 0.997783i \(0.478798\pi\)
\(434\) 0 0
\(435\) 8.17315e6 2.07093
\(436\) 0 0
\(437\) 3.25120e6 0.814403
\(438\) 0 0
\(439\) −5.98081e6 −1.48115 −0.740574 0.671974i \(-0.765446\pi\)
−0.740574 + 0.671974i \(0.765446\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.74820e6 −0.907432 −0.453716 0.891146i \(-0.649902\pi\)
−0.453716 + 0.891146i \(0.649902\pi\)
\(444\) 0 0
\(445\) −1.52755e6 −0.365676
\(446\) 0 0
\(447\) −9.01853e6 −2.13485
\(448\) 0 0
\(449\) 99458.0 0.0232822 0.0116411 0.999932i \(-0.496294\pi\)
0.0116411 + 0.999932i \(0.496294\pi\)
\(450\) 0 0
\(451\) −2.68165e6 −0.620813
\(452\) 0 0
\(453\) 806354. 0.184621
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −161814. −0.0362431 −0.0181216 0.999836i \(-0.505769\pi\)
−0.0181216 + 0.999836i \(0.505769\pi\)
\(458\) 0 0
\(459\) 516672. 0.114468
\(460\) 0 0
\(461\) −4.49198e6 −0.984431 −0.492215 0.870473i \(-0.663813\pi\)
−0.492215 + 0.870473i \(0.663813\pi\)
\(462\) 0 0
\(463\) −3.59382e6 −0.779118 −0.389559 0.921001i \(-0.627373\pi\)
−0.389559 + 0.921001i \(0.627373\pi\)
\(464\) 0 0
\(465\) −1.20647e7 −2.58753
\(466\) 0 0
\(467\) −2.05223e6 −0.435446 −0.217723 0.976011i \(-0.569863\pi\)
−0.217723 + 0.976011i \(0.569863\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.31906e6 0.689386
\(472\) 0 0
\(473\) 385104. 0.0791453
\(474\) 0 0
\(475\) −5.41359e6 −1.10091
\(476\) 0 0
\(477\) 5.39115e6 1.08489
\(478\) 0 0
\(479\) 1.99985e6 0.398252 0.199126 0.979974i \(-0.436190\pi\)
0.199126 + 0.979974i \(0.436190\pi\)
\(480\) 0 0
\(481\) −6.62544e6 −1.30573
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.37592e7 2.65607
\(486\) 0 0
\(487\) −2.17126e6 −0.414848 −0.207424 0.978251i \(-0.566508\pi\)
−0.207424 + 0.978251i \(0.566508\pi\)
\(488\) 0 0
\(489\) −1.53287e6 −0.289890
\(490\) 0 0
\(491\) −3.04555e6 −0.570114 −0.285057 0.958511i \(-0.592013\pi\)
−0.285057 + 0.958511i \(0.592013\pi\)
\(492\) 0 0
\(493\) 654376. 0.121258
\(494\) 0 0
\(495\) 8.10881e6 1.48746
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7.99225e6 1.43687 0.718436 0.695594i \(-0.244859\pi\)
0.718436 + 0.695594i \(0.244859\pi\)
\(500\) 0 0
\(501\) 9.51350e6 1.69335
\(502\) 0 0
\(503\) −9.47811e6 −1.67033 −0.835164 0.550001i \(-0.814627\pi\)
−0.835164 + 0.550001i \(0.814627\pi\)
\(504\) 0 0
\(505\) 5.68901e6 0.992677
\(506\) 0 0
\(507\) 2.40080e6 0.414798
\(508\) 0 0
\(509\) 1.01003e7 1.72799 0.863995 0.503500i \(-0.167955\pi\)
0.863995 + 0.503500i \(0.167955\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.49174e6 1.25687
\(514\) 0 0
\(515\) 819936. 0.136227
\(516\) 0 0
\(517\) −2.85192e6 −0.469257
\(518\) 0 0
\(519\) −1.29224e7 −2.10584
\(520\) 0 0
\(521\) 5.11975e6 0.826332 0.413166 0.910656i \(-0.364423\pi\)
0.413166 + 0.910656i \(0.364423\pi\)
\(522\) 0 0
\(523\) −3.51476e6 −0.561877 −0.280939 0.959726i \(-0.590646\pi\)
−0.280939 + 0.959726i \(0.590646\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −965952. −0.151506
\(528\) 0 0
\(529\) −4.19833e6 −0.652285
\(530\) 0 0
\(531\) 1.42475e7 2.19282
\(532\) 0 0
\(533\) −4.95331e6 −0.755227
\(534\) 0 0
\(535\) −1.63510e7 −2.46979
\(536\) 0 0
\(537\) 1.52519e7 2.28238
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −3.47547e6 −0.510530 −0.255265 0.966871i \(-0.582163\pi\)
−0.255265 + 0.966871i \(0.582163\pi\)
\(542\) 0 0
\(543\) 1.08370e7 1.57728
\(544\) 0 0
\(545\) −7.19649e6 −1.03784
\(546\) 0 0
\(547\) 7.85765e6 1.12286 0.561429 0.827525i \(-0.310252\pi\)
0.561429 + 0.827525i \(0.310252\pi\)
\(548\) 0 0
\(549\) −1.35623e7 −1.92044
\(550\) 0 0
\(551\) 9.48845e6 1.33142
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 2.36434e7 3.25819
\(556\) 0 0
\(557\) 9.06537e6 1.23808 0.619039 0.785361i \(-0.287522\pi\)
0.619039 + 0.785361i \(0.287522\pi\)
\(558\) 0 0
\(559\) 711330. 0.0962813
\(560\) 0 0
\(561\) 1.06330e6 0.142642
\(562\) 0 0
\(563\) −5.80957e6 −0.772455 −0.386227 0.922404i \(-0.626222\pi\)
−0.386227 + 0.922404i \(0.626222\pi\)
\(564\) 0 0
\(565\) −1.02984e7 −1.35722
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.05559e7 1.36684 0.683418 0.730027i \(-0.260493\pi\)
0.683418 + 0.730027i \(0.260493\pi\)
\(570\) 0 0
\(571\) −7.99584e6 −1.02630 −0.513150 0.858299i \(-0.671521\pi\)
−0.513150 + 0.858299i \(0.671521\pi\)
\(572\) 0 0
\(573\) 8.52297e6 1.08444
\(574\) 0 0
\(575\) −3.72654e6 −0.470041
\(576\) 0 0
\(577\) −2.60941e6 −0.326289 −0.163145 0.986602i \(-0.552164\pi\)
−0.163145 + 0.986602i \(0.552164\pi\)
\(578\) 0 0
\(579\) 1.53916e7 1.90804
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.01860e6 0.489670
\(584\) 0 0
\(585\) 1.49779e7 1.80951
\(586\) 0 0
\(587\) −4.41749e6 −0.529151 −0.264576 0.964365i \(-0.585232\pi\)
−0.264576 + 0.964365i \(0.585232\pi\)
\(588\) 0 0
\(589\) −1.40063e7 −1.66355
\(590\) 0 0
\(591\) −5.78232e6 −0.680978
\(592\) 0 0
\(593\) −5.54106e6 −0.647077 −0.323539 0.946215i \(-0.604873\pi\)
−0.323539 + 0.946215i \(0.604873\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.01200e7 −1.16211
\(598\) 0 0
\(599\) −5.08611e6 −0.579187 −0.289594 0.957150i \(-0.593520\pi\)
−0.289594 + 0.957150i \(0.593520\pi\)
\(600\) 0 0
\(601\) 2.41307e6 0.272511 0.136255 0.990674i \(-0.456493\pi\)
0.136255 + 0.990674i \(0.456493\pi\)
\(602\) 0 0
\(603\) 1.38836e6 0.155493
\(604\) 0 0
\(605\) −6.02480e6 −0.669197
\(606\) 0 0
\(607\) −7.62170e6 −0.839614 −0.419807 0.907613i \(-0.637902\pi\)
−0.419807 + 0.907613i \(0.637902\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −5.26781e6 −0.570856
\(612\) 0 0
\(613\) 3.60126e6 0.387082 0.193541 0.981092i \(-0.438003\pi\)
0.193541 + 0.981092i \(0.438003\pi\)
\(614\) 0 0
\(615\) 1.76762e7 1.88453
\(616\) 0 0
\(617\) 7.22901e6 0.764480 0.382240 0.924063i \(-0.375153\pi\)
0.382240 + 0.924063i \(0.375153\pi\)
\(618\) 0 0
\(619\) 1.25832e7 1.31998 0.659988 0.751276i \(-0.270561\pi\)
0.659988 + 0.751276i \(0.270561\pi\)
\(620\) 0 0
\(621\) 5.15707e6 0.536629
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −1.13449e7 −1.16172
\(626\) 0 0
\(627\) 1.54178e7 1.56622
\(628\) 0 0
\(629\) 1.89298e6 0.190774
\(630\) 0 0
\(631\) −5.98350e6 −0.598249 −0.299125 0.954214i \(-0.596695\pi\)
−0.299125 + 0.954214i \(0.596695\pi\)
\(632\) 0 0
\(633\) 1.94050e7 1.92488
\(634\) 0 0
\(635\) −1.27674e7 −1.25651
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.35758e7 −1.31526
\(640\) 0 0
\(641\) −7.74000e6 −0.744040 −0.372020 0.928225i \(-0.621335\pi\)
−0.372020 + 0.928225i \(0.621335\pi\)
\(642\) 0 0
\(643\) −6.81377e6 −0.649920 −0.324960 0.945728i \(-0.605351\pi\)
−0.324960 + 0.945728i \(0.605351\pi\)
\(644\) 0 0
\(645\) −2.53843e6 −0.240252
\(646\) 0 0
\(647\) 1.07121e7 1.00603 0.503017 0.864276i \(-0.332223\pi\)
0.503017 + 0.864276i \(0.332223\pi\)
\(648\) 0 0
\(649\) 1.06202e7 0.989739
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.34167e7 1.23129 0.615647 0.788022i \(-0.288895\pi\)
0.615647 + 0.788022i \(0.288895\pi\)
\(654\) 0 0
\(655\) 2.60976e7 2.37682
\(656\) 0 0
\(657\) 1.55324e7 1.40386
\(658\) 0 0
\(659\) −1.38574e7 −1.24299 −0.621494 0.783419i \(-0.713474\pi\)
−0.621494 + 0.783419i \(0.713474\pi\)
\(660\) 0 0
\(661\) −1.20734e7 −1.07479 −0.537396 0.843330i \(-0.680592\pi\)
−0.537396 + 0.843330i \(0.680592\pi\)
\(662\) 0 0
\(663\) 1.96403e6 0.173526
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 6.53154e6 0.568461
\(668\) 0 0
\(669\) 2.04422e6 0.176589
\(670\) 0 0
\(671\) −1.01094e7 −0.866801
\(672\) 0 0
\(673\) −5.32490e6 −0.453183 −0.226592 0.973990i \(-0.572758\pi\)
−0.226592 + 0.973990i \(0.572758\pi\)
\(674\) 0 0
\(675\) −8.58707e6 −0.725414
\(676\) 0 0
\(677\) −2.34518e7 −1.96655 −0.983274 0.182135i \(-0.941699\pi\)
−0.983274 + 0.182135i \(0.941699\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.88267e7 1.55563
\(682\) 0 0
\(683\) −1.82270e7 −1.49508 −0.747538 0.664219i \(-0.768764\pi\)
−0.747538 + 0.664219i \(0.768764\pi\)
\(684\) 0 0
\(685\) −5.66261e6 −0.461095
\(686\) 0 0
\(687\) −657072. −0.0531155
\(688\) 0 0
\(689\) 7.42280e6 0.595690
\(690\) 0 0
\(691\) −7.60858e6 −0.606190 −0.303095 0.952960i \(-0.598020\pi\)
−0.303095 + 0.952960i \(0.598020\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −7.27272e6 −0.571130
\(696\) 0 0
\(697\) 1.41523e6 0.110343
\(698\) 0 0
\(699\) −1.18760e6 −0.0919341
\(700\) 0 0
\(701\) 314162. 0.0241467 0.0120734 0.999927i \(-0.496157\pi\)
0.0120734 + 0.999927i \(0.496157\pi\)
\(702\) 0 0
\(703\) 2.74483e7 2.09472
\(704\) 0 0
\(705\) 1.87985e7 1.42446
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.48285e7 1.85496 0.927482 0.373869i \(-0.121969\pi\)
0.927482 + 0.373869i \(0.121969\pi\)
\(710\) 0 0
\(711\) 2.08087e7 1.54373
\(712\) 0 0
\(713\) −9.64148e6 −0.710264
\(714\) 0 0
\(715\) 1.11646e7 0.816730
\(716\) 0 0
\(717\) 2.72030e7 1.97615
\(718\) 0 0
\(719\) −1.71932e7 −1.24032 −0.620160 0.784475i \(-0.712932\pi\)
−0.620160 + 0.784475i \(0.712932\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 3.37072e7 2.39816
\(724\) 0 0
\(725\) −1.08757e7 −0.768444
\(726\) 0 0
\(727\) 2.12927e7 1.49415 0.747076 0.664739i \(-0.231457\pi\)
0.747076 + 0.664739i \(0.231457\pi\)
\(728\) 0 0
\(729\) −2.33907e7 −1.63014
\(730\) 0 0
\(731\) −203237. −0.0140673
\(732\) 0 0
\(733\) −1.96024e7 −1.34757 −0.673783 0.738930i \(-0.735332\pi\)
−0.673783 + 0.738930i \(0.735332\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.03490e6 0.0701824
\(738\) 0 0
\(739\) −1.44181e7 −0.971173 −0.485587 0.874189i \(-0.661394\pi\)
−0.485587 + 0.874189i \(0.661394\pi\)
\(740\) 0 0
\(741\) 2.84784e7 1.90533
\(742\) 0 0
\(743\) −5.57521e6 −0.370501 −0.185250 0.982691i \(-0.559310\pi\)
−0.185250 + 0.982691i \(0.559310\pi\)
\(744\) 0 0
\(745\) 2.70556e7 1.78594
\(746\) 0 0
\(747\) 199865. 0.0131049
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −508800. −0.0329190 −0.0164595 0.999865i \(-0.505239\pi\)
−0.0164595 + 0.999865i \(0.505239\pi\)
\(752\) 0 0
\(753\) 1.57379e7 1.01149
\(754\) 0 0
\(755\) −2.41906e6 −0.154447
\(756\) 0 0
\(757\) 1.10466e7 0.700631 0.350316 0.936632i \(-0.386074\pi\)
0.350316 + 0.936632i \(0.386074\pi\)
\(758\) 0 0
\(759\) 1.06131e7 0.668710
\(760\) 0 0
\(761\) −6.77173e6 −0.423875 −0.211937 0.977283i \(-0.567977\pi\)
−0.211937 + 0.977283i \(0.567977\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −4.27939e6 −0.264380
\(766\) 0 0
\(767\) 1.96167e7 1.20403
\(768\) 0 0
\(769\) −2.48053e7 −1.51261 −0.756307 0.654216i \(-0.772999\pi\)
−0.756307 + 0.654216i \(0.772999\pi\)
\(770\) 0 0
\(771\) 4.83126e7 2.92701
\(772\) 0 0
\(773\) −1.62952e7 −0.980867 −0.490434 0.871479i \(-0.663162\pi\)
−0.490434 + 0.871479i \(0.663162\pi\)
\(774\) 0 0
\(775\) 1.60541e7 0.960133
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.05209e7 1.21158
\(780\) 0 0
\(781\) −1.01195e7 −0.593651
\(782\) 0 0
\(783\) 1.50506e7 0.877305
\(784\) 0 0
\(785\) −9.95717e6 −0.576716
\(786\) 0 0
\(787\) 1.44214e7 0.829984 0.414992 0.909825i \(-0.363784\pi\)
0.414992 + 0.909825i \(0.363784\pi\)
\(788\) 0 0
\(789\) −2.79056e7 −1.59588
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −1.86732e7 −1.05447
\(794\) 0 0
\(795\) −2.64888e7 −1.48643
\(796\) 0 0
\(797\) −1.10109e6 −0.0614014 −0.0307007 0.999529i \(-0.509774\pi\)
−0.0307007 + 0.999529i \(0.509774\pi\)
\(798\) 0 0
\(799\) 1.50509e6 0.0834055
\(800\) 0 0
\(801\) −7.76618e6 −0.427687
\(802\) 0 0
\(803\) 1.15779e7 0.633639
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.79848e7 −2.05317
\(808\) 0 0
\(809\) −2.45146e7 −1.31690 −0.658450 0.752625i \(-0.728787\pi\)
−0.658450 + 0.752625i \(0.728787\pi\)
\(810\) 0 0
\(811\) −3.03580e7 −1.62077 −0.810383 0.585900i \(-0.800741\pi\)
−0.810383 + 0.585900i \(0.800741\pi\)
\(812\) 0 0
\(813\) 2.54892e7 1.35247
\(814\) 0 0
\(815\) 4.59862e6 0.242512
\(816\) 0 0
\(817\) −2.94694e6 −0.154460
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.54599e7 −1.31825 −0.659126 0.752032i \(-0.729074\pi\)
−0.659126 + 0.752032i \(0.729074\pi\)
\(822\) 0 0
\(823\) −5.95232e6 −0.306328 −0.153164 0.988201i \(-0.548946\pi\)
−0.153164 + 0.988201i \(0.548946\pi\)
\(824\) 0 0
\(825\) −1.76719e7 −0.903961
\(826\) 0 0
\(827\) 7.85900e6 0.399580 0.199790 0.979839i \(-0.435974\pi\)
0.199790 + 0.979839i \(0.435974\pi\)
\(828\) 0 0
\(829\) 1.12642e7 0.569262 0.284631 0.958637i \(-0.408129\pi\)
0.284631 + 0.958637i \(0.408129\pi\)
\(830\) 0 0
\(831\) −4.73726e7 −2.37971
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.85405e7 −1.41659
\(836\) 0 0
\(837\) −2.22169e7 −1.09615
\(838\) 0 0
\(839\) 7.80470e6 0.382782 0.191391 0.981514i \(-0.438700\pi\)
0.191391 + 0.981514i \(0.438700\pi\)
\(840\) 0 0
\(841\) −1.44919e6 −0.0706539
\(842\) 0 0
\(843\) −3.29514e7 −1.59700
\(844\) 0 0
\(845\) −7.20241e6 −0.347005
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.19602e7 0.569468
\(850\) 0 0
\(851\) 1.88945e7 0.894357
\(852\) 0 0
\(853\) 1.50581e7 0.708593 0.354296 0.935133i \(-0.384720\pi\)
0.354296 + 0.935133i \(0.384720\pi\)
\(854\) 0 0
\(855\) −6.20512e7 −2.90292
\(856\) 0 0
\(857\) 2.28736e7 1.06386 0.531928 0.846789i \(-0.321468\pi\)
0.531928 + 0.846789i \(0.321468\pi\)
\(858\) 0 0
\(859\) −8.22863e6 −0.380491 −0.190246 0.981737i \(-0.560928\pi\)
−0.190246 + 0.981737i \(0.560928\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.09902e6 −0.187350 −0.0936748 0.995603i \(-0.529861\pi\)
−0.0936748 + 0.995603i \(0.529861\pi\)
\(864\) 0 0
\(865\) 3.87672e7 1.76167
\(866\) 0 0
\(867\) 3.49069e7 1.57711
\(868\) 0 0
\(869\) 1.55109e7 0.696769
\(870\) 0 0
\(871\) 1.91157e6 0.0853777
\(872\) 0 0
\(873\) 6.99527e7 3.10648
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 787778. 0.0345864 0.0172932 0.999850i \(-0.494495\pi\)
0.0172932 + 0.999850i \(0.494495\pi\)
\(878\) 0 0
\(879\) −3.75168e7 −1.63777
\(880\) 0 0
\(881\) 1.73321e7 0.752336 0.376168 0.926551i \(-0.377242\pi\)
0.376168 + 0.926551i \(0.377242\pi\)
\(882\) 0 0
\(883\) −1.23991e7 −0.535164 −0.267582 0.963535i \(-0.586225\pi\)
−0.267582 + 0.963535i \(0.586225\pi\)
\(884\) 0 0
\(885\) −7.00035e7 −3.00443
\(886\) 0 0
\(887\) 1.67555e7 0.715071 0.357535 0.933900i \(-0.383617\pi\)
0.357535 + 0.933900i \(0.383617\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.83776e6 −0.0775524
\(892\) 0 0
\(893\) 2.18238e7 0.915801
\(894\) 0 0
\(895\) −4.57557e7 −1.90936
\(896\) 0 0
\(897\) 1.96036e7 0.813494
\(898\) 0 0
\(899\) −2.81382e7 −1.16117
\(900\) 0 0
\(901\) −2.12080e6 −0.0870338
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.25110e7 −1.31950
\(906\) 0 0
\(907\) 3.96543e7 1.60056 0.800280 0.599627i \(-0.204684\pi\)
0.800280 + 0.599627i \(0.204684\pi\)
\(908\) 0 0
\(909\) 2.89233e7 1.16102
\(910\) 0 0
\(911\) −2.99138e7 −1.19419 −0.597097 0.802169i \(-0.703679\pi\)
−0.597097 + 0.802169i \(0.703679\pi\)
\(912\) 0 0
\(913\) 148981. 0.00591498
\(914\) 0 0
\(915\) 6.66366e7 2.63124
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.98997e7 −0.777245 −0.388622 0.921397i \(-0.627049\pi\)
−0.388622 + 0.921397i \(0.627049\pi\)
\(920\) 0 0
\(921\) −2.98902e7 −1.16113
\(922\) 0 0
\(923\) −1.86918e7 −0.722183
\(924\) 0 0
\(925\) −3.14613e7 −1.20899
\(926\) 0 0
\(927\) 4.16861e6 0.159328
\(928\) 0 0
\(929\) 1.19663e7 0.454904 0.227452 0.973789i \(-0.426961\pi\)
0.227452 + 0.973789i \(0.426961\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −3.28424e7 −1.23518
\(934\) 0 0
\(935\) −3.18989e6 −0.119329
\(936\) 0 0
\(937\) −6.18165e6 −0.230015 −0.115007 0.993365i \(-0.536689\pi\)
−0.115007 + 0.993365i \(0.536689\pi\)
\(938\) 0 0
\(939\) 6.62651e7 2.45257
\(940\) 0 0
\(941\) −2.99426e7 −1.10234 −0.551171 0.834393i \(-0.685819\pi\)
−0.551171 + 0.834393i \(0.685819\pi\)
\(942\) 0 0
\(943\) 1.41259e7 0.517293
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.84279e7 1.75477 0.877386 0.479785i \(-0.159286\pi\)
0.877386 + 0.479785i \(0.159286\pi\)
\(948\) 0 0
\(949\) 2.13857e7 0.770830
\(950\) 0 0
\(951\) 3.99660e7 1.43298
\(952\) 0 0
\(953\) 2.26780e7 0.808860 0.404430 0.914569i \(-0.367470\pi\)
0.404430 + 0.914569i \(0.367470\pi\)
\(954\) 0 0
\(955\) −2.55689e7 −0.907202
\(956\) 0 0
\(957\) 3.09738e7 1.09324
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.29068e7 0.450827
\(962\) 0 0
\(963\) −8.31296e7 −2.88862
\(964\) 0 0
\(965\) −4.61749e7 −1.59620
\(966\) 0 0
\(967\) 3.60431e6 0.123953 0.0619764 0.998078i \(-0.480260\pi\)
0.0619764 + 0.998078i \(0.480260\pi\)
\(968\) 0 0
\(969\) −8.13668e6 −0.278380
\(970\) 0 0
\(971\) −2.90807e7 −0.989821 −0.494910 0.868944i \(-0.664799\pi\)
−0.494910 + 0.868944i \(0.664799\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −3.26421e7 −1.09968
\(976\) 0 0
\(977\) −1.81960e7 −0.609873 −0.304936 0.952373i \(-0.598635\pi\)
−0.304936 + 0.952373i \(0.598635\pi\)
\(978\) 0 0
\(979\) −5.78896e6 −0.193039
\(980\) 0 0
\(981\) −3.65874e7 −1.21383
\(982\) 0 0
\(983\) 3.32808e6 0.109853 0.0549263 0.998490i \(-0.482508\pi\)
0.0549263 + 0.998490i \(0.482508\pi\)
\(984\) 0 0
\(985\) 1.73470e7 0.569682
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −2.02858e6 −0.0659478
\(990\) 0 0
\(991\) −5.25420e7 −1.69951 −0.849753 0.527181i \(-0.823249\pi\)
−0.849753 + 0.527181i \(0.823249\pi\)
\(992\) 0 0
\(993\) −2.79046e6 −0.0898056
\(994\) 0 0
\(995\) 3.03601e7 0.972177
\(996\) 0 0
\(997\) 1.22999e6 0.0391889 0.0195945 0.999808i \(-0.493762\pi\)
0.0195945 + 0.999808i \(0.493762\pi\)
\(998\) 0 0
\(999\) 4.35386e7 1.38026
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.z.1.1 2
4.3 odd 2 49.6.a.c.1.2 yes 2
7.6 odd 2 inner 784.6.a.z.1.2 2
12.11 even 2 441.6.a.u.1.1 2
28.3 even 6 49.6.c.g.30.2 4
28.11 odd 6 49.6.c.g.30.1 4
28.19 even 6 49.6.c.g.18.2 4
28.23 odd 6 49.6.c.g.18.1 4
28.27 even 2 49.6.a.c.1.1 2
84.83 odd 2 441.6.a.u.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.6.a.c.1.1 2 28.27 even 2
49.6.a.c.1.2 yes 2 4.3 odd 2
49.6.c.g.18.1 4 28.23 odd 6
49.6.c.g.18.2 4 28.19 even 6
49.6.c.g.30.1 4 28.11 odd 6
49.6.c.g.30.2 4 28.3 even 6
441.6.a.u.1.1 2 12.11 even 2
441.6.a.u.1.2 2 84.83 odd 2
784.6.a.z.1.1 2 1.1 even 1 trivial
784.6.a.z.1.2 2 7.6 odd 2 inner