Properties

Label 784.6.a.y.1.2
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,-118] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{46}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 46 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 98)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(6.78233\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+13.5647 q^{3} +94.9526 q^{5} -59.0000 q^{9} -476.000 q^{11} -963.091 q^{13} +1288.00 q^{15} +895.268 q^{17} +637.539 q^{19} -3696.00 q^{23} +5891.00 q^{25} -4096.53 q^{27} +1394.00 q^{29} +1926.18 q^{31} -6456.78 q^{33} +12090.0 q^{37} -13064.0 q^{39} -15219.5 q^{41} -9724.00 q^{43} -5602.20 q^{45} -29272.5 q^{47} +12144.0 q^{51} +4310.00 q^{53} -45197.4 q^{55} +8648.00 q^{57} -20848.9 q^{59} -9291.79 q^{61} -91448.0 q^{65} -20236.0 q^{67} -50135.0 q^{69} -29792.0 q^{71} -11285.8 q^{73} +79909.4 q^{75} +33176.0 q^{79} -41231.0 q^{81} -3540.38 q^{83} +85008.0 q^{85} +18909.1 q^{87} +70753.3 q^{89} +26128.0 q^{93} +60536.0 q^{95} +17769.7 q^{97} +28084.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 118 q^{9} - 952 q^{11} + 2576 q^{15} - 7392 q^{23} + 11782 q^{25} + 2788 q^{29} + 24180 q^{37} - 26128 q^{39} - 19448 q^{43} + 24288 q^{51} + 8620 q^{53} + 17296 q^{57} - 182896 q^{65} - 40472 q^{67}+ \cdots + 56168 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 13.5647 0.870173 0.435087 0.900389i \(-0.356718\pi\)
0.435087 + 0.900389i \(0.356718\pi\)
\(4\) 0 0
\(5\) 94.9526 1.69856 0.849282 0.527939i \(-0.177035\pi\)
0.849282 + 0.527939i \(0.177035\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −59.0000 −0.242798
\(10\) 0 0
\(11\) −476.000 −1.18611 −0.593055 0.805162i \(-0.702078\pi\)
−0.593055 + 0.805162i \(0.702078\pi\)
\(12\) 0 0
\(13\) −963.091 −1.58055 −0.790276 0.612751i \(-0.790063\pi\)
−0.790276 + 0.612751i \(0.790063\pi\)
\(14\) 0 0
\(15\) 1288.00 1.47805
\(16\) 0 0
\(17\) 895.268 0.751330 0.375665 0.926756i \(-0.377414\pi\)
0.375665 + 0.926756i \(0.377414\pi\)
\(18\) 0 0
\(19\) 637.539 0.405156 0.202578 0.979266i \(-0.435068\pi\)
0.202578 + 0.979266i \(0.435068\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3696.00 −1.45684 −0.728421 0.685130i \(-0.759745\pi\)
−0.728421 + 0.685130i \(0.759745\pi\)
\(24\) 0 0
\(25\) 5891.00 1.88512
\(26\) 0 0
\(27\) −4096.53 −1.08145
\(28\) 0 0
\(29\) 1394.00 0.307799 0.153900 0.988086i \(-0.450817\pi\)
0.153900 + 0.988086i \(0.450817\pi\)
\(30\) 0 0
\(31\) 1926.18 0.359992 0.179996 0.983667i \(-0.442391\pi\)
0.179996 + 0.983667i \(0.442391\pi\)
\(32\) 0 0
\(33\) −6456.78 −1.03212
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 12090.0 1.45185 0.725925 0.687773i \(-0.241412\pi\)
0.725925 + 0.687773i \(0.241412\pi\)
\(38\) 0 0
\(39\) −13064.0 −1.37535
\(40\) 0 0
\(41\) −15219.5 −1.41398 −0.706988 0.707225i \(-0.749947\pi\)
−0.706988 + 0.707225i \(0.749947\pi\)
\(42\) 0 0
\(43\) −9724.00 −0.801999 −0.400999 0.916078i \(-0.631337\pi\)
−0.400999 + 0.916078i \(0.631337\pi\)
\(44\) 0 0
\(45\) −5602.20 −0.412409
\(46\) 0 0
\(47\) −29272.5 −1.93293 −0.966464 0.256802i \(-0.917331\pi\)
−0.966464 + 0.256802i \(0.917331\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 12144.0 0.653787
\(52\) 0 0
\(53\) 4310.00 0.210760 0.105380 0.994432i \(-0.466394\pi\)
0.105380 + 0.994432i \(0.466394\pi\)
\(54\) 0 0
\(55\) −45197.4 −2.01469
\(56\) 0 0
\(57\) 8648.00 0.352556
\(58\) 0 0
\(59\) −20848.9 −0.779745 −0.389873 0.920869i \(-0.627481\pi\)
−0.389873 + 0.920869i \(0.627481\pi\)
\(60\) 0 0
\(61\) −9291.79 −0.319724 −0.159862 0.987139i \(-0.551105\pi\)
−0.159862 + 0.987139i \(0.551105\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −91448.0 −2.68467
\(66\) 0 0
\(67\) −20236.0 −0.550729 −0.275364 0.961340i \(-0.588798\pi\)
−0.275364 + 0.961340i \(0.588798\pi\)
\(68\) 0 0
\(69\) −50135.0 −1.26770
\(70\) 0 0
\(71\) −29792.0 −0.701381 −0.350690 0.936491i \(-0.614053\pi\)
−0.350690 + 0.936491i \(0.614053\pi\)
\(72\) 0 0
\(73\) −11285.8 −0.247871 −0.123935 0.992290i \(-0.539552\pi\)
−0.123935 + 0.992290i \(0.539552\pi\)
\(74\) 0 0
\(75\) 79909.4 1.64038
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 33176.0 0.598076 0.299038 0.954241i \(-0.403334\pi\)
0.299038 + 0.954241i \(0.403334\pi\)
\(80\) 0 0
\(81\) −41231.0 −0.698251
\(82\) 0 0
\(83\) −3540.38 −0.0564098 −0.0282049 0.999602i \(-0.508979\pi\)
−0.0282049 + 0.999602i \(0.508979\pi\)
\(84\) 0 0
\(85\) 85008.0 1.27618
\(86\) 0 0
\(87\) 18909.1 0.267839
\(88\) 0 0
\(89\) 70753.3 0.946829 0.473414 0.880840i \(-0.343021\pi\)
0.473414 + 0.880840i \(0.343021\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 26128.0 0.313256
\(94\) 0 0
\(95\) 60536.0 0.688184
\(96\) 0 0
\(97\) 17769.7 0.191757 0.0958784 0.995393i \(-0.469434\pi\)
0.0958784 + 0.995393i \(0.469434\pi\)
\(98\) 0 0
\(99\) 28084.0 0.287986
\(100\) 0 0
\(101\) −89920.1 −0.877109 −0.438554 0.898705i \(-0.644509\pi\)
−0.438554 + 0.898705i \(0.644509\pi\)
\(102\) 0 0
\(103\) −8111.67 −0.0753385 −0.0376693 0.999290i \(-0.511993\pi\)
−0.0376693 + 0.999290i \(0.511993\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −125908. −1.06315 −0.531574 0.847012i \(-0.678399\pi\)
−0.531574 + 0.847012i \(0.678399\pi\)
\(108\) 0 0
\(109\) 89170.0 0.718874 0.359437 0.933169i \(-0.382969\pi\)
0.359437 + 0.933169i \(0.382969\pi\)
\(110\) 0 0
\(111\) 163997. 1.26336
\(112\) 0 0
\(113\) −29702.0 −0.218821 −0.109411 0.993997i \(-0.534896\pi\)
−0.109411 + 0.993997i \(0.534896\pi\)
\(114\) 0 0
\(115\) −350945. −2.47454
\(116\) 0 0
\(117\) 56822.4 0.383756
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 65525.0 0.406859
\(122\) 0 0
\(123\) −206448. −1.23040
\(124\) 0 0
\(125\) 262639. 1.50343
\(126\) 0 0
\(127\) 243112. 1.33751 0.668755 0.743483i \(-0.266827\pi\)
0.668755 + 0.743483i \(0.266827\pi\)
\(128\) 0 0
\(129\) −131903. −0.697878
\(130\) 0 0
\(131\) 107147. 0.545510 0.272755 0.962084i \(-0.412065\pi\)
0.272755 + 0.962084i \(0.412065\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −388976. −1.83691
\(136\) 0 0
\(137\) −332842. −1.51508 −0.757542 0.652786i \(-0.773600\pi\)
−0.757542 + 0.652786i \(0.773600\pi\)
\(138\) 0 0
\(139\) −186582. −0.819092 −0.409546 0.912290i \(-0.634313\pi\)
−0.409546 + 0.912290i \(0.634313\pi\)
\(140\) 0 0
\(141\) −397072. −1.68198
\(142\) 0 0
\(143\) 458431. 1.87471
\(144\) 0 0
\(145\) 132364. 0.522817
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −202330. −0.746611 −0.373306 0.927708i \(-0.621776\pi\)
−0.373306 + 0.927708i \(0.621776\pi\)
\(150\) 0 0
\(151\) −345760. −1.23405 −0.617024 0.786944i \(-0.711662\pi\)
−0.617024 + 0.786944i \(0.711662\pi\)
\(152\) 0 0
\(153\) −52820.8 −0.182422
\(154\) 0 0
\(155\) 182896. 0.611470
\(156\) 0 0
\(157\) 82866.5 0.268306 0.134153 0.990961i \(-0.457169\pi\)
0.134153 + 0.990961i \(0.457169\pi\)
\(158\) 0 0
\(159\) 58463.7 0.183397
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −127476. −0.375802 −0.187901 0.982188i \(-0.560168\pi\)
−0.187901 + 0.982188i \(0.560168\pi\)
\(164\) 0 0
\(165\) −613088. −1.75313
\(166\) 0 0
\(167\) 671261. 1.86252 0.931258 0.364360i \(-0.118712\pi\)
0.931258 + 0.364360i \(0.118712\pi\)
\(168\) 0 0
\(169\) 556251. 1.49815
\(170\) 0 0
\(171\) −37614.8 −0.0983713
\(172\) 0 0
\(173\) −347784. −0.883476 −0.441738 0.897144i \(-0.645638\pi\)
−0.441738 + 0.897144i \(0.645638\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −282808. −0.678514
\(178\) 0 0
\(179\) 625236. 1.45852 0.729258 0.684238i \(-0.239865\pi\)
0.729258 + 0.684238i \(0.239865\pi\)
\(180\) 0 0
\(181\) −241492. −0.547906 −0.273953 0.961743i \(-0.588331\pi\)
−0.273953 + 0.961743i \(0.588331\pi\)
\(182\) 0 0
\(183\) −126040. −0.278215
\(184\) 0 0
\(185\) 1.14798e6 2.46606
\(186\) 0 0
\(187\) −426147. −0.891160
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −212952. −0.422375 −0.211188 0.977446i \(-0.567733\pi\)
−0.211188 + 0.977446i \(0.567733\pi\)
\(192\) 0 0
\(193\) 135002. 0.260884 0.130442 0.991456i \(-0.458360\pi\)
0.130442 + 0.991456i \(0.458360\pi\)
\(194\) 0 0
\(195\) −1.24046e6 −2.33613
\(196\) 0 0
\(197\) 548838. 1.00758 0.503789 0.863827i \(-0.331939\pi\)
0.503789 + 0.863827i \(0.331939\pi\)
\(198\) 0 0
\(199\) 631869. 1.13108 0.565541 0.824720i \(-0.308667\pi\)
0.565541 + 0.824720i \(0.308667\pi\)
\(200\) 0 0
\(201\) −274494. −0.479229
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1.44514e6 −2.40173
\(206\) 0 0
\(207\) 218064. 0.353719
\(208\) 0 0
\(209\) −303469. −0.480560
\(210\) 0 0
\(211\) 159940. 0.247315 0.123658 0.992325i \(-0.460538\pi\)
0.123658 + 0.992325i \(0.460538\pi\)
\(212\) 0 0
\(213\) −404118. −0.610323
\(214\) 0 0
\(215\) −923319. −1.36225
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −153088. −0.215690
\(220\) 0 0
\(221\) −862224. −1.18752
\(222\) 0 0
\(223\) 876765. 1.18065 0.590325 0.807166i \(-0.299000\pi\)
0.590325 + 0.807166i \(0.299000\pi\)
\(224\) 0 0
\(225\) −347569. −0.457704
\(226\) 0 0
\(227\) −218513. −0.281458 −0.140729 0.990048i \(-0.544945\pi\)
−0.140729 + 0.990048i \(0.544945\pi\)
\(228\) 0 0
\(229\) −1.42786e6 −1.79927 −0.899634 0.436644i \(-0.856167\pi\)
−0.899634 + 0.436644i \(0.856167\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −429418. −0.518192 −0.259096 0.965852i \(-0.583425\pi\)
−0.259096 + 0.965852i \(0.583425\pi\)
\(234\) 0 0
\(235\) −2.77950e6 −3.28320
\(236\) 0 0
\(237\) 450021. 0.520430
\(238\) 0 0
\(239\) 338328. 0.383127 0.191564 0.981480i \(-0.438644\pi\)
0.191564 + 0.981480i \(0.438644\pi\)
\(240\) 0 0
\(241\) −536645. −0.595175 −0.297587 0.954695i \(-0.596182\pi\)
−0.297587 + 0.954695i \(0.596182\pi\)
\(242\) 0 0
\(243\) 436172. 0.473851
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −614008. −0.640371
\(248\) 0 0
\(249\) −48024.0 −0.0490863
\(250\) 0 0
\(251\) −548813. −0.549844 −0.274922 0.961466i \(-0.588652\pi\)
−0.274922 + 0.961466i \(0.588652\pi\)
\(252\) 0 0
\(253\) 1.75930e6 1.72798
\(254\) 0 0
\(255\) 1.15310e6 1.11050
\(256\) 0 0
\(257\) 1.69591e6 1.60166 0.800828 0.598894i \(-0.204393\pi\)
0.800828 + 0.598894i \(0.204393\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −82246.0 −0.0747332
\(262\) 0 0
\(263\) −1.96616e6 −1.75279 −0.876394 0.481594i \(-0.840058\pi\)
−0.876394 + 0.481594i \(0.840058\pi\)
\(264\) 0 0
\(265\) 409246. 0.357989
\(266\) 0 0
\(267\) 959744. 0.823905
\(268\) 0 0
\(269\) 431858. 0.363882 0.181941 0.983309i \(-0.441762\pi\)
0.181941 + 0.983309i \(0.441762\pi\)
\(270\) 0 0
\(271\) −590768. −0.488645 −0.244323 0.969694i \(-0.578566\pi\)
−0.244323 + 0.969694i \(0.578566\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.80412e6 −2.23596
\(276\) 0 0
\(277\) 828262. 0.648587 0.324294 0.945956i \(-0.394873\pi\)
0.324294 + 0.945956i \(0.394873\pi\)
\(278\) 0 0
\(279\) −113645. −0.0874055
\(280\) 0 0
\(281\) −719130. −0.543302 −0.271651 0.962396i \(-0.587570\pi\)
−0.271651 + 0.962396i \(0.587570\pi\)
\(282\) 0 0
\(283\) −2.12413e6 −1.57658 −0.788288 0.615306i \(-0.789033\pi\)
−0.788288 + 0.615306i \(0.789033\pi\)
\(284\) 0 0
\(285\) 821150. 0.598840
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −618353. −0.435504
\(290\) 0 0
\(291\) 241040. 0.166862
\(292\) 0 0
\(293\) 313710. 0.213481 0.106740 0.994287i \(-0.465959\pi\)
0.106740 + 0.994287i \(0.465959\pi\)
\(294\) 0 0
\(295\) −1.97966e6 −1.32445
\(296\) 0 0
\(297\) 1.94995e6 1.28272
\(298\) 0 0
\(299\) 3.55958e6 2.30261
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.21974e6 −0.763237
\(304\) 0 0
\(305\) −882280. −0.543071
\(306\) 0 0
\(307\) 2.82279e6 1.70936 0.854679 0.519157i \(-0.173754\pi\)
0.854679 + 0.519157i \(0.173754\pi\)
\(308\) 0 0
\(309\) −110032. −0.0655576
\(310\) 0 0
\(311\) −441557. −0.258872 −0.129436 0.991588i \(-0.541317\pi\)
−0.129436 + 0.991588i \(0.541317\pi\)
\(312\) 0 0
\(313\) 1.42339e6 0.821229 0.410615 0.911809i \(-0.365314\pi\)
0.410615 + 0.911809i \(0.365314\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.25360e6 0.700665 0.350332 0.936625i \(-0.386069\pi\)
0.350332 + 0.936625i \(0.386069\pi\)
\(318\) 0 0
\(319\) −663544. −0.365084
\(320\) 0 0
\(321\) −1.70790e6 −0.925123
\(322\) 0 0
\(323\) 570768. 0.304406
\(324\) 0 0
\(325\) −5.67357e6 −2.97953
\(326\) 0 0
\(327\) 1.20956e6 0.625545
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 3.38223e6 1.69681 0.848404 0.529349i \(-0.177564\pi\)
0.848404 + 0.529349i \(0.177564\pi\)
\(332\) 0 0
\(333\) −713310. −0.352507
\(334\) 0 0
\(335\) −1.92146e6 −0.935448
\(336\) 0 0
\(337\) 1.94529e6 0.933058 0.466529 0.884506i \(-0.345504\pi\)
0.466529 + 0.884506i \(0.345504\pi\)
\(338\) 0 0
\(339\) −402898. −0.190412
\(340\) 0 0
\(341\) −916862. −0.426991
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −4.76045e6 −2.15328
\(346\) 0 0
\(347\) 2.08232e6 0.928378 0.464189 0.885736i \(-0.346346\pi\)
0.464189 + 0.885736i \(0.346346\pi\)
\(348\) 0 0
\(349\) 3.15765e6 1.38772 0.693858 0.720112i \(-0.255910\pi\)
0.693858 + 0.720112i \(0.255910\pi\)
\(350\) 0 0
\(351\) 3.94533e6 1.70929
\(352\) 0 0
\(353\) −2.55021e6 −1.08928 −0.544640 0.838670i \(-0.683334\pi\)
−0.544640 + 0.838670i \(0.683334\pi\)
\(354\) 0 0
\(355\) −2.82883e6 −1.19134
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.43467e6 −0.997021 −0.498511 0.866884i \(-0.666119\pi\)
−0.498511 + 0.866884i \(0.666119\pi\)
\(360\) 0 0
\(361\) −2.06964e6 −0.835848
\(362\) 0 0
\(363\) 888824. 0.354038
\(364\) 0 0
\(365\) −1.07162e6 −0.421024
\(366\) 0 0
\(367\) −4.33141e6 −1.67867 −0.839333 0.543617i \(-0.817054\pi\)
−0.839333 + 0.543617i \(0.817054\pi\)
\(368\) 0 0
\(369\) 897953. 0.343311
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −3.66435e6 −1.36372 −0.681859 0.731484i \(-0.738828\pi\)
−0.681859 + 0.731484i \(0.738828\pi\)
\(374\) 0 0
\(375\) 3.56261e6 1.30825
\(376\) 0 0
\(377\) −1.34255e6 −0.486493
\(378\) 0 0
\(379\) 1.24352e6 0.444689 0.222344 0.974968i \(-0.428629\pi\)
0.222344 + 0.974968i \(0.428629\pi\)
\(380\) 0 0
\(381\) 3.29773e6 1.16387
\(382\) 0 0
\(383\) 1.50527e6 0.524346 0.262173 0.965021i \(-0.415561\pi\)
0.262173 + 0.965021i \(0.415561\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 573716. 0.194724
\(388\) 0 0
\(389\) −3.85930e6 −1.29311 −0.646554 0.762868i \(-0.723790\pi\)
−0.646554 + 0.762868i \(0.723790\pi\)
\(390\) 0 0
\(391\) −3.30891e6 −1.09457
\(392\) 0 0
\(393\) 1.45342e6 0.474688
\(394\) 0 0
\(395\) 3.15015e6 1.01587
\(396\) 0 0
\(397\) −3.32013e6 −1.05725 −0.528626 0.848855i \(-0.677293\pi\)
−0.528626 + 0.848855i \(0.677293\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.69337e6 1.14699 0.573497 0.819207i \(-0.305586\pi\)
0.573497 + 0.819207i \(0.305586\pi\)
\(402\) 0 0
\(403\) −1.85509e6 −0.568986
\(404\) 0 0
\(405\) −3.91499e6 −1.18602
\(406\) 0 0
\(407\) −5.75484e6 −1.72206
\(408\) 0 0
\(409\) 4.04213e6 1.19482 0.597410 0.801936i \(-0.296197\pi\)
0.597410 + 0.801936i \(0.296197\pi\)
\(410\) 0 0
\(411\) −4.51489e6 −1.31839
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −336168. −0.0958156
\(416\) 0 0
\(417\) −2.53092e6 −0.712752
\(418\) 0 0
\(419\) −2.42383e6 −0.674476 −0.337238 0.941419i \(-0.609493\pi\)
−0.337238 + 0.941419i \(0.609493\pi\)
\(420\) 0 0
\(421\) −6.65639e6 −1.83035 −0.915174 0.403058i \(-0.867947\pi\)
−0.915174 + 0.403058i \(0.867947\pi\)
\(422\) 0 0
\(423\) 1.72708e6 0.469312
\(424\) 0 0
\(425\) 5.27402e6 1.41635
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 6.21846e6 1.63132
\(430\) 0 0
\(431\) 610520. 0.158309 0.0791547 0.996862i \(-0.474778\pi\)
0.0791547 + 0.996862i \(0.474778\pi\)
\(432\) 0 0
\(433\) −29977.9 −0.00768390 −0.00384195 0.999993i \(-0.501223\pi\)
−0.00384195 + 0.999993i \(0.501223\pi\)
\(434\) 0 0
\(435\) 1.79547e6 0.454941
\(436\) 0 0
\(437\) −2.35634e6 −0.590249
\(438\) 0 0
\(439\) 369827. 0.0915877 0.0457939 0.998951i \(-0.485418\pi\)
0.0457939 + 0.998951i \(0.485418\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 639036. 0.154709 0.0773546 0.997004i \(-0.475353\pi\)
0.0773546 + 0.997004i \(0.475353\pi\)
\(444\) 0 0
\(445\) 6.71821e6 1.60825
\(446\) 0 0
\(447\) −2.74454e6 −0.649681
\(448\) 0 0
\(449\) 1.90682e6 0.446368 0.223184 0.974776i \(-0.428355\pi\)
0.223184 + 0.974776i \(0.428355\pi\)
\(450\) 0 0
\(451\) 7.24451e6 1.67713
\(452\) 0 0
\(453\) −4.69012e6 −1.07384
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.60039e6 1.47836 0.739178 0.673510i \(-0.235214\pi\)
0.739178 + 0.673510i \(0.235214\pi\)
\(458\) 0 0
\(459\) −3.66749e6 −0.812525
\(460\) 0 0
\(461\) −4.93085e6 −1.08061 −0.540305 0.841469i \(-0.681691\pi\)
−0.540305 + 0.841469i \(0.681691\pi\)
\(462\) 0 0
\(463\) −257576. −0.0558410 −0.0279205 0.999610i \(-0.508889\pi\)
−0.0279205 + 0.999610i \(0.508889\pi\)
\(464\) 0 0
\(465\) 2.48092e6 0.532085
\(466\) 0 0
\(467\) 541976. 0.114997 0.0574987 0.998346i \(-0.481688\pi\)
0.0574987 + 0.998346i \(0.481688\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.12406e6 0.233472
\(472\) 0 0
\(473\) 4.62862e6 0.951260
\(474\) 0 0
\(475\) 3.75574e6 0.763769
\(476\) 0 0
\(477\) −254290. −0.0511721
\(478\) 0 0
\(479\) −6.28828e6 −1.25226 −0.626128 0.779720i \(-0.715361\pi\)
−0.626128 + 0.779720i \(0.715361\pi\)
\(480\) 0 0
\(481\) −1.16438e7 −2.29473
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 1.68728e6 0.325711
\(486\) 0 0
\(487\) 6.18478e6 1.18169 0.590843 0.806787i \(-0.298795\pi\)
0.590843 + 0.806787i \(0.298795\pi\)
\(488\) 0 0
\(489\) −1.72917e6 −0.327013
\(490\) 0 0
\(491\) 4.93753e6 0.924286 0.462143 0.886806i \(-0.347081\pi\)
0.462143 + 0.886806i \(0.347081\pi\)
\(492\) 0 0
\(493\) 1.24800e6 0.231259
\(494\) 0 0
\(495\) 2.66665e6 0.489162
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 742212. 0.133437 0.0667186 0.997772i \(-0.478747\pi\)
0.0667186 + 0.997772i \(0.478747\pi\)
\(500\) 0 0
\(501\) 9.10542e6 1.62071
\(502\) 0 0
\(503\) 2.92872e6 0.516128 0.258064 0.966128i \(-0.416915\pi\)
0.258064 + 0.966128i \(0.416915\pi\)
\(504\) 0 0
\(505\) −8.53815e6 −1.48983
\(506\) 0 0
\(507\) 7.54536e6 1.30365
\(508\) 0 0
\(509\) 6.05761e6 1.03635 0.518176 0.855274i \(-0.326611\pi\)
0.518176 + 0.855274i \(0.326611\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −2.61170e6 −0.438156
\(514\) 0 0
\(515\) −770224. −0.127967
\(516\) 0 0
\(517\) 1.39337e7 2.29267
\(518\) 0 0
\(519\) −4.71758e6 −0.768777
\(520\) 0 0
\(521\) 4.99920e6 0.806875 0.403438 0.915007i \(-0.367815\pi\)
0.403438 + 0.915007i \(0.367815\pi\)
\(522\) 0 0
\(523\) −9.19002e6 −1.46914 −0.734568 0.678535i \(-0.762615\pi\)
−0.734568 + 0.678535i \(0.762615\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.72445e6 0.270473
\(528\) 0 0
\(529\) 7.22407e6 1.12239
\(530\) 0 0
\(531\) 1.23008e6 0.189321
\(532\) 0 0
\(533\) 1.46578e7 2.23486
\(534\) 0 0
\(535\) −1.19553e7 −1.80583
\(536\) 0 0
\(537\) 8.48111e6 1.26916
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7.53883e6 −1.10742 −0.553708 0.832711i \(-0.686788\pi\)
−0.553708 + 0.832711i \(0.686788\pi\)
\(542\) 0 0
\(543\) −3.27575e6 −0.476773
\(544\) 0 0
\(545\) 8.46693e6 1.22105
\(546\) 0 0
\(547\) −3.73311e6 −0.533460 −0.266730 0.963771i \(-0.585943\pi\)
−0.266730 + 0.963771i \(0.585943\pi\)
\(548\) 0 0
\(549\) 548216. 0.0776284
\(550\) 0 0
\(551\) 888729. 0.124707
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.55719e7 2.14590
\(556\) 0 0
\(557\) −7.95391e6 −1.08628 −0.543141 0.839642i \(-0.682765\pi\)
−0.543141 + 0.839642i \(0.682765\pi\)
\(558\) 0 0
\(559\) 9.36510e6 1.26760
\(560\) 0 0
\(561\) −5.78054e6 −0.775464
\(562\) 0 0
\(563\) 8.85242e6 1.17704 0.588520 0.808483i \(-0.299711\pi\)
0.588520 + 0.808483i \(0.299711\pi\)
\(564\) 0 0
\(565\) −2.82028e6 −0.371682
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.43774e6 0.833591 0.416795 0.909000i \(-0.363153\pi\)
0.416795 + 0.909000i \(0.363153\pi\)
\(570\) 0 0
\(571\) 1.06947e7 1.37271 0.686353 0.727269i \(-0.259211\pi\)
0.686353 + 0.727269i \(0.259211\pi\)
\(572\) 0 0
\(573\) −2.88862e6 −0.367540
\(574\) 0 0
\(575\) −2.17731e7 −2.74632
\(576\) 0 0
\(577\) −1.30088e7 −1.62666 −0.813330 0.581802i \(-0.802348\pi\)
−0.813330 + 0.581802i \(0.802348\pi\)
\(578\) 0 0
\(579\) 1.83126e6 0.227014
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.05156e6 −0.249984
\(584\) 0 0
\(585\) 5.39543e6 0.651833
\(586\) 0 0
\(587\) 1.27410e7 1.52619 0.763096 0.646285i \(-0.223678\pi\)
0.763096 + 0.646285i \(0.223678\pi\)
\(588\) 0 0
\(589\) 1.22802e6 0.145853
\(590\) 0 0
\(591\) 7.44480e6 0.876767
\(592\) 0 0
\(593\) −2.71592e6 −0.317161 −0.158580 0.987346i \(-0.550692\pi\)
−0.158580 + 0.987346i \(0.550692\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.57109e6 0.984238
\(598\) 0 0
\(599\) 1.04748e7 1.19284 0.596418 0.802674i \(-0.296590\pi\)
0.596418 + 0.802674i \(0.296590\pi\)
\(600\) 0 0
\(601\) −754738. −0.0852334 −0.0426167 0.999091i \(-0.513569\pi\)
−0.0426167 + 0.999091i \(0.513569\pi\)
\(602\) 0 0
\(603\) 1.19392e6 0.133716
\(604\) 0 0
\(605\) 6.22177e6 0.691076
\(606\) 0 0
\(607\) 9.17503e6 1.01073 0.505366 0.862905i \(-0.331358\pi\)
0.505366 + 0.862905i \(0.331358\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.81921e7 3.05509
\(612\) 0 0
\(613\) −8.85554e6 −0.951840 −0.475920 0.879489i \(-0.657885\pi\)
−0.475920 + 0.879489i \(0.657885\pi\)
\(614\) 0 0
\(615\) −1.96028e7 −2.08992
\(616\) 0 0
\(617\) 7.50753e6 0.793934 0.396967 0.917833i \(-0.370063\pi\)
0.396967 + 0.917833i \(0.370063\pi\)
\(618\) 0 0
\(619\) −1.01449e7 −1.06420 −0.532098 0.846683i \(-0.678596\pi\)
−0.532098 + 0.846683i \(0.678596\pi\)
\(620\) 0 0
\(621\) 1.51408e7 1.57550
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 6.52888e6 0.668557
\(626\) 0 0
\(627\) −4.11645e6 −0.418171
\(628\) 0 0
\(629\) 1.08238e7 1.09082
\(630\) 0 0
\(631\) 9.28258e6 0.928101 0.464050 0.885809i \(-0.346396\pi\)
0.464050 + 0.885809i \(0.346396\pi\)
\(632\) 0 0
\(633\) 2.16953e6 0.215207
\(634\) 0 0
\(635\) 2.30841e7 2.27185
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.75773e6 0.170294
\(640\) 0 0
\(641\) 1.70740e7 1.64130 0.820652 0.571428i \(-0.193610\pi\)
0.820652 + 0.571428i \(0.193610\pi\)
\(642\) 0 0
\(643\) 2.73150e6 0.260540 0.130270 0.991479i \(-0.458416\pi\)
0.130270 + 0.991479i \(0.458416\pi\)
\(644\) 0 0
\(645\) −1.25245e7 −1.18539
\(646\) 0 0
\(647\) 5.66533e6 0.532065 0.266033 0.963964i \(-0.414287\pi\)
0.266033 + 0.963964i \(0.414287\pi\)
\(648\) 0 0
\(649\) 9.92407e6 0.924864
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 8.13187e6 0.746290 0.373145 0.927773i \(-0.378279\pi\)
0.373145 + 0.927773i \(0.378279\pi\)
\(654\) 0 0
\(655\) 1.01739e7 0.926584
\(656\) 0 0
\(657\) 665862. 0.0601826
\(658\) 0 0
\(659\) 1.99012e6 0.178512 0.0892558 0.996009i \(-0.471551\pi\)
0.0892558 + 0.996009i \(0.471551\pi\)
\(660\) 0 0
\(661\) −3.18755e6 −0.283761 −0.141881 0.989884i \(-0.545315\pi\)
−0.141881 + 0.989884i \(0.545315\pi\)
\(662\) 0 0
\(663\) −1.16958e7 −1.03334
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −5.15222e6 −0.448415
\(668\) 0 0
\(669\) 1.18930e7 1.02737
\(670\) 0 0
\(671\) 4.42289e6 0.379228
\(672\) 0 0
\(673\) −1.72276e7 −1.46618 −0.733090 0.680131i \(-0.761923\pi\)
−0.733090 + 0.680131i \(0.761923\pi\)
\(674\) 0 0
\(675\) −2.41326e7 −2.03866
\(676\) 0 0
\(677\) −1.17235e7 −0.983072 −0.491536 0.870857i \(-0.663564\pi\)
−0.491536 + 0.870857i \(0.663564\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −2.96406e6 −0.244917
\(682\) 0 0
\(683\) −6.40383e6 −0.525276 −0.262638 0.964894i \(-0.584593\pi\)
−0.262638 + 0.964894i \(0.584593\pi\)
\(684\) 0 0
\(685\) −3.16042e7 −2.57347
\(686\) 0 0
\(687\) −1.93684e7 −1.56568
\(688\) 0 0
\(689\) −4.15092e6 −0.333117
\(690\) 0 0
\(691\) −1.14960e7 −0.915904 −0.457952 0.888977i \(-0.651417\pi\)
−0.457952 + 0.888977i \(0.651417\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.77164e7 −1.39128
\(696\) 0 0
\(697\) −1.36256e7 −1.06236
\(698\) 0 0
\(699\) −5.82491e6 −0.450917
\(700\) 0 0
\(701\) −1.71167e7 −1.31560 −0.657802 0.753191i \(-0.728514\pi\)
−0.657802 + 0.753191i \(0.728514\pi\)
\(702\) 0 0
\(703\) 7.70785e6 0.588227
\(704\) 0 0
\(705\) −3.77030e7 −2.85696
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.69689e7 1.26776 0.633882 0.773429i \(-0.281460\pi\)
0.633882 + 0.773429i \(0.281460\pi\)
\(710\) 0 0
\(711\) −1.95738e6 −0.145212
\(712\) 0 0
\(713\) −7.11917e6 −0.524452
\(714\) 0 0
\(715\) 4.35292e7 3.18432
\(716\) 0 0
\(717\) 4.58930e6 0.333387
\(718\) 0 0
\(719\) −2.40621e7 −1.73585 −0.867923 0.496698i \(-0.834546\pi\)
−0.867923 + 0.496698i \(0.834546\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −7.27941e6 −0.517905
\(724\) 0 0
\(725\) 8.21205e6 0.580239
\(726\) 0 0
\(727\) −3.24345e6 −0.227599 −0.113800 0.993504i \(-0.536302\pi\)
−0.113800 + 0.993504i \(0.536302\pi\)
\(728\) 0 0
\(729\) 1.59357e7 1.11058
\(730\) 0 0
\(731\) −8.70558e6 −0.602566
\(732\) 0 0
\(733\) 2.59315e7 1.78266 0.891328 0.453359i \(-0.149774\pi\)
0.891328 + 0.453359i \(0.149774\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.63234e6 0.653225
\(738\) 0 0
\(739\) 5.53387e6 0.372750 0.186375 0.982479i \(-0.440326\pi\)
0.186375 + 0.982479i \(0.440326\pi\)
\(740\) 0 0
\(741\) −8.32881e6 −0.557234
\(742\) 0 0
\(743\) −1.09491e7 −0.727622 −0.363811 0.931473i \(-0.618525\pi\)
−0.363811 + 0.931473i \(0.618525\pi\)
\(744\) 0 0
\(745\) −1.92118e7 −1.26817
\(746\) 0 0
\(747\) 208882. 0.0136962
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −4.93260e6 −0.319136 −0.159568 0.987187i \(-0.551010\pi\)
−0.159568 + 0.987187i \(0.551010\pi\)
\(752\) 0 0
\(753\) −7.44446e6 −0.478460
\(754\) 0 0
\(755\) −3.28308e7 −2.09611
\(756\) 0 0
\(757\) 7.69782e6 0.488234 0.244117 0.969746i \(-0.421502\pi\)
0.244117 + 0.969746i \(0.421502\pi\)
\(758\) 0 0
\(759\) 2.38643e7 1.50364
\(760\) 0 0
\(761\) 7.27427e6 0.455331 0.227666 0.973739i \(-0.426891\pi\)
0.227666 + 0.973739i \(0.426891\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −5.01547e6 −0.309855
\(766\) 0 0
\(767\) 2.00794e7 1.23243
\(768\) 0 0
\(769\) 1.72394e7 1.05125 0.525626 0.850716i \(-0.323831\pi\)
0.525626 + 0.850716i \(0.323831\pi\)
\(770\) 0 0
\(771\) 2.30044e7 1.39372
\(772\) 0 0
\(773\) 3.96168e6 0.238468 0.119234 0.992866i \(-0.461956\pi\)
0.119234 + 0.992866i \(0.461956\pi\)
\(774\) 0 0
\(775\) 1.13471e7 0.678628
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −9.70306e6 −0.572882
\(780\) 0 0
\(781\) 1.41810e7 0.831915
\(782\) 0 0
\(783\) −5.71056e6 −0.332870
\(784\) 0 0
\(785\) 7.86839e6 0.455734
\(786\) 0 0
\(787\) −3.41283e6 −0.196416 −0.0982082 0.995166i \(-0.531311\pi\)
−0.0982082 + 0.995166i \(0.531311\pi\)
\(788\) 0 0
\(789\) −2.66703e7 −1.52523
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 8.94884e6 0.505340
\(794\) 0 0
\(795\) 5.55128e6 0.311512
\(796\) 0 0
\(797\) −5.38044e6 −0.300035 −0.150017 0.988683i \(-0.547933\pi\)
−0.150017 + 0.988683i \(0.547933\pi\)
\(798\) 0 0
\(799\) −2.62068e7 −1.45227
\(800\) 0 0
\(801\) −4.17444e6 −0.229888
\(802\) 0 0
\(803\) 5.37204e6 0.294002
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 5.85801e6 0.316640
\(808\) 0 0
\(809\) −1.99148e7 −1.06980 −0.534901 0.844915i \(-0.679651\pi\)
−0.534901 + 0.844915i \(0.679651\pi\)
\(810\) 0 0
\(811\) −2.24825e7 −1.20031 −0.600153 0.799886i \(-0.704893\pi\)
−0.600153 + 0.799886i \(0.704893\pi\)
\(812\) 0 0
\(813\) −8.01357e6 −0.425206
\(814\) 0 0
\(815\) −1.21042e7 −0.638324
\(816\) 0 0
\(817\) −6.19943e6 −0.324935
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −1.88281e7 −0.974872 −0.487436 0.873159i \(-0.662068\pi\)
−0.487436 + 0.873159i \(0.662068\pi\)
\(822\) 0 0
\(823\) 9.23000e6 0.475009 0.237505 0.971386i \(-0.423671\pi\)
0.237505 + 0.971386i \(0.423671\pi\)
\(824\) 0 0
\(825\) −3.80369e7 −1.94567
\(826\) 0 0
\(827\) −3.44089e7 −1.74947 −0.874736 0.484600i \(-0.838965\pi\)
−0.874736 + 0.484600i \(0.838965\pi\)
\(828\) 0 0
\(829\) 2.51500e7 1.27102 0.635509 0.772093i \(-0.280790\pi\)
0.635509 + 0.772093i \(0.280790\pi\)
\(830\) 0 0
\(831\) 1.12351e7 0.564383
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 6.37380e7 3.16360
\(836\) 0 0
\(837\) −7.89066e6 −0.389314
\(838\) 0 0
\(839\) 3.27543e7 1.60644 0.803219 0.595684i \(-0.203119\pi\)
0.803219 + 0.595684i \(0.203119\pi\)
\(840\) 0 0
\(841\) −1.85679e7 −0.905260
\(842\) 0 0
\(843\) −9.75475e6 −0.472767
\(844\) 0 0
\(845\) 5.28175e7 2.54470
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.88131e7 −1.37190
\(850\) 0 0
\(851\) −4.46846e7 −2.11512
\(852\) 0 0
\(853\) 1.70918e7 0.804295 0.402148 0.915575i \(-0.368264\pi\)
0.402148 + 0.915575i \(0.368264\pi\)
\(854\) 0 0
\(855\) −3.57162e6 −0.167090
\(856\) 0 0
\(857\) 7.19282e6 0.334539 0.167270 0.985911i \(-0.446505\pi\)
0.167270 + 0.985911i \(0.446505\pi\)
\(858\) 0 0
\(859\) 1.49120e7 0.689531 0.344765 0.938689i \(-0.387958\pi\)
0.344765 + 0.938689i \(0.387958\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.24943e7 −1.48518 −0.742592 0.669744i \(-0.766404\pi\)
−0.742592 + 0.669744i \(0.766404\pi\)
\(864\) 0 0
\(865\) −3.30230e7 −1.50064
\(866\) 0 0
\(867\) −8.38775e6 −0.378964
\(868\) 0 0
\(869\) −1.57918e7 −0.709384
\(870\) 0 0
\(871\) 1.94891e7 0.870455
\(872\) 0 0
\(873\) −1.04841e6 −0.0465582
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.72512e7 −0.757391 −0.378695 0.925521i \(-0.623627\pi\)
−0.378695 + 0.925521i \(0.623627\pi\)
\(878\) 0 0
\(879\) 4.25537e6 0.185765
\(880\) 0 0
\(881\) 3.45237e7 1.49857 0.749286 0.662247i \(-0.230397\pi\)
0.749286 + 0.662247i \(0.230397\pi\)
\(882\) 0 0
\(883\) 3.99893e7 1.72600 0.863002 0.505200i \(-0.168581\pi\)
0.863002 + 0.505200i \(0.168581\pi\)
\(884\) 0 0
\(885\) −2.68534e7 −1.15250
\(886\) 0 0
\(887\) −3.71547e7 −1.58564 −0.792819 0.609457i \(-0.791388\pi\)
−0.792819 + 0.609457i \(0.791388\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 1.96260e7 0.828203
\(892\) 0 0
\(893\) −1.86624e7 −0.783138
\(894\) 0 0
\(895\) 5.93678e7 2.47738
\(896\) 0 0
\(897\) 4.82845e7 2.00367
\(898\) 0 0
\(899\) 2.68510e6 0.110805
\(900\) 0 0
\(901\) 3.85860e6 0.158350
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.29303e7 −0.930653
\(906\) 0 0
\(907\) −1.78366e7 −0.719934 −0.359967 0.932965i \(-0.617212\pi\)
−0.359967 + 0.932965i \(0.617212\pi\)
\(908\) 0 0
\(909\) 5.30529e6 0.212961
\(910\) 0 0
\(911\) 600440. 0.0239703 0.0119852 0.999928i \(-0.496185\pi\)
0.0119852 + 0.999928i \(0.496185\pi\)
\(912\) 0 0
\(913\) 1.68522e6 0.0669082
\(914\) 0 0
\(915\) −1.19678e7 −0.472566
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4.14543e7 −1.61913 −0.809564 0.587032i \(-0.800296\pi\)
−0.809564 + 0.587032i \(0.800296\pi\)
\(920\) 0 0
\(921\) 3.82902e7 1.48744
\(922\) 0 0
\(923\) 2.86924e7 1.10857
\(924\) 0 0
\(925\) 7.12222e7 2.73691
\(926\) 0 0
\(927\) 478588. 0.0182921
\(928\) 0 0
\(929\) −4.87049e7 −1.85154 −0.925771 0.378085i \(-0.876583\pi\)
−0.925771 + 0.378085i \(0.876583\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −5.98957e6 −0.225264
\(934\) 0 0
\(935\) −4.04638e7 −1.51369
\(936\) 0 0
\(937\) 2.45567e7 0.913737 0.456868 0.889534i \(-0.348971\pi\)
0.456868 + 0.889534i \(0.348971\pi\)
\(938\) 0 0
\(939\) 1.93079e7 0.714612
\(940\) 0 0
\(941\) 8.38235e6 0.308597 0.154299 0.988024i \(-0.450688\pi\)
0.154299 + 0.988024i \(0.450688\pi\)
\(942\) 0 0
\(943\) 5.62515e7 2.05994
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.11502e7 −0.404026 −0.202013 0.979383i \(-0.564748\pi\)
−0.202013 + 0.979383i \(0.564748\pi\)
\(948\) 0 0
\(949\) 1.08692e7 0.391773
\(950\) 0 0
\(951\) 1.70046e7 0.609700
\(952\) 0 0
\(953\) −1.57312e7 −0.561088 −0.280544 0.959841i \(-0.590515\pi\)
−0.280544 + 0.959841i \(0.590515\pi\)
\(954\) 0 0
\(955\) −2.02204e7 −0.717431
\(956\) 0 0
\(957\) −9.00075e6 −0.317687
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.49190e7 −0.870406
\(962\) 0 0
\(963\) 7.42857e6 0.258131
\(964\) 0 0
\(965\) 1.28188e7 0.443128
\(966\) 0 0
\(967\) −5.38684e7 −1.85254 −0.926271 0.376857i \(-0.877005\pi\)
−0.926271 + 0.376857i \(0.877005\pi\)
\(968\) 0 0
\(969\) 7.74227e6 0.264886
\(970\) 0 0
\(971\) 3.06393e7 1.04287 0.521436 0.853291i \(-0.325397\pi\)
0.521436 + 0.853291i \(0.325397\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −7.69600e7 −2.59271
\(976\) 0 0
\(977\) 1.15906e7 0.388480 0.194240 0.980954i \(-0.437776\pi\)
0.194240 + 0.980954i \(0.437776\pi\)
\(978\) 0 0
\(979\) −3.36786e7 −1.12304
\(980\) 0 0
\(981\) −5.26103e6 −0.174541
\(982\) 0 0
\(983\) 609460. 0.0201169 0.0100585 0.999949i \(-0.496798\pi\)
0.0100585 + 0.999949i \(0.496798\pi\)
\(984\) 0 0
\(985\) 5.21136e7 1.71144
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.59399e7 1.16839
\(990\) 0 0
\(991\) −2.18372e7 −0.706339 −0.353170 0.935559i \(-0.614896\pi\)
−0.353170 + 0.935559i \(0.614896\pi\)
\(992\) 0 0
\(993\) 4.58788e7 1.47652
\(994\) 0 0
\(995\) 5.99976e7 1.92122
\(996\) 0 0
\(997\) 3.46465e7 1.10388 0.551939 0.833885i \(-0.313888\pi\)
0.551939 + 0.833885i \(0.313888\pi\)
\(998\) 0 0
\(999\) −4.95270e7 −1.57010
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.y.1.2 2
4.3 odd 2 98.6.a.e.1.1 2
7.6 odd 2 inner 784.6.a.y.1.1 2
12.11 even 2 882.6.a.bo.1.1 2
28.3 even 6 98.6.c.g.79.1 4
28.11 odd 6 98.6.c.g.79.2 4
28.19 even 6 98.6.c.g.67.1 4
28.23 odd 6 98.6.c.g.67.2 4
28.27 even 2 98.6.a.e.1.2 yes 2
84.83 odd 2 882.6.a.bo.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
98.6.a.e.1.1 2 4.3 odd 2
98.6.a.e.1.2 yes 2 28.27 even 2
98.6.c.g.67.1 4 28.19 even 6
98.6.c.g.67.2 4 28.23 odd 6
98.6.c.g.79.1 4 28.3 even 6
98.6.c.g.79.2 4 28.11 odd 6
784.6.a.y.1.1 2 7.6 odd 2 inner
784.6.a.y.1.2 2 1.1 even 1 trivial
882.6.a.bo.1.1 2 12.11 even 2
882.6.a.bo.1.2 2 84.83 odd 2