Properties

Label 784.6.a.s.1.2
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-14,0,70,0,0,0,244] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{79}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 79 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(8.88819\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+10.7764 q^{3} +106.106 q^{5} -126.869 q^{9} +93.4347 q^{11} +661.131 q^{13} +1143.43 q^{15} +455.919 q^{17} -1106.28 q^{19} -748.390 q^{23} +8133.39 q^{25} -3985.86 q^{27} +2804.78 q^{29} +359.299 q^{31} +1006.89 q^{33} -6812.82 q^{37} +7124.60 q^{39} +2319.39 q^{41} +19965.7 q^{43} -13461.6 q^{45} +14209.5 q^{47} +4913.17 q^{51} +26144.2 q^{53} +9913.94 q^{55} -11921.7 q^{57} -4904.35 q^{59} -13203.3 q^{61} +70149.6 q^{65} +59658.1 q^{67} -8064.94 q^{69} -8906.43 q^{71} -10480.6 q^{73} +87648.6 q^{75} +7230.02 q^{79} -12123.9 q^{81} +100461. q^{83} +48375.6 q^{85} +30225.4 q^{87} +20071.8 q^{89} +3871.94 q^{93} -117382. q^{95} -23320.9 q^{97} -11854.0 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} + 70 q^{5} + 244 q^{9} - 62 q^{11} + 1820 q^{13} + 2038 q^{15} + 1694 q^{17} - 826 q^{19} + 2734 q^{23} + 6312 q^{25} - 7154 q^{27} - 2852 q^{29} + 2674 q^{31} + 4858 q^{33} - 9146 q^{37}+ \cdots - 69500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 10.7764 0.691306 0.345653 0.938362i \(-0.387657\pi\)
0.345653 + 0.938362i \(0.387657\pi\)
\(4\) 0 0
\(5\) 106.106 1.89807 0.949037 0.315165i \(-0.102060\pi\)
0.949037 + 0.315165i \(0.102060\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −126.869 −0.522096
\(10\) 0 0
\(11\) 93.4347 0.232823 0.116412 0.993201i \(-0.462861\pi\)
0.116412 + 0.993201i \(0.462861\pi\)
\(12\) 0 0
\(13\) 661.131 1.08500 0.542499 0.840057i \(-0.317478\pi\)
0.542499 + 0.840057i \(0.317478\pi\)
\(14\) 0 0
\(15\) 1143.43 1.31215
\(16\) 0 0
\(17\) 455.919 0.382618 0.191309 0.981530i \(-0.438727\pi\)
0.191309 + 0.981530i \(0.438727\pi\)
\(18\) 0 0
\(19\) −1106.28 −0.703041 −0.351521 0.936180i \(-0.614335\pi\)
−0.351521 + 0.936180i \(0.614335\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −748.390 −0.294991 −0.147495 0.989063i \(-0.547121\pi\)
−0.147495 + 0.989063i \(0.547121\pi\)
\(24\) 0 0
\(25\) 8133.39 2.60268
\(26\) 0 0
\(27\) −3985.86 −1.05223
\(28\) 0 0
\(29\) 2804.78 0.619304 0.309652 0.950850i \(-0.399787\pi\)
0.309652 + 0.950850i \(0.399787\pi\)
\(30\) 0 0
\(31\) 359.299 0.0671508 0.0335754 0.999436i \(-0.489311\pi\)
0.0335754 + 0.999436i \(0.489311\pi\)
\(32\) 0 0
\(33\) 1006.89 0.160952
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6812.82 −0.818131 −0.409066 0.912505i \(-0.634145\pi\)
−0.409066 + 0.912505i \(0.634145\pi\)
\(38\) 0 0
\(39\) 7124.60 0.750065
\(40\) 0 0
\(41\) 2319.39 0.215484 0.107742 0.994179i \(-0.465638\pi\)
0.107742 + 0.994179i \(0.465638\pi\)
\(42\) 0 0
\(43\) 19965.7 1.64670 0.823349 0.567535i \(-0.192103\pi\)
0.823349 + 0.567535i \(0.192103\pi\)
\(44\) 0 0
\(45\) −13461.6 −0.990978
\(46\) 0 0
\(47\) 14209.5 0.938287 0.469143 0.883122i \(-0.344563\pi\)
0.469143 + 0.883122i \(0.344563\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4913.17 0.264506
\(52\) 0 0
\(53\) 26144.2 1.27846 0.639228 0.769017i \(-0.279254\pi\)
0.639228 + 0.769017i \(0.279254\pi\)
\(54\) 0 0
\(55\) 9913.94 0.441916
\(56\) 0 0
\(57\) −11921.7 −0.486016
\(58\) 0 0
\(59\) −4904.35 −0.183422 −0.0917110 0.995786i \(-0.529234\pi\)
−0.0917110 + 0.995786i \(0.529234\pi\)
\(60\) 0 0
\(61\) −13203.3 −0.454315 −0.227158 0.973858i \(-0.572943\pi\)
−0.227158 + 0.973858i \(0.572943\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 70149.6 2.05941
\(66\) 0 0
\(67\) 59658.1 1.62361 0.811807 0.583926i \(-0.198484\pi\)
0.811807 + 0.583926i \(0.198484\pi\)
\(68\) 0 0
\(69\) −8064.94 −0.203929
\(70\) 0 0
\(71\) −8906.43 −0.209680 −0.104840 0.994489i \(-0.533433\pi\)
−0.104840 + 0.994489i \(0.533433\pi\)
\(72\) 0 0
\(73\) −10480.6 −0.230186 −0.115093 0.993355i \(-0.536717\pi\)
−0.115093 + 0.993355i \(0.536717\pi\)
\(74\) 0 0
\(75\) 87648.6 1.79925
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 7230.02 0.130338 0.0651691 0.997874i \(-0.479241\pi\)
0.0651691 + 0.997874i \(0.479241\pi\)
\(80\) 0 0
\(81\) −12123.9 −0.205319
\(82\) 0 0
\(83\) 100461. 1.60067 0.800336 0.599552i \(-0.204655\pi\)
0.800336 + 0.599552i \(0.204655\pi\)
\(84\) 0 0
\(85\) 48375.6 0.726238
\(86\) 0 0
\(87\) 30225.4 0.428128
\(88\) 0 0
\(89\) 20071.8 0.268603 0.134302 0.990940i \(-0.457121\pi\)
0.134302 + 0.990940i \(0.457121\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3871.94 0.0464217
\(94\) 0 0
\(95\) −117382. −1.33442
\(96\) 0 0
\(97\) −23320.9 −0.251662 −0.125831 0.992052i \(-0.540160\pi\)
−0.125831 + 0.992052i \(0.540160\pi\)
\(98\) 0 0
\(99\) −11854.0 −0.121556
\(100\) 0 0
\(101\) −68974.1 −0.672795 −0.336398 0.941720i \(-0.609209\pi\)
−0.336398 + 0.941720i \(0.609209\pi\)
\(102\) 0 0
\(103\) −113725. −1.05624 −0.528121 0.849169i \(-0.677103\pi\)
−0.528121 + 0.849169i \(0.677103\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 121287. 1.02413 0.512066 0.858946i \(-0.328880\pi\)
0.512066 + 0.858946i \(0.328880\pi\)
\(108\) 0 0
\(109\) −61373.9 −0.494786 −0.247393 0.968915i \(-0.579574\pi\)
−0.247393 + 0.968915i \(0.579574\pi\)
\(110\) 0 0
\(111\) −73417.7 −0.565579
\(112\) 0 0
\(113\) −242939. −1.78979 −0.894893 0.446281i \(-0.852748\pi\)
−0.894893 + 0.446281i \(0.852748\pi\)
\(114\) 0 0
\(115\) −79408.4 −0.559914
\(116\) 0 0
\(117\) −83877.3 −0.566474
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −152321. −0.945793
\(122\) 0 0
\(123\) 24994.7 0.148965
\(124\) 0 0
\(125\) 531418. 3.04201
\(126\) 0 0
\(127\) −201922. −1.11090 −0.555448 0.831551i \(-0.687453\pi\)
−0.555448 + 0.831551i \(0.687453\pi\)
\(128\) 0 0
\(129\) 215159. 1.13837
\(130\) 0 0
\(131\) −283521. −1.44347 −0.721734 0.692171i \(-0.756655\pi\)
−0.721734 + 0.692171i \(0.756655\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −422922. −1.99722
\(136\) 0 0
\(137\) 188471. 0.857911 0.428955 0.903326i \(-0.358882\pi\)
0.428955 + 0.903326i \(0.358882\pi\)
\(138\) 0 0
\(139\) 211579. 0.928830 0.464415 0.885618i \(-0.346265\pi\)
0.464415 + 0.885618i \(0.346265\pi\)
\(140\) 0 0
\(141\) 153128. 0.648643
\(142\) 0 0
\(143\) 61772.5 0.252613
\(144\) 0 0
\(145\) 297603. 1.17548
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −293324. −1.08238 −0.541192 0.840899i \(-0.682027\pi\)
−0.541192 + 0.840899i \(0.682027\pi\)
\(150\) 0 0
\(151\) 204476. 0.729794 0.364897 0.931048i \(-0.381104\pi\)
0.364897 + 0.931048i \(0.381104\pi\)
\(152\) 0 0
\(153\) −57842.2 −0.199764
\(154\) 0 0
\(155\) 38123.6 0.127457
\(156\) 0 0
\(157\) 505915. 1.63805 0.819027 0.573755i \(-0.194514\pi\)
0.819027 + 0.573755i \(0.194514\pi\)
\(158\) 0 0
\(159\) 281740. 0.883804
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 284200. 0.837829 0.418914 0.908026i \(-0.362411\pi\)
0.418914 + 0.908026i \(0.362411\pi\)
\(164\) 0 0
\(165\) 106837. 0.305499
\(166\) 0 0
\(167\) 13145.7 0.0364747 0.0182373 0.999834i \(-0.494195\pi\)
0.0182373 + 0.999834i \(0.494195\pi\)
\(168\) 0 0
\(169\) 65800.6 0.177220
\(170\) 0 0
\(171\) 140353. 0.367055
\(172\) 0 0
\(173\) 51453.0 0.130706 0.0653530 0.997862i \(-0.479183\pi\)
0.0653530 + 0.997862i \(0.479183\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −52851.2 −0.126801
\(178\) 0 0
\(179\) 497735. 1.16109 0.580544 0.814229i \(-0.302840\pi\)
0.580544 + 0.814229i \(0.302840\pi\)
\(180\) 0 0
\(181\) −227120. −0.515299 −0.257650 0.966238i \(-0.582948\pi\)
−0.257650 + 0.966238i \(0.582948\pi\)
\(182\) 0 0
\(183\) −142284. −0.314071
\(184\) 0 0
\(185\) −722879. −1.55287
\(186\) 0 0
\(187\) 42598.7 0.0890825
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −502778. −0.997225 −0.498612 0.866825i \(-0.666157\pi\)
−0.498612 + 0.866825i \(0.666157\pi\)
\(192\) 0 0
\(193\) 140322. 0.271165 0.135582 0.990766i \(-0.456709\pi\)
0.135582 + 0.990766i \(0.456709\pi\)
\(194\) 0 0
\(195\) 755960. 1.42368
\(196\) 0 0
\(197\) 378993. 0.695769 0.347885 0.937537i \(-0.386900\pi\)
0.347885 + 0.937537i \(0.386900\pi\)
\(198\) 0 0
\(199\) 461022. 0.825256 0.412628 0.910900i \(-0.364611\pi\)
0.412628 + 0.910900i \(0.364611\pi\)
\(200\) 0 0
\(201\) 642899. 1.12241
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 246100. 0.409004
\(206\) 0 0
\(207\) 94947.9 0.154014
\(208\) 0 0
\(209\) −103365. −0.163684
\(210\) 0 0
\(211\) −202139. −0.312567 −0.156284 0.987712i \(-0.549951\pi\)
−0.156284 + 0.987712i \(0.549951\pi\)
\(212\) 0 0
\(213\) −95979.1 −0.144953
\(214\) 0 0
\(215\) 2.11848e6 3.12556
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −112943. −0.159129
\(220\) 0 0
\(221\) 301422. 0.415140
\(222\) 0 0
\(223\) −694340. −0.934997 −0.467498 0.883994i \(-0.654845\pi\)
−0.467498 + 0.883994i \(0.654845\pi\)
\(224\) 0 0
\(225\) −1.03188e6 −1.35885
\(226\) 0 0
\(227\) −1.26697e6 −1.63194 −0.815968 0.578096i \(-0.803796\pi\)
−0.815968 + 0.578096i \(0.803796\pi\)
\(228\) 0 0
\(229\) 856477. 1.07926 0.539631 0.841902i \(-0.318564\pi\)
0.539631 + 0.841902i \(0.318564\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −284358. −0.343143 −0.171571 0.985172i \(-0.554884\pi\)
−0.171571 + 0.985172i \(0.554884\pi\)
\(234\) 0 0
\(235\) 1.50771e6 1.78094
\(236\) 0 0
\(237\) 77913.5 0.0901035
\(238\) 0 0
\(239\) 427941. 0.484606 0.242303 0.970201i \(-0.422097\pi\)
0.242303 + 0.970201i \(0.422097\pi\)
\(240\) 0 0
\(241\) 809581. 0.897879 0.448940 0.893562i \(-0.351802\pi\)
0.448940 + 0.893562i \(0.351802\pi\)
\(242\) 0 0
\(243\) 837912. 0.910296
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −731395. −0.762798
\(248\) 0 0
\(249\) 1.08261e6 1.10655
\(250\) 0 0
\(251\) 1.26305e6 1.26542 0.632711 0.774388i \(-0.281942\pi\)
0.632711 + 0.774388i \(0.281942\pi\)
\(252\) 0 0
\(253\) −69925.6 −0.0686808
\(254\) 0 0
\(255\) 521314. 0.502052
\(256\) 0 0
\(257\) 56138.2 0.0530183 0.0265091 0.999649i \(-0.491561\pi\)
0.0265091 + 0.999649i \(0.491561\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −355841. −0.323336
\(262\) 0 0
\(263\) −1.54275e6 −1.37533 −0.687664 0.726029i \(-0.741364\pi\)
−0.687664 + 0.726029i \(0.741364\pi\)
\(264\) 0 0
\(265\) 2.77405e6 2.42660
\(266\) 0 0
\(267\) 216302. 0.185687
\(268\) 0 0
\(269\) −1.20535e6 −1.01563 −0.507813 0.861467i \(-0.669546\pi\)
−0.507813 + 0.861467i \(0.669546\pi\)
\(270\) 0 0
\(271\) −1.76489e6 −1.45980 −0.729900 0.683554i \(-0.760433\pi\)
−0.729900 + 0.683554i \(0.760433\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 759941. 0.605966
\(276\) 0 0
\(277\) 1.48319e6 1.16144 0.580719 0.814104i \(-0.302771\pi\)
0.580719 + 0.814104i \(0.302771\pi\)
\(278\) 0 0
\(279\) −45584.0 −0.0350592
\(280\) 0 0
\(281\) −1.26812e6 −0.958061 −0.479031 0.877798i \(-0.659012\pi\)
−0.479031 + 0.877798i \(0.659012\pi\)
\(282\) 0 0
\(283\) 1.44657e6 1.07368 0.536838 0.843685i \(-0.319619\pi\)
0.536838 + 0.843685i \(0.319619\pi\)
\(284\) 0 0
\(285\) −1.26496e6 −0.922495
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.21199e6 −0.853603
\(290\) 0 0
\(291\) −251316. −0.173975
\(292\) 0 0
\(293\) 367016. 0.249756 0.124878 0.992172i \(-0.460146\pi\)
0.124878 + 0.992172i \(0.460146\pi\)
\(294\) 0 0
\(295\) −520379. −0.348149
\(296\) 0 0
\(297\) −372417. −0.244985
\(298\) 0 0
\(299\) −494784. −0.320064
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −743292. −0.465107
\(304\) 0 0
\(305\) −1.40094e6 −0.862324
\(306\) 0 0
\(307\) 131281. 0.0794979 0.0397490 0.999210i \(-0.487344\pi\)
0.0397490 + 0.999210i \(0.487344\pi\)
\(308\) 0 0
\(309\) −1.22555e6 −0.730186
\(310\) 0 0
\(311\) 2.33471e6 1.36878 0.684389 0.729118i \(-0.260069\pi\)
0.684389 + 0.729118i \(0.260069\pi\)
\(312\) 0 0
\(313\) −772801. −0.445869 −0.222934 0.974833i \(-0.571564\pi\)
−0.222934 + 0.974833i \(0.571564\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 524336. 0.293063 0.146532 0.989206i \(-0.453189\pi\)
0.146532 + 0.989206i \(0.453189\pi\)
\(318\) 0 0
\(319\) 262064. 0.144188
\(320\) 0 0
\(321\) 1.30704e6 0.707988
\(322\) 0 0
\(323\) −504374. −0.268996
\(324\) 0 0
\(325\) 5.37723e6 2.82391
\(326\) 0 0
\(327\) −661389. −0.342048
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −631635. −0.316881 −0.158440 0.987369i \(-0.550647\pi\)
−0.158440 + 0.987369i \(0.550647\pi\)
\(332\) 0 0
\(333\) 864339. 0.427143
\(334\) 0 0
\(335\) 6.33006e6 3.08174
\(336\) 0 0
\(337\) 3.33479e6 1.59954 0.799768 0.600309i \(-0.204956\pi\)
0.799768 + 0.600309i \(0.204956\pi\)
\(338\) 0 0
\(339\) −2.61800e6 −1.23729
\(340\) 0 0
\(341\) 33571.0 0.0156343
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −855735. −0.387072
\(346\) 0 0
\(347\) 650351. 0.289951 0.144975 0.989435i \(-0.453690\pi\)
0.144975 + 0.989435i \(0.453690\pi\)
\(348\) 0 0
\(349\) −601041. −0.264144 −0.132072 0.991240i \(-0.542163\pi\)
−0.132072 + 0.991240i \(0.542163\pi\)
\(350\) 0 0
\(351\) −2.63517e6 −1.14167
\(352\) 0 0
\(353\) −2.88889e6 −1.23394 −0.616970 0.786987i \(-0.711640\pi\)
−0.616970 + 0.786987i \(0.711640\pi\)
\(354\) 0 0
\(355\) −945021. −0.397989
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 97830.5 0.0400625 0.0200313 0.999799i \(-0.493623\pi\)
0.0200313 + 0.999799i \(0.493623\pi\)
\(360\) 0 0
\(361\) −1.25225e6 −0.505733
\(362\) 0 0
\(363\) −1.64147e6 −0.653832
\(364\) 0 0
\(365\) −1.11205e6 −0.436910
\(366\) 0 0
\(367\) −2.14775e6 −0.832374 −0.416187 0.909279i \(-0.636634\pi\)
−0.416187 + 0.909279i \(0.636634\pi\)
\(368\) 0 0
\(369\) −294260. −0.112503
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 4.20458e6 1.56477 0.782386 0.622794i \(-0.214003\pi\)
0.782386 + 0.622794i \(0.214003\pi\)
\(374\) 0 0
\(375\) 5.72677e6 2.10296
\(376\) 0 0
\(377\) 1.85433e6 0.671943
\(378\) 0 0
\(379\) 535586. 0.191527 0.0957637 0.995404i \(-0.469471\pi\)
0.0957637 + 0.995404i \(0.469471\pi\)
\(380\) 0 0
\(381\) −2.17599e6 −0.767969
\(382\) 0 0
\(383\) 3.84697e6 1.34005 0.670027 0.742337i \(-0.266283\pi\)
0.670027 + 0.742337i \(0.266283\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −2.53304e6 −0.859736
\(388\) 0 0
\(389\) −1.69833e6 −0.569045 −0.284523 0.958669i \(-0.591835\pi\)
−0.284523 + 0.958669i \(0.591835\pi\)
\(390\) 0 0
\(391\) −341206. −0.112869
\(392\) 0 0
\(393\) −3.05533e6 −0.997877
\(394\) 0 0
\(395\) 767145. 0.247391
\(396\) 0 0
\(397\) 3.62378e6 1.15394 0.576972 0.816764i \(-0.304234\pi\)
0.576972 + 0.816764i \(0.304234\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.79801e6 −0.868937 −0.434469 0.900687i \(-0.643064\pi\)
−0.434469 + 0.900687i \(0.643064\pi\)
\(402\) 0 0
\(403\) 237543. 0.0728585
\(404\) 0 0
\(405\) −1.28641e6 −0.389710
\(406\) 0 0
\(407\) −636554. −0.190480
\(408\) 0 0
\(409\) −666281. −0.196947 −0.0984735 0.995140i \(-0.531396\pi\)
−0.0984735 + 0.995140i \(0.531396\pi\)
\(410\) 0 0
\(411\) 2.03103e6 0.593078
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.06595e7 3.03819
\(416\) 0 0
\(417\) 2.28006e6 0.642105
\(418\) 0 0
\(419\) −2.89203e6 −0.804762 −0.402381 0.915472i \(-0.631817\pi\)
−0.402381 + 0.915472i \(0.631817\pi\)
\(420\) 0 0
\(421\) 6.72027e6 1.84791 0.923956 0.382498i \(-0.124936\pi\)
0.923956 + 0.382498i \(0.124936\pi\)
\(422\) 0 0
\(423\) −1.80276e6 −0.489876
\(424\) 0 0
\(425\) 3.70817e6 0.995835
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 665685. 0.174633
\(430\) 0 0
\(431\) −4.72298e6 −1.22468 −0.612341 0.790594i \(-0.709772\pi\)
−0.612341 + 0.790594i \(0.709772\pi\)
\(432\) 0 0
\(433\) −5.78136e6 −1.48187 −0.740935 0.671577i \(-0.765617\pi\)
−0.740935 + 0.671577i \(0.765617\pi\)
\(434\) 0 0
\(435\) 3.20708e6 0.812619
\(436\) 0 0
\(437\) 827929. 0.207391
\(438\) 0 0
\(439\) −5.36873e6 −1.32957 −0.664784 0.747036i \(-0.731476\pi\)
−0.664784 + 0.747036i \(0.731476\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.31511e6 −1.04468 −0.522339 0.852738i \(-0.674941\pi\)
−0.522339 + 0.852738i \(0.674941\pi\)
\(444\) 0 0
\(445\) 2.12973e6 0.509829
\(446\) 0 0
\(447\) −3.16097e6 −0.748259
\(448\) 0 0
\(449\) 4.75292e6 1.11261 0.556307 0.830977i \(-0.312218\pi\)
0.556307 + 0.830977i \(0.312218\pi\)
\(450\) 0 0
\(451\) 216712. 0.0501696
\(452\) 0 0
\(453\) 2.20352e6 0.504511
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.13728e6 0.478707 0.239354 0.970932i \(-0.423064\pi\)
0.239354 + 0.970932i \(0.423064\pi\)
\(458\) 0 0
\(459\) −1.81723e6 −0.402604
\(460\) 0 0
\(461\) −1.72920e6 −0.378959 −0.189479 0.981885i \(-0.560680\pi\)
−0.189479 + 0.981885i \(0.560680\pi\)
\(462\) 0 0
\(463\) 6.54367e6 1.41863 0.709315 0.704892i \(-0.249004\pi\)
0.709315 + 0.704892i \(0.249004\pi\)
\(464\) 0 0
\(465\) 410835. 0.0881119
\(466\) 0 0
\(467\) 1.79419e6 0.380694 0.190347 0.981717i \(-0.439039\pi\)
0.190347 + 0.981717i \(0.439039\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 5.45194e6 1.13240
\(472\) 0 0
\(473\) 1.86549e6 0.383390
\(474\) 0 0
\(475\) −8.99780e6 −1.82979
\(476\) 0 0
\(477\) −3.31690e6 −0.667477
\(478\) 0 0
\(479\) −4.09403e6 −0.815289 −0.407645 0.913141i \(-0.633650\pi\)
−0.407645 + 0.913141i \(0.633650\pi\)
\(480\) 0 0
\(481\) −4.50417e6 −0.887670
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −2.47448e6 −0.477672
\(486\) 0 0
\(487\) 4.45210e6 0.850634 0.425317 0.905045i \(-0.360163\pi\)
0.425317 + 0.905045i \(0.360163\pi\)
\(488\) 0 0
\(489\) 3.06265e6 0.579196
\(490\) 0 0
\(491\) −7.09674e6 −1.32848 −0.664240 0.747519i \(-0.731245\pi\)
−0.664240 + 0.747519i \(0.731245\pi\)
\(492\) 0 0
\(493\) 1.27875e6 0.236957
\(494\) 0 0
\(495\) −1.25778e6 −0.230723
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −9.41903e6 −1.69338 −0.846691 0.532085i \(-0.821409\pi\)
−0.846691 + 0.532085i \(0.821409\pi\)
\(500\) 0 0
\(501\) 141663. 0.0252152
\(502\) 0 0
\(503\) −957258. −0.168698 −0.0843489 0.996436i \(-0.526881\pi\)
−0.0843489 + 0.996436i \(0.526881\pi\)
\(504\) 0 0
\(505\) −7.31854e6 −1.27702
\(506\) 0 0
\(507\) 709093. 0.122513
\(508\) 0 0
\(509\) −4.01453e6 −0.686816 −0.343408 0.939186i \(-0.611581\pi\)
−0.343408 + 0.939186i \(0.611581\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 4.40947e6 0.739764
\(514\) 0 0
\(515\) −1.20669e7 −2.00483
\(516\) 0 0
\(517\) 1.32766e6 0.218455
\(518\) 0 0
\(519\) 554478. 0.0903578
\(520\) 0 0
\(521\) −4.31820e6 −0.696960 −0.348480 0.937316i \(-0.613302\pi\)
−0.348480 + 0.937316i \(0.613302\pi\)
\(522\) 0 0
\(523\) −1.34501e6 −0.215017 −0.107508 0.994204i \(-0.534287\pi\)
−0.107508 + 0.994204i \(0.534287\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 163811. 0.0256931
\(528\) 0 0
\(529\) −5.87626e6 −0.912980
\(530\) 0 0
\(531\) 622212. 0.0957640
\(532\) 0 0
\(533\) 1.53342e6 0.233799
\(534\) 0 0
\(535\) 1.28692e7 1.94388
\(536\) 0 0
\(537\) 5.36378e6 0.802667
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −7.06006e6 −1.03709 −0.518543 0.855051i \(-0.673526\pi\)
−0.518543 + 0.855051i \(0.673526\pi\)
\(542\) 0 0
\(543\) −2.44754e6 −0.356229
\(544\) 0 0
\(545\) −6.51211e6 −0.939140
\(546\) 0 0
\(547\) 1.23520e7 1.76510 0.882549 0.470221i \(-0.155826\pi\)
0.882549 + 0.470221i \(0.155826\pi\)
\(548\) 0 0
\(549\) 1.67509e6 0.237196
\(550\) 0 0
\(551\) −3.10287e6 −0.435396
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −7.79002e6 −1.07351
\(556\) 0 0
\(557\) −1.22251e7 −1.66961 −0.834803 0.550549i \(-0.814418\pi\)
−0.834803 + 0.550549i \(0.814418\pi\)
\(558\) 0 0
\(559\) 1.32000e7 1.78666
\(560\) 0 0
\(561\) 459060. 0.0615832
\(562\) 0 0
\(563\) 812527. 0.108036 0.0540178 0.998540i \(-0.482797\pi\)
0.0540178 + 0.998540i \(0.482797\pi\)
\(564\) 0 0
\(565\) −2.57772e7 −3.39715
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −8.43881e6 −1.09270 −0.546350 0.837557i \(-0.683983\pi\)
−0.546350 + 0.837557i \(0.683983\pi\)
\(570\) 0 0
\(571\) −3.71511e6 −0.476849 −0.238425 0.971161i \(-0.576631\pi\)
−0.238425 + 0.971161i \(0.576631\pi\)
\(572\) 0 0
\(573\) −5.41813e6 −0.689387
\(574\) 0 0
\(575\) −6.08695e6 −0.767768
\(576\) 0 0
\(577\) 1.30375e7 1.63025 0.815126 0.579284i \(-0.196668\pi\)
0.815126 + 0.579284i \(0.196668\pi\)
\(578\) 0 0
\(579\) 1.51217e6 0.187458
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.44278e6 0.297654
\(584\) 0 0
\(585\) −8.89984e6 −1.07521
\(586\) 0 0
\(587\) −1.15227e7 −1.38026 −0.690128 0.723687i \(-0.742446\pi\)
−0.690128 + 0.723687i \(0.742446\pi\)
\(588\) 0 0
\(589\) −397485. −0.0472098
\(590\) 0 0
\(591\) 4.08417e6 0.480989
\(592\) 0 0
\(593\) −1.20103e7 −1.40254 −0.701271 0.712895i \(-0.747384\pi\)
−0.701271 + 0.712895i \(0.747384\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 4.96815e6 0.570504
\(598\) 0 0
\(599\) 1.17460e6 0.133759 0.0668794 0.997761i \(-0.478696\pi\)
0.0668794 + 0.997761i \(0.478696\pi\)
\(600\) 0 0
\(601\) −1.62934e7 −1.84003 −0.920014 0.391886i \(-0.871823\pi\)
−0.920014 + 0.391886i \(0.871823\pi\)
\(602\) 0 0
\(603\) −7.56879e6 −0.847683
\(604\) 0 0
\(605\) −1.61621e7 −1.79519
\(606\) 0 0
\(607\) 1.82629e6 0.201186 0.100593 0.994928i \(-0.467926\pi\)
0.100593 + 0.994928i \(0.467926\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 9.39436e6 1.01804
\(612\) 0 0
\(613\) −5.10271e6 −0.548466 −0.274233 0.961663i \(-0.588424\pi\)
−0.274233 + 0.961663i \(0.588424\pi\)
\(614\) 0 0
\(615\) 2.65207e6 0.282747
\(616\) 0 0
\(617\) −8.03920e6 −0.850158 −0.425079 0.905156i \(-0.639754\pi\)
−0.425079 + 0.905156i \(0.639754\pi\)
\(618\) 0 0
\(619\) −8.60132e6 −0.902274 −0.451137 0.892455i \(-0.648981\pi\)
−0.451137 + 0.892455i \(0.648981\pi\)
\(620\) 0 0
\(621\) 2.98298e6 0.310399
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 3.09695e7 3.17128
\(626\) 0 0
\(627\) −1.11390e6 −0.113156
\(628\) 0 0
\(629\) −3.10610e6 −0.313032
\(630\) 0 0
\(631\) −6.21151e6 −0.621046 −0.310523 0.950566i \(-0.600504\pi\)
−0.310523 + 0.950566i \(0.600504\pi\)
\(632\) 0 0
\(633\) −2.17833e6 −0.216080
\(634\) 0 0
\(635\) −2.14250e7 −2.10856
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 1.12995e6 0.109473
\(640\) 0 0
\(641\) 4.45143e6 0.427912 0.213956 0.976843i \(-0.431365\pi\)
0.213956 + 0.976843i \(0.431365\pi\)
\(642\) 0 0
\(643\) −1.58708e7 −1.51381 −0.756907 0.653523i \(-0.773290\pi\)
−0.756907 + 0.653523i \(0.773290\pi\)
\(644\) 0 0
\(645\) 2.28295e7 2.16071
\(646\) 0 0
\(647\) 3.65619e6 0.343375 0.171687 0.985151i \(-0.445078\pi\)
0.171687 + 0.985151i \(0.445078\pi\)
\(648\) 0 0
\(649\) −458237. −0.0427049
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −4.15039e6 −0.380896 −0.190448 0.981697i \(-0.560994\pi\)
−0.190448 + 0.981697i \(0.560994\pi\)
\(654\) 0 0
\(655\) −3.00832e7 −2.73981
\(656\) 0 0
\(657\) 1.32967e6 0.120179
\(658\) 0 0
\(659\) 1.33739e7 1.19962 0.599810 0.800143i \(-0.295243\pi\)
0.599810 + 0.800143i \(0.295243\pi\)
\(660\) 0 0
\(661\) −9.82641e6 −0.874764 −0.437382 0.899276i \(-0.644094\pi\)
−0.437382 + 0.899276i \(0.644094\pi\)
\(662\) 0 0
\(663\) 3.24824e6 0.286989
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −2.09907e6 −0.182689
\(668\) 0 0
\(669\) −7.48248e6 −0.646369
\(670\) 0 0
\(671\) −1.23365e6 −0.105775
\(672\) 0 0
\(673\) 401148. 0.0341403 0.0170702 0.999854i \(-0.494566\pi\)
0.0170702 + 0.999854i \(0.494566\pi\)
\(674\) 0 0
\(675\) −3.24185e7 −2.73863
\(676\) 0 0
\(677\) 2.07302e7 1.73833 0.869164 0.494524i \(-0.164657\pi\)
0.869164 + 0.494524i \(0.164657\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.36534e7 −1.12817
\(682\) 0 0
\(683\) 1.91996e7 1.57485 0.787427 0.616409i \(-0.211413\pi\)
0.787427 + 0.616409i \(0.211413\pi\)
\(684\) 0 0
\(685\) 1.99978e7 1.62838
\(686\) 0 0
\(687\) 9.22972e6 0.746100
\(688\) 0 0
\(689\) 1.72847e7 1.38712
\(690\) 0 0
\(691\) 1.13093e7 0.901033 0.450517 0.892768i \(-0.351240\pi\)
0.450517 + 0.892768i \(0.351240\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.24497e7 1.76299
\(696\) 0 0
\(697\) 1.05746e6 0.0824480
\(698\) 0 0
\(699\) −3.06435e6 −0.237217
\(700\) 0 0
\(701\) −1.92159e7 −1.47695 −0.738473 0.674283i \(-0.764453\pi\)
−0.738473 + 0.674283i \(0.764453\pi\)
\(702\) 0 0
\(703\) 7.53689e6 0.575180
\(704\) 0 0
\(705\) 1.62477e7 1.23117
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 5.64480e6 0.421729 0.210864 0.977515i \(-0.432372\pi\)
0.210864 + 0.977515i \(0.432372\pi\)
\(710\) 0 0
\(711\) −917268. −0.0680491
\(712\) 0 0
\(713\) −268896. −0.0198089
\(714\) 0 0
\(715\) 6.55441e6 0.479478
\(716\) 0 0
\(717\) 4.61166e6 0.335011
\(718\) 0 0
\(719\) −4.42077e6 −0.318916 −0.159458 0.987205i \(-0.550975\pi\)
−0.159458 + 0.987205i \(0.550975\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 8.72436e6 0.620709
\(724\) 0 0
\(725\) 2.28124e7 1.61185
\(726\) 0 0
\(727\) −1.92503e7 −1.35083 −0.675416 0.737437i \(-0.736036\pi\)
−0.675416 + 0.737437i \(0.736036\pi\)
\(728\) 0 0
\(729\) 1.19758e7 0.834611
\(730\) 0 0
\(731\) 9.10277e6 0.630057
\(732\) 0 0
\(733\) 1.30187e7 0.894966 0.447483 0.894292i \(-0.352320\pi\)
0.447483 + 0.894292i \(0.352320\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 5.57414e6 0.378015
\(738\) 0 0
\(739\) 1.70955e7 1.15152 0.575758 0.817620i \(-0.304707\pi\)
0.575758 + 0.817620i \(0.304707\pi\)
\(740\) 0 0
\(741\) −7.88180e6 −0.527327
\(742\) 0 0
\(743\) −2.36546e7 −1.57197 −0.785984 0.618247i \(-0.787843\pi\)
−0.785984 + 0.618247i \(0.787843\pi\)
\(744\) 0 0
\(745\) −3.11233e7 −2.05445
\(746\) 0 0
\(747\) −1.27454e7 −0.835705
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 166564. 0.0107766 0.00538828 0.999985i \(-0.498285\pi\)
0.00538828 + 0.999985i \(0.498285\pi\)
\(752\) 0 0
\(753\) 1.36111e7 0.874794
\(754\) 0 0
\(755\) 2.16961e7 1.38520
\(756\) 0 0
\(757\) −4.63842e6 −0.294192 −0.147096 0.989122i \(-0.546993\pi\)
−0.147096 + 0.989122i \(0.546993\pi\)
\(758\) 0 0
\(759\) −753546. −0.0474794
\(760\) 0 0
\(761\) −6.96999e6 −0.436285 −0.218143 0.975917i \(-0.570000\pi\)
−0.218143 + 0.975917i \(0.570000\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −6.13738e6 −0.379166
\(766\) 0 0
\(767\) −3.24242e6 −0.199013
\(768\) 0 0
\(769\) 3.02590e6 0.184518 0.0922590 0.995735i \(-0.470591\pi\)
0.0922590 + 0.995735i \(0.470591\pi\)
\(770\) 0 0
\(771\) 604967. 0.0366518
\(772\) 0 0
\(773\) 2.78539e7 1.67663 0.838314 0.545188i \(-0.183542\pi\)
0.838314 + 0.545188i \(0.183542\pi\)
\(774\) 0 0
\(775\) 2.92232e6 0.174772
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −2.56589e6 −0.151494
\(780\) 0 0
\(781\) −832170. −0.0488185
\(782\) 0 0
\(783\) −1.11795e7 −0.651653
\(784\) 0 0
\(785\) 5.36804e7 3.10915
\(786\) 0 0
\(787\) −2.87913e7 −1.65701 −0.828503 0.559985i \(-0.810807\pi\)
−0.828503 + 0.559985i \(0.810807\pi\)
\(788\) 0 0
\(789\) −1.66253e7 −0.950773
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −8.72910e6 −0.492931
\(794\) 0 0
\(795\) 2.98942e7 1.67753
\(796\) 0 0
\(797\) −3.67489e6 −0.204927 −0.102463 0.994737i \(-0.532672\pi\)
−0.102463 + 0.994737i \(0.532672\pi\)
\(798\) 0 0
\(799\) 6.47841e6 0.359006
\(800\) 0 0
\(801\) −2.54650e6 −0.140237
\(802\) 0 0
\(803\) −979251. −0.0535926
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1.29894e7 −0.702108
\(808\) 0 0
\(809\) −1.04012e7 −0.558744 −0.279372 0.960183i \(-0.590126\pi\)
−0.279372 + 0.960183i \(0.590126\pi\)
\(810\) 0 0
\(811\) 1.53749e7 0.820844 0.410422 0.911896i \(-0.365381\pi\)
0.410422 + 0.911896i \(0.365381\pi\)
\(812\) 0 0
\(813\) −1.90191e7 −1.00917
\(814\) 0 0
\(815\) 3.01552e7 1.59026
\(816\) 0 0
\(817\) −2.20877e7 −1.15770
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.91243e7 0.990209 0.495104 0.868834i \(-0.335130\pi\)
0.495104 + 0.868834i \(0.335130\pi\)
\(822\) 0 0
\(823\) −2.88895e6 −0.148676 −0.0743381 0.997233i \(-0.523684\pi\)
−0.0743381 + 0.997233i \(0.523684\pi\)
\(824\) 0 0
\(825\) 8.18942e6 0.418908
\(826\) 0 0
\(827\) 1.99201e7 1.01281 0.506406 0.862295i \(-0.330974\pi\)
0.506406 + 0.862295i \(0.330974\pi\)
\(828\) 0 0
\(829\) −1.19726e7 −0.605065 −0.302532 0.953139i \(-0.597832\pi\)
−0.302532 + 0.953139i \(0.597832\pi\)
\(830\) 0 0
\(831\) 1.59834e7 0.802909
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 1.39483e6 0.0692316
\(836\) 0 0
\(837\) −1.43211e6 −0.0706584
\(838\) 0 0
\(839\) 1.43453e7 0.703568 0.351784 0.936081i \(-0.385575\pi\)
0.351784 + 0.936081i \(0.385575\pi\)
\(840\) 0 0
\(841\) −1.26444e7 −0.616463
\(842\) 0 0
\(843\) −1.36657e7 −0.662313
\(844\) 0 0
\(845\) 6.98181e6 0.336377
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.55888e7 0.742239
\(850\) 0 0
\(851\) 5.09865e6 0.241341
\(852\) 0 0
\(853\) −1.41859e7 −0.667551 −0.333776 0.942653i \(-0.608323\pi\)
−0.333776 + 0.942653i \(0.608323\pi\)
\(854\) 0 0
\(855\) 1.48922e7 0.696698
\(856\) 0 0
\(857\) 2.41394e7 1.12273 0.561363 0.827570i \(-0.310277\pi\)
0.561363 + 0.827570i \(0.310277\pi\)
\(858\) 0 0
\(859\) −1.37343e7 −0.635071 −0.317536 0.948246i \(-0.602855\pi\)
−0.317536 + 0.948246i \(0.602855\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.74905e7 −0.799419 −0.399709 0.916642i \(-0.630889\pi\)
−0.399709 + 0.916642i \(0.630889\pi\)
\(864\) 0 0
\(865\) 5.45945e6 0.248090
\(866\) 0 0
\(867\) −1.30609e7 −0.590101
\(868\) 0 0
\(869\) 675534. 0.0303458
\(870\) 0 0
\(871\) 3.94418e7 1.76162
\(872\) 0 0
\(873\) 2.95872e6 0.131392
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −3.51221e7 −1.54199 −0.770995 0.636842i \(-0.780241\pi\)
−0.770995 + 0.636842i \(0.780241\pi\)
\(878\) 0 0
\(879\) 3.95510e6 0.172658
\(880\) 0 0
\(881\) −8.78528e6 −0.381343 −0.190672 0.981654i \(-0.561067\pi\)
−0.190672 + 0.981654i \(0.561067\pi\)
\(882\) 0 0
\(883\) −1.87501e7 −0.809287 −0.404643 0.914475i \(-0.632604\pi\)
−0.404643 + 0.914475i \(0.632604\pi\)
\(884\) 0 0
\(885\) −5.60781e6 −0.240677
\(886\) 0 0
\(887\) 2.72434e7 1.16266 0.581330 0.813668i \(-0.302532\pi\)
0.581330 + 0.813668i \(0.302532\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −1.13279e6 −0.0478030
\(892\) 0 0
\(893\) −1.57197e7 −0.659654
\(894\) 0 0
\(895\) 5.28124e7 2.20383
\(896\) 0 0
\(897\) −5.33198e6 −0.221262
\(898\) 0 0
\(899\) 1.00775e6 0.0415868
\(900\) 0 0
\(901\) 1.19197e7 0.489161
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −2.40987e7 −0.978076
\(906\) 0 0
\(907\) −2.90420e7 −1.17222 −0.586110 0.810232i \(-0.699341\pi\)
−0.586110 + 0.810232i \(0.699341\pi\)
\(908\) 0 0
\(909\) 8.75071e6 0.351264
\(910\) 0 0
\(911\) −4.12057e7 −1.64498 −0.822491 0.568778i \(-0.807417\pi\)
−0.822491 + 0.568778i \(0.807417\pi\)
\(912\) 0 0
\(913\) 9.38655e6 0.372674
\(914\) 0 0
\(915\) −1.50971e7 −0.596130
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.04768e7 −1.19037 −0.595184 0.803589i \(-0.702921\pi\)
−0.595184 + 0.803589i \(0.702921\pi\)
\(920\) 0 0
\(921\) 1.41473e6 0.0549574
\(922\) 0 0
\(923\) −5.88831e6 −0.227503
\(924\) 0 0
\(925\) −5.54114e7 −2.12934
\(926\) 0 0
\(927\) 1.44283e7 0.551460
\(928\) 0 0
\(929\) −3.60640e7 −1.37099 −0.685495 0.728077i \(-0.740414\pi\)
−0.685495 + 0.728077i \(0.740414\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 2.51598e7 0.946243
\(934\) 0 0
\(935\) 4.51996e6 0.169085
\(936\) 0 0
\(937\) 4.80602e7 1.78828 0.894141 0.447785i \(-0.147787\pi\)
0.894141 + 0.447785i \(0.147787\pi\)
\(938\) 0 0
\(939\) −8.32800e6 −0.308231
\(940\) 0 0
\(941\) −4.28577e7 −1.57781 −0.788906 0.614514i \(-0.789352\pi\)
−0.788906 + 0.614514i \(0.789352\pi\)
\(942\) 0 0
\(943\) −1.73581e6 −0.0635657
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −4.32432e7 −1.56690 −0.783452 0.621452i \(-0.786543\pi\)
−0.783452 + 0.621452i \(0.786543\pi\)
\(948\) 0 0
\(949\) −6.92904e6 −0.249751
\(950\) 0 0
\(951\) 5.65045e6 0.202596
\(952\) 0 0
\(953\) −2.81115e7 −1.00265 −0.501327 0.865258i \(-0.667155\pi\)
−0.501327 + 0.865258i \(0.667155\pi\)
\(954\) 0 0
\(955\) −5.33476e7 −1.89281
\(956\) 0 0
\(957\) 2.82410e6 0.0996783
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.85001e7 −0.995491
\(962\) 0 0
\(963\) −1.53876e7 −0.534695
\(964\) 0 0
\(965\) 1.48890e7 0.514691
\(966\) 0 0
\(967\) −3.70437e7 −1.27394 −0.636968 0.770890i \(-0.719812\pi\)
−0.636968 + 0.770890i \(0.719812\pi\)
\(968\) 0 0
\(969\) −5.43533e6 −0.185959
\(970\) 0 0
\(971\) 4.58140e7 1.55937 0.779686 0.626170i \(-0.215379\pi\)
0.779686 + 0.626170i \(0.215379\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 5.79471e7 1.95218
\(976\) 0 0
\(977\) 1.17497e6 0.0393812 0.0196906 0.999806i \(-0.493732\pi\)
0.0196906 + 0.999806i \(0.493732\pi\)
\(978\) 0 0
\(979\) 1.87540e6 0.0625372
\(980\) 0 0
\(981\) 7.78647e6 0.258326
\(982\) 0 0
\(983\) 2.63520e7 0.869822 0.434911 0.900474i \(-0.356780\pi\)
0.434911 + 0.900474i \(0.356780\pi\)
\(984\) 0 0
\(985\) 4.02132e7 1.32062
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.49422e7 −0.485761
\(990\) 0 0
\(991\) −3.82424e7 −1.23697 −0.618487 0.785795i \(-0.712254\pi\)
−0.618487 + 0.785795i \(0.712254\pi\)
\(992\) 0 0
\(993\) −6.80674e6 −0.219062
\(994\) 0 0
\(995\) 4.89170e7 1.56640
\(996\) 0 0
\(997\) 4.36919e7 1.39208 0.696038 0.718005i \(-0.254945\pi\)
0.696038 + 0.718005i \(0.254945\pi\)
\(998\) 0 0
\(999\) 2.71549e7 0.860865
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.s.1.2 2
4.3 odd 2 98.6.a.h.1.1 2
7.2 even 3 112.6.i.d.81.1 4
7.4 even 3 112.6.i.d.65.1 4
7.6 odd 2 784.6.a.bb.1.1 2
12.11 even 2 882.6.a.ba.1.1 2
28.3 even 6 98.6.c.e.79.1 4
28.11 odd 6 14.6.c.a.9.2 4
28.19 even 6 98.6.c.e.67.1 4
28.23 odd 6 14.6.c.a.11.2 yes 4
28.27 even 2 98.6.a.g.1.2 2
84.11 even 6 126.6.g.j.37.2 4
84.23 even 6 126.6.g.j.109.2 4
84.83 odd 2 882.6.a.bi.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.a.9.2 4 28.11 odd 6
14.6.c.a.11.2 yes 4 28.23 odd 6
98.6.a.g.1.2 2 28.27 even 2
98.6.a.h.1.1 2 4.3 odd 2
98.6.c.e.67.1 4 28.19 even 6
98.6.c.e.79.1 4 28.3 even 6
112.6.i.d.65.1 4 7.4 even 3
112.6.i.d.81.1 4 7.2 even 3
126.6.g.j.37.2 4 84.11 even 6
126.6.g.j.109.2 4 84.23 even 6
784.6.a.s.1.2 2 1.1 even 1 trivial
784.6.a.bb.1.1 2 7.6 odd 2
882.6.a.ba.1.1 2 12.11 even 2
882.6.a.bi.1.2 2 84.83 odd 2