Properties

Label 784.6.a.r.1.2
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-14,0,42,0,0,0,652] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{130}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 130 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(11.4018\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+15.8035 q^{3} +21.0000 q^{5} +6.75088 q^{9} +625.874 q^{11} +206.821 q^{13} +331.874 q^{15} -1061.46 q^{17} -1883.98 q^{19} -3717.37 q^{23} -2684.00 q^{25} -3733.56 q^{27} -123.747 q^{29} -9109.26 q^{31} +9891.00 q^{33} -6028.73 q^{37} +3268.50 q^{39} +17201.9 q^{41} -5401.98 q^{43} +141.769 q^{45} +1875.24 q^{47} -16774.8 q^{51} +18707.2 q^{53} +13143.3 q^{55} -29773.5 q^{57} -2534.78 q^{59} +2094.71 q^{61} +4343.24 q^{65} -58620.8 q^{67} -58747.5 q^{69} +31279.5 q^{71} +7150.47 q^{73} -42416.6 q^{75} -2979.81 q^{79} -60643.9 q^{81} +45954.6 q^{83} -22290.7 q^{85} -1955.64 q^{87} -99040.0 q^{89} -143958. q^{93} -39563.6 q^{95} +115548. q^{97} +4225.20 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} + 42 q^{5} + 652 q^{9} + 294 q^{11} + 140 q^{13} - 294 q^{15} - 1302 q^{17} - 1442 q^{19} - 2646 q^{23} - 5368 q^{25} - 15722 q^{27} + 1668 q^{29} - 14798 q^{31} + 19782 q^{33} + 5182 q^{37}+ \cdots - 209916 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 15.8035 1.01380 0.506898 0.862006i \(-0.330792\pi\)
0.506898 + 0.862006i \(0.330792\pi\)
\(4\) 0 0
\(5\) 21.0000 0.375659 0.187830 0.982202i \(-0.439855\pi\)
0.187830 + 0.982202i \(0.439855\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 6.75088 0.0277814
\(10\) 0 0
\(11\) 625.874 1.55957 0.779785 0.626047i \(-0.215328\pi\)
0.779785 + 0.626047i \(0.215328\pi\)
\(12\) 0 0
\(13\) 206.821 0.339419 0.169710 0.985494i \(-0.445717\pi\)
0.169710 + 0.985494i \(0.445717\pi\)
\(14\) 0 0
\(15\) 331.874 0.380842
\(16\) 0 0
\(17\) −1061.46 −0.890805 −0.445402 0.895330i \(-0.646939\pi\)
−0.445402 + 0.895330i \(0.646939\pi\)
\(18\) 0 0
\(19\) −1883.98 −1.19727 −0.598635 0.801022i \(-0.704290\pi\)
−0.598635 + 0.801022i \(0.704290\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3717.37 −1.46526 −0.732632 0.680625i \(-0.761708\pi\)
−0.732632 + 0.680625i \(0.761708\pi\)
\(24\) 0 0
\(25\) −2684.00 −0.858880
\(26\) 0 0
\(27\) −3733.56 −0.985631
\(28\) 0 0
\(29\) −123.747 −0.0273238 −0.0136619 0.999907i \(-0.504349\pi\)
−0.0136619 + 0.999907i \(0.504349\pi\)
\(30\) 0 0
\(31\) −9109.26 −1.70247 −0.851234 0.524786i \(-0.824145\pi\)
−0.851234 + 0.524786i \(0.824145\pi\)
\(32\) 0 0
\(33\) 9891.00 1.58109
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6028.73 −0.723971 −0.361986 0.932184i \(-0.617901\pi\)
−0.361986 + 0.932184i \(0.617901\pi\)
\(38\) 0 0
\(39\) 3268.50 0.344102
\(40\) 0 0
\(41\) 17201.9 1.59814 0.799071 0.601236i \(-0.205325\pi\)
0.799071 + 0.601236i \(0.205325\pi\)
\(42\) 0 0
\(43\) −5401.98 −0.445535 −0.222767 0.974872i \(-0.571509\pi\)
−0.222767 + 0.974872i \(0.571509\pi\)
\(44\) 0 0
\(45\) 141.769 0.0104363
\(46\) 0 0
\(47\) 1875.24 0.123826 0.0619131 0.998082i \(-0.480280\pi\)
0.0619131 + 0.998082i \(0.480280\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −16774.8 −0.903094
\(52\) 0 0
\(53\) 18707.2 0.914787 0.457393 0.889264i \(-0.348783\pi\)
0.457393 + 0.889264i \(0.348783\pi\)
\(54\) 0 0
\(55\) 13143.3 0.585867
\(56\) 0 0
\(57\) −29773.5 −1.21379
\(58\) 0 0
\(59\) −2534.78 −0.0948004 −0.0474002 0.998876i \(-0.515094\pi\)
−0.0474002 + 0.998876i \(0.515094\pi\)
\(60\) 0 0
\(61\) 2094.71 0.0720773 0.0360386 0.999350i \(-0.488526\pi\)
0.0360386 + 0.999350i \(0.488526\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 4343.24 0.127506
\(66\) 0 0
\(67\) −58620.8 −1.59538 −0.797691 0.603067i \(-0.793945\pi\)
−0.797691 + 0.603067i \(0.793945\pi\)
\(68\) 0 0
\(69\) −58747.5 −1.48548
\(70\) 0 0
\(71\) 31279.5 0.736401 0.368201 0.929746i \(-0.379974\pi\)
0.368201 + 0.929746i \(0.379974\pi\)
\(72\) 0 0
\(73\) 7150.47 0.157046 0.0785231 0.996912i \(-0.474980\pi\)
0.0785231 + 0.996912i \(0.474980\pi\)
\(74\) 0 0
\(75\) −42416.6 −0.870729
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −2979.81 −0.0537181 −0.0268591 0.999639i \(-0.508551\pi\)
−0.0268591 + 0.999639i \(0.508551\pi\)
\(80\) 0 0
\(81\) −60643.9 −1.02701
\(82\) 0 0
\(83\) 45954.6 0.732207 0.366103 0.930574i \(-0.380692\pi\)
0.366103 + 0.930574i \(0.380692\pi\)
\(84\) 0 0
\(85\) −22290.7 −0.334639
\(86\) 0 0
\(87\) −1955.64 −0.0277007
\(88\) 0 0
\(89\) −99040.0 −1.32536 −0.662682 0.748900i \(-0.730582\pi\)
−0.662682 + 0.748900i \(0.730582\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −143958. −1.72595
\(94\) 0 0
\(95\) −39563.6 −0.449766
\(96\) 0 0
\(97\) 115548. 1.24691 0.623454 0.781860i \(-0.285729\pi\)
0.623454 + 0.781860i \(0.285729\pi\)
\(98\) 0 0
\(99\) 4225.20 0.0433271
\(100\) 0 0
\(101\) −10951.5 −0.106824 −0.0534120 0.998573i \(-0.517010\pi\)
−0.0534120 + 0.998573i \(0.517010\pi\)
\(102\) 0 0
\(103\) −137724. −1.27914 −0.639570 0.768733i \(-0.720887\pi\)
−0.639570 + 0.768733i \(0.720887\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −75573.0 −0.638127 −0.319064 0.947733i \(-0.603368\pi\)
−0.319064 + 0.947733i \(0.603368\pi\)
\(108\) 0 0
\(109\) 44526.3 0.358963 0.179482 0.983761i \(-0.442558\pi\)
0.179482 + 0.983761i \(0.442558\pi\)
\(110\) 0 0
\(111\) −95275.0 −0.733959
\(112\) 0 0
\(113\) 90456.5 0.666413 0.333207 0.942854i \(-0.391869\pi\)
0.333207 + 0.942854i \(0.391869\pi\)
\(114\) 0 0
\(115\) −78064.7 −0.550440
\(116\) 0 0
\(117\) 1396.22 0.00942954
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 230667. 1.43226
\(122\) 0 0
\(123\) 271850. 1.62019
\(124\) 0 0
\(125\) −121989. −0.698306
\(126\) 0 0
\(127\) −187707. −1.03269 −0.516346 0.856380i \(-0.672708\pi\)
−0.516346 + 0.856380i \(0.672708\pi\)
\(128\) 0 0
\(129\) −85370.2 −0.451681
\(130\) 0 0
\(131\) 154412. 0.786147 0.393073 0.919507i \(-0.371412\pi\)
0.393073 + 0.919507i \(0.371412\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −78404.9 −0.370262
\(136\) 0 0
\(137\) 109238. 0.497246 0.248623 0.968600i \(-0.420022\pi\)
0.248623 + 0.968600i \(0.420022\pi\)
\(138\) 0 0
\(139\) −204695. −0.898609 −0.449305 0.893379i \(-0.648328\pi\)
−0.449305 + 0.893379i \(0.648328\pi\)
\(140\) 0 0
\(141\) 29635.4 0.125534
\(142\) 0 0
\(143\) 129444. 0.529348
\(144\) 0 0
\(145\) −2598.69 −0.0102644
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −406308. −1.49930 −0.749651 0.661833i \(-0.769779\pi\)
−0.749651 + 0.661833i \(0.769779\pi\)
\(150\) 0 0
\(151\) 416838. 1.48773 0.743866 0.668328i \(-0.232990\pi\)
0.743866 + 0.668328i \(0.232990\pi\)
\(152\) 0 0
\(153\) −7165.81 −0.0247478
\(154\) 0 0
\(155\) −191295. −0.639548
\(156\) 0 0
\(157\) −119291. −0.386240 −0.193120 0.981175i \(-0.561861\pi\)
−0.193120 + 0.981175i \(0.561861\pi\)
\(158\) 0 0
\(159\) 295640. 0.927407
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −47372.4 −0.139655 −0.0698275 0.997559i \(-0.522245\pi\)
−0.0698275 + 0.997559i \(0.522245\pi\)
\(164\) 0 0
\(165\) 207711. 0.593950
\(166\) 0 0
\(167\) −231669. −0.642802 −0.321401 0.946943i \(-0.604154\pi\)
−0.321401 + 0.946943i \(0.604154\pi\)
\(168\) 0 0
\(169\) −328518. −0.884795
\(170\) 0 0
\(171\) −12718.5 −0.0332618
\(172\) 0 0
\(173\) −134339. −0.341262 −0.170631 0.985335i \(-0.554581\pi\)
−0.170631 + 0.985335i \(0.554581\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −40058.4 −0.0961082
\(178\) 0 0
\(179\) −46584.4 −0.108669 −0.0543347 0.998523i \(-0.517304\pi\)
−0.0543347 + 0.998523i \(0.517304\pi\)
\(180\) 0 0
\(181\) −829210. −1.88134 −0.940672 0.339317i \(-0.889804\pi\)
−0.940672 + 0.339317i \(0.889804\pi\)
\(182\) 0 0
\(183\) 33103.7 0.0730716
\(184\) 0 0
\(185\) −126603. −0.271967
\(186\) 0 0
\(187\) −664342. −1.38927
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 471917. 0.936013 0.468006 0.883725i \(-0.344972\pi\)
0.468006 + 0.883725i \(0.344972\pi\)
\(192\) 0 0
\(193\) 688354. 1.33021 0.665103 0.746752i \(-0.268388\pi\)
0.665103 + 0.746752i \(0.268388\pi\)
\(194\) 0 0
\(195\) 68638.5 0.129265
\(196\) 0 0
\(197\) 311915. 0.572625 0.286313 0.958136i \(-0.407570\pi\)
0.286313 + 0.958136i \(0.407570\pi\)
\(198\) 0 0
\(199\) −287212. −0.514126 −0.257063 0.966395i \(-0.582755\pi\)
−0.257063 + 0.966395i \(0.582755\pi\)
\(200\) 0 0
\(201\) −926414. −1.61739
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 361239. 0.600357
\(206\) 0 0
\(207\) −25095.5 −0.0407071
\(208\) 0 0
\(209\) −1.17913e6 −1.86723
\(210\) 0 0
\(211\) 460493. 0.712061 0.356031 0.934474i \(-0.384130\pi\)
0.356031 + 0.934474i \(0.384130\pi\)
\(212\) 0 0
\(213\) 494326. 0.746560
\(214\) 0 0
\(215\) −113442. −0.167369
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 113003. 0.159213
\(220\) 0 0
\(221\) −219533. −0.302356
\(222\) 0 0
\(223\) −1.19776e6 −1.61290 −0.806449 0.591304i \(-0.798613\pi\)
−0.806449 + 0.591304i \(0.798613\pi\)
\(224\) 0 0
\(225\) −18119.4 −0.0238609
\(226\) 0 0
\(227\) 894561. 1.15225 0.576123 0.817363i \(-0.304565\pi\)
0.576123 + 0.817363i \(0.304565\pi\)
\(228\) 0 0
\(229\) 259256. 0.326693 0.163347 0.986569i \(-0.447771\pi\)
0.163347 + 0.986569i \(0.447771\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 211315. 0.255000 0.127500 0.991839i \(-0.459305\pi\)
0.127500 + 0.991839i \(0.459305\pi\)
\(234\) 0 0
\(235\) 39380.1 0.0465165
\(236\) 0 0
\(237\) −47091.5 −0.0544592
\(238\) 0 0
\(239\) −463.018 −0.000524328 0 −0.000262164 1.00000i \(-0.500083\pi\)
−0.000262164 1.00000i \(0.500083\pi\)
\(240\) 0 0
\(241\) −286395. −0.317631 −0.158815 0.987308i \(-0.550767\pi\)
−0.158815 + 0.987308i \(0.550767\pi\)
\(242\) 0 0
\(243\) −51129.9 −0.0555469
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −389647. −0.406376
\(248\) 0 0
\(249\) 726244. 0.742308
\(250\) 0 0
\(251\) −1.37168e6 −1.37426 −0.687129 0.726535i \(-0.741130\pi\)
−0.687129 + 0.726535i \(0.741130\pi\)
\(252\) 0 0
\(253\) −2.32660e6 −2.28518
\(254\) 0 0
\(255\) −352272. −0.339256
\(256\) 0 0
\(257\) 759223. 0.717029 0.358515 0.933524i \(-0.383283\pi\)
0.358515 + 0.933524i \(0.383283\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −835.404 −0.000759093 0
\(262\) 0 0
\(263\) 1.07244e6 0.956061 0.478030 0.878343i \(-0.341351\pi\)
0.478030 + 0.878343i \(0.341351\pi\)
\(264\) 0 0
\(265\) 392852. 0.343648
\(266\) 0 0
\(267\) −1.56518e6 −1.34365
\(268\) 0 0
\(269\) 1.76611e6 1.48812 0.744059 0.668114i \(-0.232898\pi\)
0.744059 + 0.668114i \(0.232898\pi\)
\(270\) 0 0
\(271\) −2.05171e6 −1.69704 −0.848522 0.529160i \(-0.822507\pi\)
−0.848522 + 0.529160i \(0.822507\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −1.67984e6 −1.33948
\(276\) 0 0
\(277\) 870682. 0.681805 0.340903 0.940099i \(-0.389267\pi\)
0.340903 + 0.940099i \(0.389267\pi\)
\(278\) 0 0
\(279\) −61495.6 −0.0472970
\(280\) 0 0
\(281\) 2.35412e6 1.77854 0.889270 0.457383i \(-0.151213\pi\)
0.889270 + 0.457383i \(0.151213\pi\)
\(282\) 0 0
\(283\) −2.19035e6 −1.62573 −0.812863 0.582454i \(-0.802092\pi\)
−0.812863 + 0.582454i \(0.802092\pi\)
\(284\) 0 0
\(285\) −625243. −0.455970
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −293153. −0.206467
\(290\) 0 0
\(291\) 1.82607e6 1.26411
\(292\) 0 0
\(293\) 807700. 0.549644 0.274822 0.961495i \(-0.411381\pi\)
0.274822 + 0.961495i \(0.411381\pi\)
\(294\) 0 0
\(295\) −53230.4 −0.0356127
\(296\) 0 0
\(297\) −2.33674e6 −1.53716
\(298\) 0 0
\(299\) −768830. −0.497339
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −173072. −0.108298
\(304\) 0 0
\(305\) 43988.8 0.0270765
\(306\) 0 0
\(307\) 211516. 0.128085 0.0640424 0.997947i \(-0.479601\pi\)
0.0640424 + 0.997947i \(0.479601\pi\)
\(308\) 0 0
\(309\) −2.17653e6 −1.29679
\(310\) 0 0
\(311\) −291709. −0.171021 −0.0855104 0.996337i \(-0.527252\pi\)
−0.0855104 + 0.996337i \(0.527252\pi\)
\(312\) 0 0
\(313\) 1.99598e6 1.15158 0.575791 0.817597i \(-0.304694\pi\)
0.575791 + 0.817597i \(0.304694\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.80957e6 −1.57033 −0.785167 0.619285i \(-0.787423\pi\)
−0.785167 + 0.619285i \(0.787423\pi\)
\(318\) 0 0
\(319\) −77450.2 −0.0426134
\(320\) 0 0
\(321\) −1.19432e6 −0.646930
\(322\) 0 0
\(323\) 1.99977e6 1.06653
\(324\) 0 0
\(325\) −555108. −0.291520
\(326\) 0 0
\(327\) 703671. 0.363916
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.38050e6 −0.692572 −0.346286 0.938129i \(-0.612557\pi\)
−0.346286 + 0.938129i \(0.612557\pi\)
\(332\) 0 0
\(333\) −40699.2 −0.0201129
\(334\) 0 0
\(335\) −1.23104e6 −0.599320
\(336\) 0 0
\(337\) 566429. 0.271688 0.135844 0.990730i \(-0.456625\pi\)
0.135844 + 0.990730i \(0.456625\pi\)
\(338\) 0 0
\(339\) 1.42953e6 0.675607
\(340\) 0 0
\(341\) −5.70125e6 −2.65512
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.23370e6 −0.558034
\(346\) 0 0
\(347\) −540207. −0.240845 −0.120422 0.992723i \(-0.538425\pi\)
−0.120422 + 0.992723i \(0.538425\pi\)
\(348\) 0 0
\(349\) −1.73807e6 −0.763841 −0.381921 0.924195i \(-0.624737\pi\)
−0.381921 + 0.924195i \(0.624737\pi\)
\(350\) 0 0
\(351\) −772180. −0.334542
\(352\) 0 0
\(353\) −1.07422e6 −0.458834 −0.229417 0.973328i \(-0.573682\pi\)
−0.229417 + 0.973328i \(0.573682\pi\)
\(354\) 0 0
\(355\) 656870. 0.276636
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −121204. −0.0496341 −0.0248170 0.999692i \(-0.507900\pi\)
−0.0248170 + 0.999692i \(0.507900\pi\)
\(360\) 0 0
\(361\) 1.07328e6 0.433455
\(362\) 0 0
\(363\) 3.64535e6 1.45202
\(364\) 0 0
\(365\) 150160. 0.0589959
\(366\) 0 0
\(367\) −553829. −0.214640 −0.107320 0.994225i \(-0.534227\pi\)
−0.107320 + 0.994225i \(0.534227\pi\)
\(368\) 0 0
\(369\) 116128. 0.0443986
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −501478. −0.186629 −0.0933146 0.995637i \(-0.529746\pi\)
−0.0933146 + 0.995637i \(0.529746\pi\)
\(374\) 0 0
\(375\) −1.92785e6 −0.707939
\(376\) 0 0
\(377\) −25593.6 −0.00927422
\(378\) 0 0
\(379\) −999004. −0.357248 −0.178624 0.983917i \(-0.557165\pi\)
−0.178624 + 0.983917i \(0.557165\pi\)
\(380\) 0 0
\(381\) −2.96643e6 −1.04694
\(382\) 0 0
\(383\) 652464. 0.227279 0.113640 0.993522i \(-0.463749\pi\)
0.113640 + 0.993522i \(0.463749\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −36468.1 −0.0123776
\(388\) 0 0
\(389\) −79253.0 −0.0265547 −0.0132774 0.999912i \(-0.504226\pi\)
−0.0132774 + 0.999912i \(0.504226\pi\)
\(390\) 0 0
\(391\) 3.94585e6 1.30526
\(392\) 0 0
\(393\) 2.44026e6 0.796992
\(394\) 0 0
\(395\) −62576.0 −0.0201797
\(396\) 0 0
\(397\) −4.00886e6 −1.27657 −0.638284 0.769801i \(-0.720356\pi\)
−0.638284 + 0.769801i \(0.720356\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 674418. 0.209444 0.104722 0.994502i \(-0.466605\pi\)
0.104722 + 0.994502i \(0.466605\pi\)
\(402\) 0 0
\(403\) −1.88399e6 −0.577850
\(404\) 0 0
\(405\) −1.27352e6 −0.385806
\(406\) 0 0
\(407\) −3.77322e6 −1.12908
\(408\) 0 0
\(409\) 2.85413e6 0.843656 0.421828 0.906676i \(-0.361389\pi\)
0.421828 + 0.906676i \(0.361389\pi\)
\(410\) 0 0
\(411\) 1.72634e6 0.504106
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 965047. 0.275060
\(416\) 0 0
\(417\) −3.23490e6 −0.911006
\(418\) 0 0
\(419\) −4.66553e6 −1.29827 −0.649136 0.760672i \(-0.724870\pi\)
−0.649136 + 0.760672i \(0.724870\pi\)
\(420\) 0 0
\(421\) −3.73317e6 −1.02653 −0.513266 0.858229i \(-0.671565\pi\)
−0.513266 + 0.858229i \(0.671565\pi\)
\(422\) 0 0
\(423\) 12659.5 0.00344007
\(424\) 0 0
\(425\) 2.84897e6 0.765095
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 2.04567e6 0.536651
\(430\) 0 0
\(431\) −964670. −0.250141 −0.125071 0.992148i \(-0.539916\pi\)
−0.125071 + 0.992148i \(0.539916\pi\)
\(432\) 0 0
\(433\) 6.18096e6 1.58429 0.792147 0.610330i \(-0.208963\pi\)
0.792147 + 0.610330i \(0.208963\pi\)
\(434\) 0 0
\(435\) −41068.5 −0.0104060
\(436\) 0 0
\(437\) 7.00344e6 1.75432
\(438\) 0 0
\(439\) −215135. −0.0532782 −0.0266391 0.999645i \(-0.508480\pi\)
−0.0266391 + 0.999645i \(0.508480\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.19867e6 1.74278 0.871391 0.490589i \(-0.163218\pi\)
0.871391 + 0.490589i \(0.163218\pi\)
\(444\) 0 0
\(445\) −2.07984e6 −0.497886
\(446\) 0 0
\(447\) −6.42109e6 −1.51999
\(448\) 0 0
\(449\) 3.92153e6 0.917994 0.458997 0.888438i \(-0.348209\pi\)
0.458997 + 0.888438i \(0.348209\pi\)
\(450\) 0 0
\(451\) 1.07662e7 2.49242
\(452\) 0 0
\(453\) 6.58750e6 1.50826
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.32168e6 0.296030 0.148015 0.988985i \(-0.452712\pi\)
0.148015 + 0.988985i \(0.452712\pi\)
\(458\) 0 0
\(459\) 3.96304e6 0.878005
\(460\) 0 0
\(461\) 75459.1 0.0165371 0.00826855 0.999966i \(-0.497368\pi\)
0.00826855 + 0.999966i \(0.497368\pi\)
\(462\) 0 0
\(463\) 3.28757e6 0.712727 0.356363 0.934347i \(-0.384016\pi\)
0.356363 + 0.934347i \(0.384016\pi\)
\(464\) 0 0
\(465\) −3.02312e6 −0.648371
\(466\) 0 0
\(467\) −643382. −0.136514 −0.0682569 0.997668i \(-0.521744\pi\)
−0.0682569 + 0.997668i \(0.521744\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.88521e6 −0.391568
\(472\) 0 0
\(473\) −3.38096e6 −0.694843
\(474\) 0 0
\(475\) 5.05660e6 1.02831
\(476\) 0 0
\(477\) 126290. 0.0254141
\(478\) 0 0
\(479\) −7.42648e6 −1.47892 −0.739459 0.673202i \(-0.764919\pi\)
−0.739459 + 0.673202i \(0.764919\pi\)
\(480\) 0 0
\(481\) −1.24687e6 −0.245730
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.42652e6 0.468413
\(486\) 0 0
\(487\) 4.17085e6 0.796896 0.398448 0.917191i \(-0.369549\pi\)
0.398448 + 0.917191i \(0.369549\pi\)
\(488\) 0 0
\(489\) −748651. −0.141582
\(490\) 0 0
\(491\) 3.73674e6 0.699502 0.349751 0.936843i \(-0.386266\pi\)
0.349751 + 0.936843i \(0.386266\pi\)
\(492\) 0 0
\(493\) 131353. 0.0243402
\(494\) 0 0
\(495\) 88729.2 0.0162762
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −8.70862e6 −1.56566 −0.782831 0.622235i \(-0.786225\pi\)
−0.782831 + 0.622235i \(0.786225\pi\)
\(500\) 0 0
\(501\) −3.66119e6 −0.651670
\(502\) 0 0
\(503\) 3.28384e6 0.578711 0.289355 0.957222i \(-0.406559\pi\)
0.289355 + 0.957222i \(0.406559\pi\)
\(504\) 0 0
\(505\) −229981. −0.0401294
\(506\) 0 0
\(507\) −5.19174e6 −0.897001
\(508\) 0 0
\(509\) 9.43703e6 1.61451 0.807255 0.590203i \(-0.200952\pi\)
0.807255 + 0.590203i \(0.200952\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.03396e6 1.18007
\(514\) 0 0
\(515\) −2.89221e6 −0.480521
\(516\) 0 0
\(517\) 1.17366e6 0.193116
\(518\) 0 0
\(519\) −2.12303e6 −0.345970
\(520\) 0 0
\(521\) −5.90726e6 −0.953437 −0.476719 0.879056i \(-0.658174\pi\)
−0.476719 + 0.879056i \(0.658174\pi\)
\(522\) 0 0
\(523\) 654337. 0.104604 0.0523019 0.998631i \(-0.483344\pi\)
0.0523019 + 0.998631i \(0.483344\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 9.66915e6 1.51657
\(528\) 0 0
\(529\) 7.38248e6 1.14700
\(530\) 0 0
\(531\) −17112.0 −0.00263369
\(532\) 0 0
\(533\) 3.55771e6 0.542440
\(534\) 0 0
\(535\) −1.58703e6 −0.239718
\(536\) 0 0
\(537\) −736196. −0.110169
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −863115. −0.126787 −0.0633936 0.997989i \(-0.520192\pi\)
−0.0633936 + 0.997989i \(0.520192\pi\)
\(542\) 0 0
\(543\) −1.31044e7 −1.90730
\(544\) 0 0
\(545\) 935052. 0.134848
\(546\) 0 0
\(547\) 5.45692e6 0.779794 0.389897 0.920859i \(-0.372511\pi\)
0.389897 + 0.920859i \(0.372511\pi\)
\(548\) 0 0
\(549\) 14141.1 0.00200241
\(550\) 0 0
\(551\) 233137. 0.0327139
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −2.00078e6 −0.275719
\(556\) 0 0
\(557\) 1.11776e7 1.52655 0.763275 0.646074i \(-0.223590\pi\)
0.763275 + 0.646074i \(0.223590\pi\)
\(558\) 0 0
\(559\) −1.11724e6 −0.151223
\(560\) 0 0
\(561\) −1.04989e7 −1.40844
\(562\) 0 0
\(563\) 880265. 0.117042 0.0585211 0.998286i \(-0.481362\pi\)
0.0585211 + 0.998286i \(0.481362\pi\)
\(564\) 0 0
\(565\) 1.89959e6 0.250344
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.54972e6 −0.200665 −0.100332 0.994954i \(-0.531991\pi\)
−0.100332 + 0.994954i \(0.531991\pi\)
\(570\) 0 0
\(571\) 1.09701e7 1.40806 0.704032 0.710168i \(-0.251381\pi\)
0.704032 + 0.710168i \(0.251381\pi\)
\(572\) 0 0
\(573\) 7.45794e6 0.948926
\(574\) 0 0
\(575\) 9.97742e6 1.25849
\(576\) 0 0
\(577\) 1.25868e7 1.57390 0.786948 0.617019i \(-0.211660\pi\)
0.786948 + 0.617019i \(0.211660\pi\)
\(578\) 0 0
\(579\) 1.08784e7 1.34856
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.17084e7 1.42667
\(584\) 0 0
\(585\) 29320.7 0.00354230
\(586\) 0 0
\(587\) 1.19962e7 1.43697 0.718484 0.695544i \(-0.244836\pi\)
0.718484 + 0.695544i \(0.244836\pi\)
\(588\) 0 0
\(589\) 1.71617e7 2.03831
\(590\) 0 0
\(591\) 4.92935e6 0.580525
\(592\) 0 0
\(593\) −5.32309e6 −0.621623 −0.310811 0.950472i \(-0.600601\pi\)
−0.310811 + 0.950472i \(0.600601\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.53895e6 −0.521218
\(598\) 0 0
\(599\) −7.55513e6 −0.860350 −0.430175 0.902746i \(-0.641548\pi\)
−0.430175 + 0.902746i \(0.641548\pi\)
\(600\) 0 0
\(601\) −4.44758e6 −0.502270 −0.251135 0.967952i \(-0.580804\pi\)
−0.251135 + 0.967952i \(0.580804\pi\)
\(602\) 0 0
\(603\) −395742. −0.0443219
\(604\) 0 0
\(605\) 4.84400e6 0.538042
\(606\) 0 0
\(607\) 5.57320e6 0.613950 0.306975 0.951718i \(-0.400683\pi\)
0.306975 + 0.951718i \(0.400683\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 387840. 0.0420290
\(612\) 0 0
\(613\) −1.11265e7 −1.19593 −0.597965 0.801522i \(-0.704024\pi\)
−0.597965 + 0.801522i \(0.704024\pi\)
\(614\) 0 0
\(615\) 5.70884e6 0.608640
\(616\) 0 0
\(617\) −1.07454e7 −1.13634 −0.568170 0.822911i \(-0.692349\pi\)
−0.568170 + 0.822911i \(0.692349\pi\)
\(618\) 0 0
\(619\) 1.35756e7 1.42408 0.712038 0.702141i \(-0.247772\pi\)
0.712038 + 0.702141i \(0.247772\pi\)
\(620\) 0 0
\(621\) 1.38790e7 1.44421
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 5.82573e6 0.596555
\(626\) 0 0
\(627\) −1.86344e7 −1.89299
\(628\) 0 0
\(629\) 6.39927e6 0.644917
\(630\) 0 0
\(631\) −1.27986e7 −1.27964 −0.639820 0.768525i \(-0.720991\pi\)
−0.639820 + 0.768525i \(0.720991\pi\)
\(632\) 0 0
\(633\) 7.27741e6 0.721885
\(634\) 0 0
\(635\) −3.94184e6 −0.387941
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 211164. 0.0204583
\(640\) 0 0
\(641\) −884833. −0.0850582 −0.0425291 0.999095i \(-0.513542\pi\)
−0.0425291 + 0.999095i \(0.513542\pi\)
\(642\) 0 0
\(643\) 6.66271e6 0.635511 0.317756 0.948173i \(-0.397071\pi\)
0.317756 + 0.948173i \(0.397071\pi\)
\(644\) 0 0
\(645\) −1.79277e6 −0.169678
\(646\) 0 0
\(647\) −1.69177e7 −1.58885 −0.794423 0.607365i \(-0.792227\pi\)
−0.794423 + 0.607365i \(0.792227\pi\)
\(648\) 0 0
\(649\) −1.58645e6 −0.147848
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.49307e6 0.871212 0.435606 0.900137i \(-0.356534\pi\)
0.435606 + 0.900137i \(0.356534\pi\)
\(654\) 0 0
\(655\) 3.24266e6 0.295323
\(656\) 0 0
\(657\) 48272.0 0.00436297
\(658\) 0 0
\(659\) 4.97563e6 0.446308 0.223154 0.974783i \(-0.428365\pi\)
0.223154 + 0.974783i \(0.428365\pi\)
\(660\) 0 0
\(661\) −2.11531e7 −1.88309 −0.941543 0.336894i \(-0.890624\pi\)
−0.941543 + 0.336894i \(0.890624\pi\)
\(662\) 0 0
\(663\) −3.46939e6 −0.306527
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 460015. 0.0400366
\(668\) 0 0
\(669\) −1.89288e7 −1.63515
\(670\) 0 0
\(671\) 1.31102e6 0.112410
\(672\) 0 0
\(673\) 417573. 0.0355382 0.0177691 0.999842i \(-0.494344\pi\)
0.0177691 + 0.999842i \(0.494344\pi\)
\(674\) 0 0
\(675\) 1.00209e7 0.846539
\(676\) 0 0
\(677\) −2.62468e6 −0.220092 −0.110046 0.993926i \(-0.535100\pi\)
−0.110046 + 0.993926i \(0.535100\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.41372e7 1.16814
\(682\) 0 0
\(683\) 8.74455e6 0.717275 0.358637 0.933477i \(-0.383241\pi\)
0.358637 + 0.933477i \(0.383241\pi\)
\(684\) 0 0
\(685\) 2.29399e6 0.186795
\(686\) 0 0
\(687\) 4.09716e6 0.331200
\(688\) 0 0
\(689\) 3.86905e6 0.310496
\(690\) 0 0
\(691\) 4.39667e6 0.350291 0.175146 0.984543i \(-0.443960\pi\)
0.175146 + 0.984543i \(0.443960\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −4.29860e6 −0.337571
\(696\) 0 0
\(697\) −1.82591e7 −1.42363
\(698\) 0 0
\(699\) 3.33951e6 0.258518
\(700\) 0 0
\(701\) 6.51339e6 0.500624 0.250312 0.968165i \(-0.419467\pi\)
0.250312 + 0.968165i \(0.419467\pi\)
\(702\) 0 0
\(703\) 1.13580e7 0.866789
\(704\) 0 0
\(705\) 622343. 0.0471582
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.04651e7 −0.781859 −0.390929 0.920421i \(-0.627846\pi\)
−0.390929 + 0.920421i \(0.627846\pi\)
\(710\) 0 0
\(711\) −20116.3 −0.00149237
\(712\) 0 0
\(713\) 3.38625e7 2.49457
\(714\) 0 0
\(715\) 2.71832e6 0.198855
\(716\) 0 0
\(717\) −7317.31 −0.000531562 0
\(718\) 0 0
\(719\) −1.68149e7 −1.21303 −0.606516 0.795071i \(-0.707433\pi\)
−0.606516 + 0.795071i \(0.707433\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −4.52605e6 −0.322013
\(724\) 0 0
\(725\) 332138. 0.0234679
\(726\) 0 0
\(727\) −1.71928e7 −1.20646 −0.603228 0.797569i \(-0.706119\pi\)
−0.603228 + 0.797569i \(0.706119\pi\)
\(728\) 0 0
\(729\) 1.39284e7 0.970696
\(730\) 0 0
\(731\) 5.73400e6 0.396885
\(732\) 0 0
\(733\) −1.97365e7 −1.35679 −0.678393 0.734700i \(-0.737323\pi\)
−0.678393 + 0.734700i \(0.737323\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −3.66892e7 −2.48811
\(738\) 0 0
\(739\) −1.28719e7 −0.867022 −0.433511 0.901148i \(-0.642725\pi\)
−0.433511 + 0.901148i \(0.642725\pi\)
\(740\) 0 0
\(741\) −6.15778e6 −0.411983
\(742\) 0 0
\(743\) −2.45606e7 −1.63218 −0.816089 0.577927i \(-0.803862\pi\)
−0.816089 + 0.577927i \(0.803862\pi\)
\(744\) 0 0
\(745\) −8.53246e6 −0.563227
\(746\) 0 0
\(747\) 310234. 0.0203417
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 325965. 0.0210898 0.0105449 0.999944i \(-0.496643\pi\)
0.0105449 + 0.999944i \(0.496643\pi\)
\(752\) 0 0
\(753\) −2.16774e7 −1.39322
\(754\) 0 0
\(755\) 8.75360e6 0.558881
\(756\) 0 0
\(757\) 1.84659e7 1.17120 0.585599 0.810601i \(-0.300859\pi\)
0.585599 + 0.810601i \(0.300859\pi\)
\(758\) 0 0
\(759\) −3.67685e7 −2.31671
\(760\) 0 0
\(761\) −5.12626e6 −0.320877 −0.160439 0.987046i \(-0.551291\pi\)
−0.160439 + 0.987046i \(0.551291\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −150482. −0.00929675
\(766\) 0 0
\(767\) −524246. −0.0321771
\(768\) 0 0
\(769\) −1.63432e6 −0.0996602 −0.0498301 0.998758i \(-0.515868\pi\)
−0.0498301 + 0.998758i \(0.515868\pi\)
\(770\) 0 0
\(771\) 1.19984e7 0.726921
\(772\) 0 0
\(773\) 4.28257e6 0.257784 0.128892 0.991659i \(-0.458858\pi\)
0.128892 + 0.991659i \(0.458858\pi\)
\(774\) 0 0
\(775\) 2.44493e7 1.46222
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −3.24079e7 −1.91341
\(780\) 0 0
\(781\) 1.95770e7 1.14847
\(782\) 0 0
\(783\) 462019. 0.0269312
\(784\) 0 0
\(785\) −2.50510e6 −0.145095
\(786\) 0 0
\(787\) −7.82963e6 −0.450614 −0.225307 0.974288i \(-0.572338\pi\)
−0.225307 + 0.974288i \(0.572338\pi\)
\(788\) 0 0
\(789\) 1.69484e7 0.969250
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 433229. 0.0244644
\(794\) 0 0
\(795\) 6.20844e6 0.348389
\(796\) 0 0
\(797\) 3.68238e6 0.205344 0.102672 0.994715i \(-0.467261\pi\)
0.102672 + 0.994715i \(0.467261\pi\)
\(798\) 0 0
\(799\) −1.99050e6 −0.110305
\(800\) 0 0
\(801\) −668607. −0.0368205
\(802\) 0 0
\(803\) 4.47529e6 0.244925
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 2.79108e7 1.50865
\(808\) 0 0
\(809\) 2.08181e7 1.11833 0.559165 0.829056i \(-0.311122\pi\)
0.559165 + 0.829056i \(0.311122\pi\)
\(810\) 0 0
\(811\) 3.03542e7 1.62057 0.810283 0.586039i \(-0.199313\pi\)
0.810283 + 0.586039i \(0.199313\pi\)
\(812\) 0 0
\(813\) −3.24243e7 −1.72046
\(814\) 0 0
\(815\) −994821. −0.0524627
\(816\) 0 0
\(817\) 1.01772e7 0.533426
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.74387e7 1.42071 0.710355 0.703843i \(-0.248534\pi\)
0.710355 + 0.703843i \(0.248534\pi\)
\(822\) 0 0
\(823\) −1.59126e7 −0.818919 −0.409459 0.912328i \(-0.634283\pi\)
−0.409459 + 0.912328i \(0.634283\pi\)
\(824\) 0 0
\(825\) −2.65474e7 −1.35796
\(826\) 0 0
\(827\) −1.40824e7 −0.716001 −0.358001 0.933721i \(-0.616541\pi\)
−0.358001 + 0.933721i \(0.616541\pi\)
\(828\) 0 0
\(829\) −2.18883e7 −1.10618 −0.553089 0.833122i \(-0.686551\pi\)
−0.553089 + 0.833122i \(0.686551\pi\)
\(830\) 0 0
\(831\) 1.37598e7 0.691211
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −4.86505e6 −0.241475
\(836\) 0 0
\(837\) 3.40100e7 1.67801
\(838\) 0 0
\(839\) −1.98669e7 −0.974372 −0.487186 0.873298i \(-0.661977\pi\)
−0.487186 + 0.873298i \(0.661977\pi\)
\(840\) 0 0
\(841\) −2.04958e7 −0.999253
\(842\) 0 0
\(843\) 3.72034e7 1.80308
\(844\) 0 0
\(845\) −6.89888e6 −0.332381
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.46152e7 −1.64815
\(850\) 0 0
\(851\) 2.24110e7 1.06081
\(852\) 0 0
\(853\) −8.75258e6 −0.411873 −0.205937 0.978565i \(-0.566024\pi\)
−0.205937 + 0.978565i \(0.566024\pi\)
\(854\) 0 0
\(855\) −267089. −0.0124951
\(856\) 0 0
\(857\) 1.95477e6 0.0909166 0.0454583 0.998966i \(-0.485525\pi\)
0.0454583 + 0.998966i \(0.485525\pi\)
\(858\) 0 0
\(859\) 4.98450e6 0.230483 0.115241 0.993338i \(-0.463236\pi\)
0.115241 + 0.993338i \(0.463236\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 1.69931e7 0.776685 0.388343 0.921515i \(-0.373048\pi\)
0.388343 + 0.921515i \(0.373048\pi\)
\(864\) 0 0
\(865\) −2.82112e6 −0.128198
\(866\) 0 0
\(867\) −4.63285e6 −0.209315
\(868\) 0 0
\(869\) −1.86498e6 −0.0837772
\(870\) 0 0
\(871\) −1.21240e7 −0.541503
\(872\) 0 0
\(873\) 780054. 0.0346409
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.81959e7 0.798869 0.399434 0.916762i \(-0.369207\pi\)
0.399434 + 0.916762i \(0.369207\pi\)
\(878\) 0 0
\(879\) 1.27645e7 0.557226
\(880\) 0 0
\(881\) −1.77637e7 −0.771068 −0.385534 0.922694i \(-0.625983\pi\)
−0.385534 + 0.922694i \(0.625983\pi\)
\(882\) 0 0
\(883\) −1.71479e6 −0.0740131 −0.0370065 0.999315i \(-0.511782\pi\)
−0.0370065 + 0.999315i \(0.511782\pi\)
\(884\) 0 0
\(885\) −841226. −0.0361039
\(886\) 0 0
\(887\) −2.42436e7 −1.03464 −0.517318 0.855793i \(-0.673070\pi\)
−0.517318 + 0.855793i \(0.673070\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −3.79554e7 −1.60169
\(892\) 0 0
\(893\) −3.53292e6 −0.148253
\(894\) 0 0
\(895\) −978272. −0.0408227
\(896\) 0 0
\(897\) −1.21502e7 −0.504200
\(898\) 0 0
\(899\) 1.12725e6 0.0465179
\(900\) 0 0
\(901\) −1.98570e7 −0.814897
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.74134e7 −0.706745
\(906\) 0 0
\(907\) 1.90432e7 0.768639 0.384319 0.923200i \(-0.374436\pi\)
0.384319 + 0.923200i \(0.374436\pi\)
\(908\) 0 0
\(909\) −73932.0 −0.00296772
\(910\) 0 0
\(911\) 3.18731e7 1.27242 0.636208 0.771518i \(-0.280502\pi\)
0.636208 + 0.771518i \(0.280502\pi\)
\(912\) 0 0
\(913\) 2.87618e7 1.14193
\(914\) 0 0
\(915\) 695178. 0.0274500
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.94858e7 1.15166 0.575830 0.817569i \(-0.304679\pi\)
0.575830 + 0.817569i \(0.304679\pi\)
\(920\) 0 0
\(921\) 3.34270e6 0.129852
\(922\) 0 0
\(923\) 6.46927e6 0.249949
\(924\) 0 0
\(925\) 1.61811e7 0.621804
\(926\) 0 0
\(927\) −929761. −0.0355363
\(928\) 0 0
\(929\) 9.73871e6 0.370222 0.185111 0.982718i \(-0.440736\pi\)
0.185111 + 0.982718i \(0.440736\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −4.61003e6 −0.173380
\(934\) 0 0
\(935\) −1.39512e7 −0.521893
\(936\) 0 0
\(937\) −2.66734e7 −0.992498 −0.496249 0.868180i \(-0.665290\pi\)
−0.496249 + 0.868180i \(0.665290\pi\)
\(938\) 0 0
\(939\) 3.15434e7 1.16747
\(940\) 0 0
\(941\) −3.22865e6 −0.118863 −0.0594315 0.998232i \(-0.518929\pi\)
−0.0594315 + 0.998232i \(0.518929\pi\)
\(942\) 0 0
\(943\) −6.39456e7 −2.34170
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.59244e6 0.166406 0.0832029 0.996533i \(-0.473485\pi\)
0.0832029 + 0.996533i \(0.473485\pi\)
\(948\) 0 0
\(949\) 1.47887e6 0.0533045
\(950\) 0 0
\(951\) −4.44011e7 −1.59200
\(952\) 0 0
\(953\) 2.97125e7 1.05976 0.529880 0.848073i \(-0.322237\pi\)
0.529880 + 0.848073i \(0.322237\pi\)
\(954\) 0 0
\(955\) 9.91025e6 0.351622
\(956\) 0 0
\(957\) −1.22399e6 −0.0432012
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 5.43495e7 1.89840
\(962\) 0 0
\(963\) −510184. −0.0177281
\(964\) 0 0
\(965\) 1.44554e7 0.499704
\(966\) 0 0
\(967\) −7.64435e6 −0.262890 −0.131445 0.991323i \(-0.541962\pi\)
−0.131445 + 0.991323i \(0.541962\pi\)
\(968\) 0 0
\(969\) 3.16034e7 1.08125
\(970\) 0 0
\(971\) −4.99621e7 −1.70056 −0.850281 0.526329i \(-0.823568\pi\)
−0.850281 + 0.526329i \(0.823568\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −8.77265e6 −0.295542
\(976\) 0 0
\(977\) 4.05394e7 1.35876 0.679378 0.733789i \(-0.262250\pi\)
0.679378 + 0.733789i \(0.262250\pi\)
\(978\) 0 0
\(979\) −6.19865e7 −2.06700
\(980\) 0 0
\(981\) 300592. 0.00997251
\(982\) 0 0
\(983\) −4.13056e7 −1.36341 −0.681703 0.731629i \(-0.738761\pi\)
−0.681703 + 0.731629i \(0.738761\pi\)
\(984\) 0 0
\(985\) 6.55021e6 0.215112
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.00811e7 0.652826
\(990\) 0 0
\(991\) 1.84084e7 0.595431 0.297715 0.954655i \(-0.403775\pi\)
0.297715 + 0.954655i \(0.403775\pi\)
\(992\) 0 0
\(993\) −2.18167e7 −0.702126
\(994\) 0 0
\(995\) −6.03144e6 −0.193136
\(996\) 0 0
\(997\) 3.39708e7 1.08235 0.541175 0.840910i \(-0.317980\pi\)
0.541175 + 0.840910i \(0.317980\pi\)
\(998\) 0 0
\(999\) 2.25086e7 0.713568
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.r.1.2 2
4.3 odd 2 98.6.a.f.1.1 2
7.3 odd 6 112.6.i.b.65.2 4
7.5 odd 6 112.6.i.b.81.2 4
7.6 odd 2 784.6.a.bc.1.1 2
12.11 even 2 882.6.a.bl.1.2 2
28.3 even 6 14.6.c.b.9.1 4
28.11 odd 6 98.6.c.f.79.2 4
28.19 even 6 14.6.c.b.11.1 yes 4
28.23 odd 6 98.6.c.f.67.2 4
28.27 even 2 98.6.a.c.1.2 2
84.47 odd 6 126.6.g.e.109.2 4
84.59 odd 6 126.6.g.e.37.2 4
84.83 odd 2 882.6.a.bt.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
14.6.c.b.9.1 4 28.3 even 6
14.6.c.b.11.1 yes 4 28.19 even 6
98.6.a.c.1.2 2 28.27 even 2
98.6.a.f.1.1 2 4.3 odd 2
98.6.c.f.67.2 4 28.23 odd 6
98.6.c.f.79.2 4 28.11 odd 6
112.6.i.b.65.2 4 7.3 odd 6
112.6.i.b.81.2 4 7.5 odd 6
126.6.g.e.37.2 4 84.59 odd 6
126.6.g.e.109.2 4 84.47 odd 6
784.6.a.r.1.2 2 1.1 even 1 trivial
784.6.a.bc.1.1 2 7.6 odd 2
882.6.a.bl.1.2 2 12.11 even 2
882.6.a.bt.1.2 2 84.83 odd 2