Properties

Label 784.6.a.q.1.2
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-14,0,-42,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{193}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-6.44622\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+6.89244 q^{3} +48.4622 q^{5} -195.494 q^{9} +163.506 q^{11} +120.828 q^{13} +334.023 q^{15} -78.1920 q^{17} -2265.00 q^{19} +2451.95 q^{23} -776.413 q^{25} -3022.30 q^{27} +6985.27 q^{29} +2794.03 q^{31} +1126.95 q^{33} +9459.44 q^{37} +832.803 q^{39} -10088.5 q^{41} +6934.29 q^{43} -9474.08 q^{45} +1165.76 q^{47} -538.934 q^{51} +8562.42 q^{53} +7923.85 q^{55} -15611.4 q^{57} +6220.26 q^{59} +41928.9 q^{61} +5855.62 q^{65} -1812.09 q^{67} +16900.0 q^{69} +56823.3 q^{71} +44299.5 q^{73} -5351.38 q^{75} -34912.4 q^{79} +26674.1 q^{81} -39652.9 q^{83} -3789.36 q^{85} +48145.6 q^{87} +126299. q^{89} +19257.7 q^{93} -109767. q^{95} +145513. q^{97} -31964.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} - 42 q^{5} - 2 q^{9} + 716 q^{11} + 714 q^{13} + 2224 q^{15} + 1344 q^{17} - 1946 q^{19} + 1792 q^{23} + 4282 q^{25} - 1988 q^{27} - 1200 q^{29} - 6804 q^{31} - 10416 q^{33} + 14640 q^{37}+ \cdots + 74940 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 6.89244 0.442150 0.221075 0.975257i \(-0.429043\pi\)
0.221075 + 0.975257i \(0.429043\pi\)
\(4\) 0 0
\(5\) 48.4622 0.866919 0.433459 0.901173i \(-0.357293\pi\)
0.433459 + 0.901173i \(0.357293\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −195.494 −0.804503
\(10\) 0 0
\(11\) 163.506 0.407429 0.203714 0.979030i \(-0.434699\pi\)
0.203714 + 0.979030i \(0.434699\pi\)
\(12\) 0 0
\(13\) 120.828 0.198295 0.0991473 0.995073i \(-0.468389\pi\)
0.0991473 + 0.995073i \(0.468389\pi\)
\(14\) 0 0
\(15\) 334.023 0.383308
\(16\) 0 0
\(17\) −78.1920 −0.0656206 −0.0328103 0.999462i \(-0.510446\pi\)
−0.0328103 + 0.999462i \(0.510446\pi\)
\(18\) 0 0
\(19\) −2265.00 −1.43941 −0.719704 0.694281i \(-0.755722\pi\)
−0.719704 + 0.694281i \(0.755722\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2451.95 0.966480 0.483240 0.875488i \(-0.339460\pi\)
0.483240 + 0.875488i \(0.339460\pi\)
\(24\) 0 0
\(25\) −776.413 −0.248452
\(26\) 0 0
\(27\) −3022.30 −0.797862
\(28\) 0 0
\(29\) 6985.27 1.54237 0.771185 0.636611i \(-0.219664\pi\)
0.771185 + 0.636611i \(0.219664\pi\)
\(30\) 0 0
\(31\) 2794.03 0.522188 0.261094 0.965313i \(-0.415917\pi\)
0.261094 + 0.965313i \(0.415917\pi\)
\(32\) 0 0
\(33\) 1126.95 0.180145
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9459.44 1.13595 0.567977 0.823044i \(-0.307726\pi\)
0.567977 + 0.823044i \(0.307726\pi\)
\(38\) 0 0
\(39\) 832.803 0.0876760
\(40\) 0 0
\(41\) −10088.5 −0.937271 −0.468636 0.883392i \(-0.655254\pi\)
−0.468636 + 0.883392i \(0.655254\pi\)
\(42\) 0 0
\(43\) 6934.29 0.571914 0.285957 0.958242i \(-0.407689\pi\)
0.285957 + 0.958242i \(0.407689\pi\)
\(44\) 0 0
\(45\) −9474.08 −0.697439
\(46\) 0 0
\(47\) 1165.76 0.0769778 0.0384889 0.999259i \(-0.487746\pi\)
0.0384889 + 0.999259i \(0.487746\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −538.934 −0.0290142
\(52\) 0 0
\(53\) 8562.42 0.418704 0.209352 0.977840i \(-0.432865\pi\)
0.209352 + 0.977840i \(0.432865\pi\)
\(54\) 0 0
\(55\) 7923.85 0.353207
\(56\) 0 0
\(57\) −15611.4 −0.636435
\(58\) 0 0
\(59\) 6220.26 0.232637 0.116318 0.993212i \(-0.462891\pi\)
0.116318 + 0.993212i \(0.462891\pi\)
\(60\) 0 0
\(61\) 41928.9 1.44274 0.721371 0.692549i \(-0.243512\pi\)
0.721371 + 0.692549i \(0.243512\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 5855.62 0.171905
\(66\) 0 0
\(67\) −1812.09 −0.0493166 −0.0246583 0.999696i \(-0.507850\pi\)
−0.0246583 + 0.999696i \(0.507850\pi\)
\(68\) 0 0
\(69\) 16900.0 0.427329
\(70\) 0 0
\(71\) 56823.3 1.33777 0.668884 0.743367i \(-0.266772\pi\)
0.668884 + 0.743367i \(0.266772\pi\)
\(72\) 0 0
\(73\) 44299.5 0.972953 0.486476 0.873694i \(-0.338282\pi\)
0.486476 + 0.873694i \(0.338282\pi\)
\(74\) 0 0
\(75\) −5351.38 −0.109853
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −34912.4 −0.629379 −0.314690 0.949195i \(-0.601900\pi\)
−0.314690 + 0.949195i \(0.601900\pi\)
\(80\) 0 0
\(81\) 26674.1 0.451728
\(82\) 0 0
\(83\) −39652.9 −0.631800 −0.315900 0.948793i \(-0.602306\pi\)
−0.315900 + 0.948793i \(0.602306\pi\)
\(84\) 0 0
\(85\) −3789.36 −0.0568877
\(86\) 0 0
\(87\) 48145.6 0.681960
\(88\) 0 0
\(89\) 126299. 1.69015 0.845077 0.534645i \(-0.179555\pi\)
0.845077 + 0.534645i \(0.179555\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 19257.7 0.230886
\(94\) 0 0
\(95\) −109767. −1.24785
\(96\) 0 0
\(97\) 145513. 1.57026 0.785130 0.619331i \(-0.212596\pi\)
0.785130 + 0.619331i \(0.212596\pi\)
\(98\) 0 0
\(99\) −31964.4 −0.327777
\(100\) 0 0
\(101\) −99545.5 −0.970998 −0.485499 0.874237i \(-0.661362\pi\)
−0.485499 + 0.874237i \(0.661362\pi\)
\(102\) 0 0
\(103\) −129791. −1.20546 −0.602729 0.797946i \(-0.705920\pi\)
−0.602729 + 0.797946i \(0.705920\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −218811. −1.84761 −0.923804 0.382865i \(-0.874938\pi\)
−0.923804 + 0.382865i \(0.874938\pi\)
\(108\) 0 0
\(109\) 201627. 1.62549 0.812743 0.582623i \(-0.197974\pi\)
0.812743 + 0.582623i \(0.197974\pi\)
\(110\) 0 0
\(111\) 65198.6 0.502263
\(112\) 0 0
\(113\) 31803.9 0.234306 0.117153 0.993114i \(-0.462623\pi\)
0.117153 + 0.993114i \(0.462623\pi\)
\(114\) 0 0
\(115\) 118827. 0.837859
\(116\) 0 0
\(117\) −23621.3 −0.159529
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −134317. −0.834002
\(122\) 0 0
\(123\) −69534.1 −0.414415
\(124\) 0 0
\(125\) −189071. −1.08231
\(126\) 0 0
\(127\) 318115. 1.75015 0.875075 0.483988i \(-0.160812\pi\)
0.875075 + 0.483988i \(0.160812\pi\)
\(128\) 0 0
\(129\) 47794.2 0.252872
\(130\) 0 0
\(131\) −305194. −1.55381 −0.776905 0.629618i \(-0.783212\pi\)
−0.776905 + 0.629618i \(0.783212\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −146467. −0.691681
\(136\) 0 0
\(137\) 180045. 0.819556 0.409778 0.912185i \(-0.365606\pi\)
0.409778 + 0.912185i \(0.365606\pi\)
\(138\) 0 0
\(139\) −323204. −1.41886 −0.709430 0.704776i \(-0.751047\pi\)
−0.709430 + 0.704776i \(0.751047\pi\)
\(140\) 0 0
\(141\) 8034.96 0.0340358
\(142\) 0 0
\(143\) 19756.2 0.0807909
\(144\) 0 0
\(145\) 338522. 1.33711
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 294159. 1.08547 0.542733 0.839905i \(-0.317390\pi\)
0.542733 + 0.839905i \(0.317390\pi\)
\(150\) 0 0
\(151\) 334962. 1.19551 0.597754 0.801679i \(-0.296060\pi\)
0.597754 + 0.801679i \(0.296060\pi\)
\(152\) 0 0
\(153\) 15286.1 0.0527919
\(154\) 0 0
\(155\) 135405. 0.452694
\(156\) 0 0
\(157\) 145150. 0.469967 0.234984 0.971999i \(-0.424496\pi\)
0.234984 + 0.971999i \(0.424496\pi\)
\(158\) 0 0
\(159\) 59016.0 0.185130
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 176221. 0.519504 0.259752 0.965675i \(-0.416359\pi\)
0.259752 + 0.965675i \(0.416359\pi\)
\(164\) 0 0
\(165\) 54614.7 0.156171
\(166\) 0 0
\(167\) −45460.7 −0.126138 −0.0630689 0.998009i \(-0.520089\pi\)
−0.0630689 + 0.998009i \(0.520089\pi\)
\(168\) 0 0
\(169\) −356693. −0.960679
\(170\) 0 0
\(171\) 442794. 1.15801
\(172\) 0 0
\(173\) 205842. 0.522900 0.261450 0.965217i \(-0.415799\pi\)
0.261450 + 0.965217i \(0.415799\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 42872.8 0.102860
\(178\) 0 0
\(179\) 199205. 0.464695 0.232348 0.972633i \(-0.425359\pi\)
0.232348 + 0.972633i \(0.425359\pi\)
\(180\) 0 0
\(181\) −198411. −0.450162 −0.225081 0.974340i \(-0.572265\pi\)
−0.225081 + 0.974340i \(0.572265\pi\)
\(182\) 0 0
\(183\) 288992. 0.637909
\(184\) 0 0
\(185\) 458425. 0.984780
\(186\) 0 0
\(187\) −12784.8 −0.0267357
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −372947. −0.739714 −0.369857 0.929089i \(-0.620593\pi\)
−0.369857 + 0.929089i \(0.620593\pi\)
\(192\) 0 0
\(193\) 175020. 0.338215 0.169108 0.985598i \(-0.445911\pi\)
0.169108 + 0.985598i \(0.445911\pi\)
\(194\) 0 0
\(195\) 40359.5 0.0760080
\(196\) 0 0
\(197\) 883770. 1.62246 0.811229 0.584728i \(-0.198799\pi\)
0.811229 + 0.584728i \(0.198799\pi\)
\(198\) 0 0
\(199\) 785843. 1.40671 0.703353 0.710841i \(-0.251686\pi\)
0.703353 + 0.710841i \(0.251686\pi\)
\(200\) 0 0
\(201\) −12489.7 −0.0218054
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −488909. −0.812538
\(206\) 0 0
\(207\) −479343. −0.777536
\(208\) 0 0
\(209\) −370340. −0.586456
\(210\) 0 0
\(211\) −763861. −1.18116 −0.590579 0.806980i \(-0.701101\pi\)
−0.590579 + 0.806980i \(0.701101\pi\)
\(212\) 0 0
\(213\) 391652. 0.591495
\(214\) 0 0
\(215\) 336051. 0.495803
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 305332. 0.430191
\(220\) 0 0
\(221\) −9447.82 −0.0130122
\(222\) 0 0
\(223\) −204400. −0.275245 −0.137623 0.990485i \(-0.543946\pi\)
−0.137623 + 0.990485i \(0.543946\pi\)
\(224\) 0 0
\(225\) 151784. 0.199881
\(226\) 0 0
\(227\) 1.00806e6 1.29844 0.649218 0.760603i \(-0.275096\pi\)
0.649218 + 0.760603i \(0.275096\pi\)
\(228\) 0 0
\(229\) 244324. 0.307877 0.153938 0.988080i \(-0.450804\pi\)
0.153938 + 0.988080i \(0.450804\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 20822.9 0.0251276 0.0125638 0.999921i \(-0.496001\pi\)
0.0125638 + 0.999921i \(0.496001\pi\)
\(234\) 0 0
\(235\) 56495.5 0.0667335
\(236\) 0 0
\(237\) −240632. −0.278280
\(238\) 0 0
\(239\) 474033. 0.536801 0.268401 0.963307i \(-0.413505\pi\)
0.268401 + 0.963307i \(0.413505\pi\)
\(240\) 0 0
\(241\) 1.70390e6 1.88974 0.944869 0.327450i \(-0.106189\pi\)
0.944869 + 0.327450i \(0.106189\pi\)
\(242\) 0 0
\(243\) 918268. 0.997594
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −273676. −0.285427
\(248\) 0 0
\(249\) −273305. −0.279351
\(250\) 0 0
\(251\) −810918. −0.812442 −0.406221 0.913775i \(-0.633154\pi\)
−0.406221 + 0.913775i \(0.633154\pi\)
\(252\) 0 0
\(253\) 400909. 0.393771
\(254\) 0 0
\(255\) −26117.9 −0.0251529
\(256\) 0 0
\(257\) −1.26657e6 −1.19618 −0.598088 0.801431i \(-0.704073\pi\)
−0.598088 + 0.801431i \(0.704073\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.36558e6 −1.24084
\(262\) 0 0
\(263\) 1.96048e6 1.74773 0.873863 0.486172i \(-0.161607\pi\)
0.873863 + 0.486172i \(0.161607\pi\)
\(264\) 0 0
\(265\) 414954. 0.362982
\(266\) 0 0
\(267\) 870511. 0.747302
\(268\) 0 0
\(269\) 1.49358e6 1.25848 0.629242 0.777209i \(-0.283365\pi\)
0.629242 + 0.777209i \(0.283365\pi\)
\(270\) 0 0
\(271\) 1.23626e6 1.02255 0.511275 0.859417i \(-0.329173\pi\)
0.511275 + 0.859417i \(0.329173\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −126948. −0.101227
\(276\) 0 0
\(277\) −170150. −0.133239 −0.0666197 0.997778i \(-0.521221\pi\)
−0.0666197 + 0.997778i \(0.521221\pi\)
\(278\) 0 0
\(279\) −546217. −0.420102
\(280\) 0 0
\(281\) 1.29957e6 0.981824 0.490912 0.871209i \(-0.336664\pi\)
0.490912 + 0.871209i \(0.336664\pi\)
\(282\) 0 0
\(283\) −374032. −0.277615 −0.138807 0.990319i \(-0.544327\pi\)
−0.138807 + 0.990319i \(0.544327\pi\)
\(284\) 0 0
\(285\) −756561. −0.551737
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −1.41374e6 −0.995694
\(290\) 0 0
\(291\) 1.00294e6 0.694291
\(292\) 0 0
\(293\) −1.15022e6 −0.782728 −0.391364 0.920236i \(-0.627997\pi\)
−0.391364 + 0.920236i \(0.627997\pi\)
\(294\) 0 0
\(295\) 301448. 0.201677
\(296\) 0 0
\(297\) −494163. −0.325072
\(298\) 0 0
\(299\) 296266. 0.191648
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −686112. −0.429327
\(304\) 0 0
\(305\) 2.03197e6 1.25074
\(306\) 0 0
\(307\) 2.61214e6 1.58179 0.790897 0.611949i \(-0.209614\pi\)
0.790897 + 0.611949i \(0.209614\pi\)
\(308\) 0 0
\(309\) −894578. −0.532994
\(310\) 0 0
\(311\) −1.40646e6 −0.824566 −0.412283 0.911056i \(-0.635269\pi\)
−0.412283 + 0.911056i \(0.635269\pi\)
\(312\) 0 0
\(313\) −2.37930e6 −1.37274 −0.686369 0.727253i \(-0.740797\pi\)
−0.686369 + 0.727253i \(0.740797\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −563199. −0.314785 −0.157393 0.987536i \(-0.550309\pi\)
−0.157393 + 0.987536i \(0.550309\pi\)
\(318\) 0 0
\(319\) 1.14213e6 0.628405
\(320\) 0 0
\(321\) −1.50814e6 −0.816921
\(322\) 0 0
\(323\) 177105. 0.0944547
\(324\) 0 0
\(325\) −93812.8 −0.0492667
\(326\) 0 0
\(327\) 1.38970e6 0.718709
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 850649. 0.426757 0.213378 0.976970i \(-0.431553\pi\)
0.213378 + 0.976970i \(0.431553\pi\)
\(332\) 0 0
\(333\) −1.84927e6 −0.913879
\(334\) 0 0
\(335\) −87818.0 −0.0427535
\(336\) 0 0
\(337\) 4.01506e6 1.92582 0.962912 0.269814i \(-0.0869623\pi\)
0.962912 + 0.269814i \(0.0869623\pi\)
\(338\) 0 0
\(339\) 219207. 0.103599
\(340\) 0 0
\(341\) 456840. 0.212754
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 819009. 0.370460
\(346\) 0 0
\(347\) 2.39961e6 1.06984 0.534918 0.844904i \(-0.320343\pi\)
0.534918 + 0.844904i \(0.320343\pi\)
\(348\) 0 0
\(349\) 919171. 0.403955 0.201977 0.979390i \(-0.435263\pi\)
0.201977 + 0.979390i \(0.435263\pi\)
\(350\) 0 0
\(351\) −365179. −0.158212
\(352\) 0 0
\(353\) −1.07684e6 −0.459953 −0.229976 0.973196i \(-0.573865\pi\)
−0.229976 + 0.973196i \(0.573865\pi\)
\(354\) 0 0
\(355\) 2.75378e6 1.15974
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.24219e6 0.508688 0.254344 0.967114i \(-0.418140\pi\)
0.254344 + 0.967114i \(0.418140\pi\)
\(360\) 0 0
\(361\) 2.65411e6 1.07189
\(362\) 0 0
\(363\) −925771. −0.368754
\(364\) 0 0
\(365\) 2.14685e6 0.843471
\(366\) 0 0
\(367\) 4.17293e6 1.61725 0.808624 0.588326i \(-0.200213\pi\)
0.808624 + 0.588326i \(0.200213\pi\)
\(368\) 0 0
\(369\) 1.97224e6 0.754037
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.72238e6 −0.640999 −0.320500 0.947249i \(-0.603851\pi\)
−0.320500 + 0.947249i \(0.603851\pi\)
\(374\) 0 0
\(375\) −1.30316e6 −0.478542
\(376\) 0 0
\(377\) 844020. 0.305844
\(378\) 0 0
\(379\) −1.72998e6 −0.618647 −0.309324 0.950957i \(-0.600103\pi\)
−0.309324 + 0.950957i \(0.600103\pi\)
\(380\) 0 0
\(381\) 2.19259e6 0.773830
\(382\) 0 0
\(383\) −3.34881e6 −1.16652 −0.583262 0.812284i \(-0.698224\pi\)
−0.583262 + 0.812284i \(0.698224\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.35561e6 −0.460106
\(388\) 0 0
\(389\) −5.18691e6 −1.73794 −0.868970 0.494864i \(-0.835218\pi\)
−0.868970 + 0.494864i \(0.835218\pi\)
\(390\) 0 0
\(391\) −191723. −0.0634209
\(392\) 0 0
\(393\) −2.10353e6 −0.687018
\(394\) 0 0
\(395\) −1.69193e6 −0.545621
\(396\) 0 0
\(397\) 1.30271e6 0.414830 0.207415 0.978253i \(-0.433495\pi\)
0.207415 + 0.978253i \(0.433495\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −1.53036e6 −0.475261 −0.237631 0.971356i \(-0.576371\pi\)
−0.237631 + 0.971356i \(0.576371\pi\)
\(402\) 0 0
\(403\) 337598. 0.103547
\(404\) 0 0
\(405\) 1.29269e6 0.391611
\(406\) 0 0
\(407\) 1.54667e6 0.462820
\(408\) 0 0
\(409\) 2.93690e6 0.868123 0.434062 0.900883i \(-0.357080\pi\)
0.434062 + 0.900883i \(0.357080\pi\)
\(410\) 0 0
\(411\) 1.24095e6 0.362367
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.92167e6 −0.547719
\(416\) 0 0
\(417\) −2.22766e6 −0.627349
\(418\) 0 0
\(419\) −1.16465e6 −0.324085 −0.162043 0.986784i \(-0.551808\pi\)
−0.162043 + 0.986784i \(0.551808\pi\)
\(420\) 0 0
\(421\) −1.58204e6 −0.435022 −0.217511 0.976058i \(-0.569794\pi\)
−0.217511 + 0.976058i \(0.569794\pi\)
\(422\) 0 0
\(423\) −227900. −0.0619289
\(424\) 0 0
\(425\) 60709.3 0.0163036
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 136168. 0.0357217
\(430\) 0 0
\(431\) −6.10233e6 −1.58235 −0.791174 0.611591i \(-0.790530\pi\)
−0.791174 + 0.611591i \(0.790530\pi\)
\(432\) 0 0
\(433\) −1.08115e6 −0.277118 −0.138559 0.990354i \(-0.544247\pi\)
−0.138559 + 0.990354i \(0.544247\pi\)
\(434\) 0 0
\(435\) 2.33324e6 0.591203
\(436\) 0 0
\(437\) −5.55367e6 −1.39116
\(438\) 0 0
\(439\) −7.04807e6 −1.74546 −0.872728 0.488207i \(-0.837651\pi\)
−0.872728 + 0.488207i \(0.837651\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.32031e6 0.561742 0.280871 0.959746i \(-0.409377\pi\)
0.280871 + 0.959746i \(0.409377\pi\)
\(444\) 0 0
\(445\) 6.12075e6 1.46523
\(446\) 0 0
\(447\) 2.02747e6 0.479939
\(448\) 0 0
\(449\) −5.45039e6 −1.27589 −0.637943 0.770084i \(-0.720214\pi\)
−0.637943 + 0.770084i \(0.720214\pi\)
\(450\) 0 0
\(451\) −1.64952e6 −0.381871
\(452\) 0 0
\(453\) 2.30871e6 0.528595
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.62676e6 1.48426 0.742132 0.670254i \(-0.233815\pi\)
0.742132 + 0.670254i \(0.233815\pi\)
\(458\) 0 0
\(459\) 236319. 0.0523561
\(460\) 0 0
\(461\) −606397. −0.132894 −0.0664469 0.997790i \(-0.521166\pi\)
−0.0664469 + 0.997790i \(0.521166\pi\)
\(462\) 0 0
\(463\) −3.65855e6 −0.793153 −0.396576 0.918002i \(-0.629802\pi\)
−0.396576 + 0.918002i \(0.629802\pi\)
\(464\) 0 0
\(465\) 933271. 0.200159
\(466\) 0 0
\(467\) 5.62712e6 1.19397 0.596986 0.802252i \(-0.296365\pi\)
0.596986 + 0.802252i \(0.296365\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 1.00044e6 0.207796
\(472\) 0 0
\(473\) 1.13380e6 0.233014
\(474\) 0 0
\(475\) 1.75857e6 0.357624
\(476\) 0 0
\(477\) −1.67390e6 −0.336848
\(478\) 0 0
\(479\) 4.25107e6 0.846563 0.423281 0.905998i \(-0.360878\pi\)
0.423281 + 0.905998i \(0.360878\pi\)
\(480\) 0 0
\(481\) 1.14297e6 0.225254
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 7.05187e6 1.36129
\(486\) 0 0
\(487\) −5.28756e6 −1.01026 −0.505130 0.863043i \(-0.668555\pi\)
−0.505130 + 0.863043i \(0.668555\pi\)
\(488\) 0 0
\(489\) 1.21459e6 0.229699
\(490\) 0 0
\(491\) 3.33842e6 0.624939 0.312469 0.949928i \(-0.398844\pi\)
0.312469 + 0.949928i \(0.398844\pi\)
\(492\) 0 0
\(493\) −546192. −0.101211
\(494\) 0 0
\(495\) −1.54907e6 −0.284156
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −2.52847e6 −0.454576 −0.227288 0.973828i \(-0.572986\pi\)
−0.227288 + 0.973828i \(0.572986\pi\)
\(500\) 0 0
\(501\) −313335. −0.0557719
\(502\) 0 0
\(503\) −5.94498e6 −1.04768 −0.523842 0.851815i \(-0.675502\pi\)
−0.523842 + 0.851815i \(0.675502\pi\)
\(504\) 0 0
\(505\) −4.82420e6 −0.841776
\(506\) 0 0
\(507\) −2.45849e6 −0.424765
\(508\) 0 0
\(509\) 603525. 0.103253 0.0516263 0.998666i \(-0.483560\pi\)
0.0516263 + 0.998666i \(0.483560\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 6.84549e6 1.14845
\(514\) 0 0
\(515\) −6.28997e6 −1.04503
\(516\) 0 0
\(517\) 190609. 0.0313630
\(518\) 0 0
\(519\) 1.41875e6 0.231200
\(520\) 0 0
\(521\) −1.03389e7 −1.66870 −0.834350 0.551235i \(-0.814157\pi\)
−0.834350 + 0.551235i \(0.814157\pi\)
\(522\) 0 0
\(523\) −8.82310e6 −1.41048 −0.705240 0.708968i \(-0.749161\pi\)
−0.705240 + 0.708968i \(0.749161\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −218471. −0.0342663
\(528\) 0 0
\(529\) −424266. −0.0659172
\(530\) 0 0
\(531\) −1.21602e6 −0.187157
\(532\) 0 0
\(533\) −1.21897e6 −0.185856
\(534\) 0 0
\(535\) −1.06041e7 −1.60173
\(536\) 0 0
\(537\) 1.37301e6 0.205465
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.16811e6 0.171590 0.0857949 0.996313i \(-0.472657\pi\)
0.0857949 + 0.996313i \(0.472657\pi\)
\(542\) 0 0
\(543\) −1.36753e6 −0.199039
\(544\) 0 0
\(545\) 9.77130e6 1.40916
\(546\) 0 0
\(547\) −9.17075e6 −1.31050 −0.655249 0.755413i \(-0.727436\pi\)
−0.655249 + 0.755413i \(0.727436\pi\)
\(548\) 0 0
\(549\) −8.19685e6 −1.16069
\(550\) 0 0
\(551\) −1.58216e7 −2.22010
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 3.15967e6 0.435421
\(556\) 0 0
\(557\) 6.22421e6 0.850054 0.425027 0.905181i \(-0.360265\pi\)
0.425027 + 0.905181i \(0.360265\pi\)
\(558\) 0 0
\(559\) 837859. 0.113407
\(560\) 0 0
\(561\) −88118.8 −0.0118212
\(562\) 0 0
\(563\) −5.64042e6 −0.749964 −0.374982 0.927032i \(-0.622351\pi\)
−0.374982 + 0.927032i \(0.622351\pi\)
\(564\) 0 0
\(565\) 1.54129e6 0.203125
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.05286e7 −1.36330 −0.681650 0.731678i \(-0.738737\pi\)
−0.681650 + 0.731678i \(0.738737\pi\)
\(570\) 0 0
\(571\) 7.31395e6 0.938776 0.469388 0.882992i \(-0.344475\pi\)
0.469388 + 0.882992i \(0.344475\pi\)
\(572\) 0 0
\(573\) −2.57052e6 −0.327065
\(574\) 0 0
\(575\) −1.90373e6 −0.240124
\(576\) 0 0
\(577\) −2.66534e6 −0.333282 −0.166641 0.986018i \(-0.553292\pi\)
−0.166641 + 0.986018i \(0.553292\pi\)
\(578\) 0 0
\(579\) 1.20631e6 0.149542
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.40000e6 0.170592
\(584\) 0 0
\(585\) −1.14474e6 −0.138298
\(586\) 0 0
\(587\) 4.92431e6 0.589861 0.294931 0.955519i \(-0.404703\pi\)
0.294931 + 0.955519i \(0.404703\pi\)
\(588\) 0 0
\(589\) −6.32847e6 −0.751641
\(590\) 0 0
\(591\) 6.09133e6 0.717371
\(592\) 0 0
\(593\) 5.08735e6 0.594094 0.297047 0.954863i \(-0.403998\pi\)
0.297047 + 0.954863i \(0.403998\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 5.41638e6 0.621975
\(598\) 0 0
\(599\) −4.64678e6 −0.529157 −0.264579 0.964364i \(-0.585233\pi\)
−0.264579 + 0.964364i \(0.585233\pi\)
\(600\) 0 0
\(601\) 4.35424e6 0.491730 0.245865 0.969304i \(-0.420928\pi\)
0.245865 + 0.969304i \(0.420928\pi\)
\(602\) 0 0
\(603\) 354254. 0.0396754
\(604\) 0 0
\(605\) −6.50929e6 −0.723012
\(606\) 0 0
\(607\) −1.25461e7 −1.38209 −0.691043 0.722813i \(-0.742849\pi\)
−0.691043 + 0.722813i \(0.742849\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 140857. 0.0152643
\(612\) 0 0
\(613\) −4.07637e6 −0.438149 −0.219075 0.975708i \(-0.570304\pi\)
−0.219075 + 0.975708i \(0.570304\pi\)
\(614\) 0 0
\(615\) −3.36978e6 −0.359264
\(616\) 0 0
\(617\) −8.88533e6 −0.939639 −0.469819 0.882763i \(-0.655681\pi\)
−0.469819 + 0.882763i \(0.655681\pi\)
\(618\) 0 0
\(619\) −1.28530e7 −1.34827 −0.674136 0.738607i \(-0.735484\pi\)
−0.674136 + 0.738607i \(0.735484\pi\)
\(620\) 0 0
\(621\) −7.41053e6 −0.771117
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −6.73652e6 −0.689819
\(626\) 0 0
\(627\) −2.55255e6 −0.259302
\(628\) 0 0
\(629\) −739652. −0.0745420
\(630\) 0 0
\(631\) 288616. 0.0288567 0.0144283 0.999896i \(-0.495407\pi\)
0.0144283 + 0.999896i \(0.495407\pi\)
\(632\) 0 0
\(633\) −5.26487e6 −0.522250
\(634\) 0 0
\(635\) 1.54166e7 1.51724
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.11086e7 −1.07624
\(640\) 0 0
\(641\) −1.94591e7 −1.87058 −0.935291 0.353880i \(-0.884862\pi\)
−0.935291 + 0.353880i \(0.884862\pi\)
\(642\) 0 0
\(643\) 1.30171e7 1.24161 0.620805 0.783965i \(-0.286806\pi\)
0.620805 + 0.783965i \(0.286806\pi\)
\(644\) 0 0
\(645\) 2.31621e6 0.219219
\(646\) 0 0
\(647\) 6.42864e6 0.603751 0.301876 0.953347i \(-0.402387\pi\)
0.301876 + 0.953347i \(0.402387\pi\)
\(648\) 0 0
\(649\) 1.01705e6 0.0947829
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.00202e7 0.919592 0.459796 0.888025i \(-0.347923\pi\)
0.459796 + 0.888025i \(0.347923\pi\)
\(654\) 0 0
\(655\) −1.47904e7 −1.34703
\(656\) 0 0
\(657\) −8.66030e6 −0.782743
\(658\) 0 0
\(659\) −1.49356e7 −1.33971 −0.669854 0.742493i \(-0.733643\pi\)
−0.669854 + 0.742493i \(0.733643\pi\)
\(660\) 0 0
\(661\) 1.35055e6 0.120229 0.0601143 0.998191i \(-0.480853\pi\)
0.0601143 + 0.998191i \(0.480853\pi\)
\(662\) 0 0
\(663\) −65118.5 −0.00575335
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 1.71276e7 1.49067
\(668\) 0 0
\(669\) −1.40882e6 −0.121700
\(670\) 0 0
\(671\) 6.85561e6 0.587814
\(672\) 0 0
\(673\) 6.59401e6 0.561193 0.280596 0.959826i \(-0.409468\pi\)
0.280596 + 0.959826i \(0.409468\pi\)
\(674\) 0 0
\(675\) 2.34655e6 0.198231
\(676\) 0 0
\(677\) −1.42517e7 −1.19508 −0.597538 0.801840i \(-0.703854\pi\)
−0.597538 + 0.801840i \(0.703854\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 6.94797e6 0.574104
\(682\) 0 0
\(683\) 7.65006e6 0.627499 0.313749 0.949506i \(-0.398415\pi\)
0.313749 + 0.949506i \(0.398415\pi\)
\(684\) 0 0
\(685\) 8.72536e6 0.710489
\(686\) 0 0
\(687\) 1.68399e6 0.136128
\(688\) 0 0
\(689\) 1.03458e6 0.0830266
\(690\) 0 0
\(691\) 1.38655e7 1.10469 0.552344 0.833616i \(-0.313733\pi\)
0.552344 + 0.833616i \(0.313733\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −1.56632e7 −1.23004
\(696\) 0 0
\(697\) 788837. 0.0615042
\(698\) 0 0
\(699\) 143521. 0.0111102
\(700\) 0 0
\(701\) −2.38825e6 −0.183563 −0.0917814 0.995779i \(-0.529256\pi\)
−0.0917814 + 0.995779i \(0.529256\pi\)
\(702\) 0 0
\(703\) −2.14256e7 −1.63510
\(704\) 0 0
\(705\) 389392. 0.0295063
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.55641e7 −1.16281 −0.581404 0.813615i \(-0.697496\pi\)
−0.581404 + 0.813615i \(0.697496\pi\)
\(710\) 0 0
\(711\) 6.82518e6 0.506337
\(712\) 0 0
\(713\) 6.85083e6 0.504684
\(714\) 0 0
\(715\) 957427. 0.0700391
\(716\) 0 0
\(717\) 3.26724e6 0.237347
\(718\) 0 0
\(719\) 1.82555e7 1.31696 0.658478 0.752600i \(-0.271200\pi\)
0.658478 + 0.752600i \(0.271200\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.17440e7 0.835548
\(724\) 0 0
\(725\) −5.42346e6 −0.383205
\(726\) 0 0
\(727\) −2.11427e6 −0.148362 −0.0741812 0.997245i \(-0.523634\pi\)
−0.0741812 + 0.997245i \(0.523634\pi\)
\(728\) 0 0
\(729\) −152693. −0.0106414
\(730\) 0 0
\(731\) −542206. −0.0375293
\(732\) 0 0
\(733\) −2.12932e6 −0.146380 −0.0731898 0.997318i \(-0.523318\pi\)
−0.0731898 + 0.997318i \(0.523318\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −296288. −0.0200930
\(738\) 0 0
\(739\) 8.08671e6 0.544704 0.272352 0.962198i \(-0.412198\pi\)
0.272352 + 0.962198i \(0.412198\pi\)
\(740\) 0 0
\(741\) −1.88630e6 −0.126202
\(742\) 0 0
\(743\) 1.18944e7 0.790442 0.395221 0.918586i \(-0.370668\pi\)
0.395221 + 0.918586i \(0.370668\pi\)
\(744\) 0 0
\(745\) 1.42556e7 0.941010
\(746\) 0 0
\(747\) 7.75191e6 0.508285
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.85538e7 1.20042 0.600211 0.799842i \(-0.295083\pi\)
0.600211 + 0.799842i \(0.295083\pi\)
\(752\) 0 0
\(753\) −5.58921e6 −0.359222
\(754\) 0 0
\(755\) 1.62330e7 1.03641
\(756\) 0 0
\(757\) 9.32534e6 0.591459 0.295730 0.955272i \(-0.404437\pi\)
0.295730 + 0.955272i \(0.404437\pi\)
\(758\) 0 0
\(759\) 2.76324e6 0.174106
\(760\) 0 0
\(761\) −8.00756e6 −0.501232 −0.250616 0.968087i \(-0.580633\pi\)
−0.250616 + 0.968087i \(0.580633\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 740797. 0.0457663
\(766\) 0 0
\(767\) 751584. 0.0461306
\(768\) 0 0
\(769\) −2.02720e7 −1.23618 −0.618089 0.786108i \(-0.712093\pi\)
−0.618089 + 0.786108i \(0.712093\pi\)
\(770\) 0 0
\(771\) −8.72973e6 −0.528889
\(772\) 0 0
\(773\) −2.87881e6 −0.173286 −0.0866431 0.996239i \(-0.527614\pi\)
−0.0866431 + 0.996239i \(0.527614\pi\)
\(774\) 0 0
\(775\) −2.16932e6 −0.129739
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.28503e7 1.34911
\(780\) 0 0
\(781\) 9.29094e6 0.545045
\(782\) 0 0
\(783\) −2.11116e7 −1.23060
\(784\) 0 0
\(785\) 7.03428e6 0.407423
\(786\) 0 0
\(787\) −2.03508e7 −1.17124 −0.585618 0.810587i \(-0.699148\pi\)
−0.585618 + 0.810587i \(0.699148\pi\)
\(788\) 0 0
\(789\) 1.35125e7 0.772758
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 5.06620e6 0.286088
\(794\) 0 0
\(795\) 2.86005e6 0.160493
\(796\) 0 0
\(797\) 2.24765e7 1.25338 0.626689 0.779269i \(-0.284410\pi\)
0.626689 + 0.779269i \(0.284410\pi\)
\(798\) 0 0
\(799\) −91153.3 −0.00505133
\(800\) 0 0
\(801\) −2.46908e7 −1.35973
\(802\) 0 0
\(803\) 7.24322e6 0.396409
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.02944e7 0.556439
\(808\) 0 0
\(809\) −1.15427e6 −0.0620062 −0.0310031 0.999519i \(-0.509870\pi\)
−0.0310031 + 0.999519i \(0.509870\pi\)
\(810\) 0 0
\(811\) −2.26698e7 −1.21031 −0.605154 0.796108i \(-0.706888\pi\)
−0.605154 + 0.796108i \(0.706888\pi\)
\(812\) 0 0
\(813\) 8.52082e6 0.452121
\(814\) 0 0
\(815\) 8.54007e6 0.450368
\(816\) 0 0
\(817\) −1.57061e7 −0.823217
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.41657e6 −0.125124 −0.0625622 0.998041i \(-0.519927\pi\)
−0.0625622 + 0.998041i \(0.519927\pi\)
\(822\) 0 0
\(823\) 2.10169e6 0.108161 0.0540804 0.998537i \(-0.482777\pi\)
0.0540804 + 0.998537i \(0.482777\pi\)
\(824\) 0 0
\(825\) −874982. −0.0447574
\(826\) 0 0
\(827\) −1.53997e7 −0.782977 −0.391489 0.920183i \(-0.628040\pi\)
−0.391489 + 0.920183i \(0.628040\pi\)
\(828\) 0 0
\(829\) 2.33839e7 1.18177 0.590883 0.806757i \(-0.298779\pi\)
0.590883 + 0.806757i \(0.298779\pi\)
\(830\) 0 0
\(831\) −1.17275e6 −0.0589118
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −2.20313e6 −0.109351
\(836\) 0 0
\(837\) −8.44439e6 −0.416634
\(838\) 0 0
\(839\) 2.03016e7 0.995695 0.497848 0.867265i \(-0.334124\pi\)
0.497848 + 0.867265i \(0.334124\pi\)
\(840\) 0 0
\(841\) 2.82829e7 1.37890
\(842\) 0 0
\(843\) 8.95721e6 0.434114
\(844\) 0 0
\(845\) −1.72862e7 −0.832831
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −2.57800e6 −0.122748
\(850\) 0 0
\(851\) 2.31941e7 1.09788
\(852\) 0 0
\(853\) −3.35163e7 −1.57719 −0.788594 0.614914i \(-0.789191\pi\)
−0.788594 + 0.614914i \(0.789191\pi\)
\(854\) 0 0
\(855\) 2.14588e7 1.00390
\(856\) 0 0
\(857\) 2.30661e7 1.07281 0.536405 0.843961i \(-0.319782\pi\)
0.536405 + 0.843961i \(0.319782\pi\)
\(858\) 0 0
\(859\) 3.85609e7 1.78305 0.891527 0.452968i \(-0.149635\pi\)
0.891527 + 0.452968i \(0.149635\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −3.86892e7 −1.76833 −0.884163 0.467179i \(-0.845271\pi\)
−0.884163 + 0.467179i \(0.845271\pi\)
\(864\) 0 0
\(865\) 9.97555e6 0.453311
\(866\) 0 0
\(867\) −9.74414e6 −0.440247
\(868\) 0 0
\(869\) −5.70838e6 −0.256427
\(870\) 0 0
\(871\) −218952. −0.00977922
\(872\) 0 0
\(873\) −2.84469e7 −1.26328
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.17369e7 −0.954332 −0.477166 0.878813i \(-0.658336\pi\)
−0.477166 + 0.878813i \(0.658336\pi\)
\(878\) 0 0
\(879\) −7.92781e6 −0.346084
\(880\) 0 0
\(881\) −8.42086e6 −0.365525 −0.182762 0.983157i \(-0.558504\pi\)
−0.182762 + 0.983157i \(0.558504\pi\)
\(882\) 0 0
\(883\) −3.22954e7 −1.39392 −0.696962 0.717108i \(-0.745465\pi\)
−0.696962 + 0.717108i \(0.745465\pi\)
\(884\) 0 0
\(885\) 2.07771e6 0.0891716
\(886\) 0 0
\(887\) −4.21800e7 −1.80010 −0.900052 0.435782i \(-0.856472\pi\)
−0.900052 + 0.435782i \(0.856472\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 4.36137e6 0.184047
\(892\) 0 0
\(893\) −2.64045e6 −0.110802
\(894\) 0 0
\(895\) 9.65393e6 0.402853
\(896\) 0 0
\(897\) 2.04200e6 0.0847371
\(898\) 0 0
\(899\) 1.95171e7 0.805407
\(900\) 0 0
\(901\) −669512. −0.0274756
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −9.61542e6 −0.390254
\(906\) 0 0
\(907\) 7.64517e6 0.308581 0.154291 0.988026i \(-0.450691\pi\)
0.154291 + 0.988026i \(0.450691\pi\)
\(908\) 0 0
\(909\) 1.94606e7 0.781170
\(910\) 0 0
\(911\) 3.93310e7 1.57014 0.785072 0.619405i \(-0.212626\pi\)
0.785072 + 0.619405i \(0.212626\pi\)
\(912\) 0 0
\(913\) −6.48347e6 −0.257413
\(914\) 0 0
\(915\) 1.40052e7 0.553015
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −3.52204e7 −1.37564 −0.687822 0.725880i \(-0.741433\pi\)
−0.687822 + 0.725880i \(0.741433\pi\)
\(920\) 0 0
\(921\) 1.80040e7 0.699391
\(922\) 0 0
\(923\) 6.86587e6 0.265272
\(924\) 0 0
\(925\) −7.34443e6 −0.282230
\(926\) 0 0
\(927\) 2.53734e7 0.969794
\(928\) 0 0
\(929\) 1.66300e7 0.632199 0.316099 0.948726i \(-0.397627\pi\)
0.316099 + 0.948726i \(0.397627\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −9.69393e6 −0.364582
\(934\) 0 0
\(935\) −619582. −0.0231777
\(936\) 0 0
\(937\) −2.07121e7 −0.770681 −0.385341 0.922774i \(-0.625916\pi\)
−0.385341 + 0.922774i \(0.625916\pi\)
\(938\) 0 0
\(939\) −1.63992e7 −0.606957
\(940\) 0 0
\(941\) 1.09797e7 0.404219 0.202110 0.979363i \(-0.435220\pi\)
0.202110 + 0.979363i \(0.435220\pi\)
\(942\) 0 0
\(943\) −2.47364e7 −0.905853
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.71723e6 −0.0984581 −0.0492290 0.998788i \(-0.515676\pi\)
−0.0492290 + 0.998788i \(0.515676\pi\)
\(948\) 0 0
\(949\) 5.35264e6 0.192931
\(950\) 0 0
\(951\) −3.88182e6 −0.139182
\(952\) 0 0
\(953\) −9.24083e6 −0.329594 −0.164797 0.986328i \(-0.552697\pi\)
−0.164797 + 0.986328i \(0.552697\pi\)
\(954\) 0 0
\(955\) −1.80739e7 −0.641272
\(956\) 0 0
\(957\) 7.87209e6 0.277850
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.08225e7 −0.727320
\(962\) 0 0
\(963\) 4.27763e7 1.48641
\(964\) 0 0
\(965\) 8.48183e6 0.293205
\(966\) 0 0
\(967\) 1.50444e7 0.517379 0.258690 0.965960i \(-0.416709\pi\)
0.258690 + 0.965960i \(0.416709\pi\)
\(968\) 0 0
\(969\) 1.22068e6 0.0417632
\(970\) 0 0
\(971\) 2.27894e7 0.775685 0.387842 0.921726i \(-0.373220\pi\)
0.387842 + 0.921726i \(0.373220\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −646600. −0.0217833
\(976\) 0 0
\(977\) −3.96682e7 −1.32955 −0.664777 0.747042i \(-0.731474\pi\)
−0.664777 + 0.747042i \(0.731474\pi\)
\(978\) 0 0
\(979\) 2.06507e7 0.688617
\(980\) 0 0
\(981\) −3.94170e7 −1.30771
\(982\) 0 0
\(983\) 2.77093e7 0.914621 0.457310 0.889307i \(-0.348813\pi\)
0.457310 + 0.889307i \(0.348813\pi\)
\(984\) 0 0
\(985\) 4.28294e7 1.40654
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 1.70025e7 0.552743
\(990\) 0 0
\(991\) −4.78535e7 −1.54785 −0.773926 0.633276i \(-0.781710\pi\)
−0.773926 + 0.633276i \(0.781710\pi\)
\(992\) 0 0
\(993\) 5.86305e6 0.188691
\(994\) 0 0
\(995\) 3.80837e7 1.21950
\(996\) 0 0
\(997\) 5.48289e7 1.74691 0.873457 0.486902i \(-0.161873\pi\)
0.873457 + 0.486902i \(0.161873\pi\)
\(998\) 0 0
\(999\) −2.85892e7 −0.906335
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.q.1.2 2
4.3 odd 2 392.6.a.e.1.1 2
7.6 odd 2 112.6.a.j.1.1 2
21.20 even 2 1008.6.a.bi.1.2 2
28.3 even 6 392.6.i.k.177.1 4
28.11 odd 6 392.6.i.h.177.2 4
28.19 even 6 392.6.i.k.361.1 4
28.23 odd 6 392.6.i.h.361.2 4
28.27 even 2 56.6.a.d.1.2 2
56.13 odd 2 448.6.a.r.1.2 2
56.27 even 2 448.6.a.x.1.1 2
84.83 odd 2 504.6.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.a.d.1.2 2 28.27 even 2
112.6.a.j.1.1 2 7.6 odd 2
392.6.a.e.1.1 2 4.3 odd 2
392.6.i.h.177.2 4 28.11 odd 6
392.6.i.h.361.2 4 28.23 odd 6
392.6.i.k.177.1 4 28.3 even 6
392.6.i.k.361.1 4 28.19 even 6
448.6.a.r.1.2 2 56.13 odd 2
448.6.a.x.1.1 2 56.27 even 2
504.6.a.m.1.2 2 84.83 odd 2
784.6.a.q.1.2 2 1.1 even 1 trivial
1008.6.a.bi.1.2 2 21.20 even 2