Properties

Label 784.6.a.q.1.1
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,-14,0,-42,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{193}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 48 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 56)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(7.44622\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-20.8924 q^{3} -90.4622 q^{5} +193.494 q^{9} +552.494 q^{11} +593.172 q^{13} +1889.98 q^{15} +1422.19 q^{17} +318.997 q^{19} -659.954 q^{23} +5058.41 q^{25} +1034.30 q^{27} -8185.27 q^{29} -9598.03 q^{31} -11543.0 q^{33} +5180.56 q^{37} -12392.8 q^{39} +2192.46 q^{41} -7458.29 q^{43} -17503.9 q^{45} -19561.8 q^{47} -29713.1 q^{51} +36569.6 q^{53} -49979.9 q^{55} -6664.63 q^{57} +16361.7 q^{59} +10893.1 q^{61} -53659.6 q^{65} -8035.91 q^{67} +13788.0 q^{69} -55983.3 q^{71} +77752.5 q^{73} -105683. q^{75} +3208.43 q^{79} -68628.1 q^{81} +76626.9 q^{83} -128655. q^{85} +171010. q^{87} +84288.6 q^{89} +200526. q^{93} -28857.2 q^{95} -101273. q^{97} +106904. q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 14 q^{3} - 42 q^{5} - 2 q^{9} + 716 q^{11} + 714 q^{13} + 2224 q^{15} + 1344 q^{17} - 1946 q^{19} + 1792 q^{23} + 4282 q^{25} - 1988 q^{27} - 1200 q^{29} - 6804 q^{31} - 10416 q^{33} + 14640 q^{37}+ \cdots + 74940 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −20.8924 −1.34025 −0.670125 0.742248i \(-0.733760\pi\)
−0.670125 + 0.742248i \(0.733760\pi\)
\(4\) 0 0
\(5\) −90.4622 −1.61824 −0.809119 0.587645i \(-0.800055\pi\)
−0.809119 + 0.587645i \(0.800055\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 193.494 0.796272
\(10\) 0 0
\(11\) 552.494 1.37672 0.688361 0.725369i \(-0.258331\pi\)
0.688361 + 0.725369i \(0.258331\pi\)
\(12\) 0 0
\(13\) 593.172 0.973469 0.486734 0.873550i \(-0.338188\pi\)
0.486734 + 0.873550i \(0.338188\pi\)
\(14\) 0 0
\(15\) 1889.98 2.16884
\(16\) 0 0
\(17\) 1422.19 1.19354 0.596769 0.802413i \(-0.296451\pi\)
0.596769 + 0.802413i \(0.296451\pi\)
\(18\) 0 0
\(19\) 318.997 0.202723 0.101361 0.994850i \(-0.467680\pi\)
0.101361 + 0.994850i \(0.467680\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −659.954 −0.260132 −0.130066 0.991505i \(-0.541519\pi\)
−0.130066 + 0.991505i \(0.541519\pi\)
\(24\) 0 0
\(25\) 5058.41 1.61869
\(26\) 0 0
\(27\) 1034.30 0.273046
\(28\) 0 0
\(29\) −8185.27 −1.80733 −0.903667 0.428237i \(-0.859135\pi\)
−0.903667 + 0.428237i \(0.859135\pi\)
\(30\) 0 0
\(31\) −9598.03 −1.79382 −0.896908 0.442217i \(-0.854192\pi\)
−0.896908 + 0.442217i \(0.854192\pi\)
\(32\) 0 0
\(33\) −11543.0 −1.84515
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 5180.56 0.622118 0.311059 0.950391i \(-0.399316\pi\)
0.311059 + 0.950391i \(0.399316\pi\)
\(38\) 0 0
\(39\) −12392.8 −1.30469
\(40\) 0 0
\(41\) 2192.46 0.203691 0.101846 0.994800i \(-0.467525\pi\)
0.101846 + 0.994800i \(0.467525\pi\)
\(42\) 0 0
\(43\) −7458.29 −0.615131 −0.307566 0.951527i \(-0.599514\pi\)
−0.307566 + 0.951527i \(0.599514\pi\)
\(44\) 0 0
\(45\) −17503.9 −1.28856
\(46\) 0 0
\(47\) −19561.8 −1.29171 −0.645853 0.763462i \(-0.723498\pi\)
−0.645853 + 0.763462i \(0.723498\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −29713.1 −1.59964
\(52\) 0 0
\(53\) 36569.6 1.78826 0.894129 0.447809i \(-0.147795\pi\)
0.894129 + 0.447809i \(0.147795\pi\)
\(54\) 0 0
\(55\) −49979.9 −2.22786
\(56\) 0 0
\(57\) −6664.63 −0.271700
\(58\) 0 0
\(59\) 16361.7 0.611927 0.305963 0.952043i \(-0.401021\pi\)
0.305963 + 0.952043i \(0.401021\pi\)
\(60\) 0 0
\(61\) 10893.1 0.374825 0.187412 0.982281i \(-0.439990\pi\)
0.187412 + 0.982281i \(0.439990\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −53659.6 −1.57530
\(66\) 0 0
\(67\) −8035.91 −0.218700 −0.109350 0.994003i \(-0.534877\pi\)
−0.109350 + 0.994003i \(0.534877\pi\)
\(68\) 0 0
\(69\) 13788.0 0.348642
\(70\) 0 0
\(71\) −55983.3 −1.31799 −0.658996 0.752146i \(-0.729019\pi\)
−0.658996 + 0.752146i \(0.729019\pi\)
\(72\) 0 0
\(73\) 77752.5 1.70768 0.853841 0.520533i \(-0.174267\pi\)
0.853841 + 0.520533i \(0.174267\pi\)
\(74\) 0 0
\(75\) −105683. −2.16945
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 3208.43 0.0578396 0.0289198 0.999582i \(-0.490793\pi\)
0.0289198 + 0.999582i \(0.490793\pi\)
\(80\) 0 0
\(81\) −68628.1 −1.16222
\(82\) 0 0
\(83\) 76626.9 1.22092 0.610458 0.792049i \(-0.290985\pi\)
0.610458 + 0.792049i \(0.290985\pi\)
\(84\) 0 0
\(85\) −128655. −1.93143
\(86\) 0 0
\(87\) 171010. 2.42228
\(88\) 0 0
\(89\) 84288.6 1.12796 0.563980 0.825788i \(-0.309269\pi\)
0.563980 + 0.825788i \(0.309269\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 200526. 2.40416
\(94\) 0 0
\(95\) −28857.2 −0.328054
\(96\) 0 0
\(97\) −101273. −1.09286 −0.546428 0.837506i \(-0.684013\pi\)
−0.546428 + 0.837506i \(0.684013\pi\)
\(98\) 0 0
\(99\) 106904. 1.09625
\(100\) 0 0
\(101\) −77456.5 −0.755535 −0.377767 0.925901i \(-0.623308\pi\)
−0.377767 + 0.925901i \(0.623308\pi\)
\(102\) 0 0
\(103\) −56716.9 −0.526768 −0.263384 0.964691i \(-0.584839\pi\)
−0.263384 + 0.964691i \(0.584839\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 38699.2 0.326770 0.163385 0.986562i \(-0.447759\pi\)
0.163385 + 0.986562i \(0.447759\pi\)
\(108\) 0 0
\(109\) −16595.3 −0.133788 −0.0668941 0.997760i \(-0.521309\pi\)
−0.0668941 + 0.997760i \(0.521309\pi\)
\(110\) 0 0
\(111\) −108235. −0.833794
\(112\) 0 0
\(113\) −76723.9 −0.565242 −0.282621 0.959232i \(-0.591204\pi\)
−0.282621 + 0.959232i \(0.591204\pi\)
\(114\) 0 0
\(115\) 59700.9 0.420955
\(116\) 0 0
\(117\) 114775. 0.775146
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 144199. 0.895361
\(122\) 0 0
\(123\) −45805.9 −0.272997
\(124\) 0 0
\(125\) −174901. −1.00119
\(126\) 0 0
\(127\) −68539.3 −0.377077 −0.188539 0.982066i \(-0.560375\pi\)
−0.188539 + 0.982066i \(0.560375\pi\)
\(128\) 0 0
\(129\) 155822. 0.824430
\(130\) 0 0
\(131\) 95936.2 0.488432 0.244216 0.969721i \(-0.421469\pi\)
0.244216 + 0.969721i \(0.421469\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −93564.8 −0.441853
\(136\) 0 0
\(137\) 291295. 1.32597 0.662983 0.748635i \(-0.269290\pi\)
0.662983 + 0.748635i \(0.269290\pi\)
\(138\) 0 0
\(139\) −281554. −1.23602 −0.618009 0.786171i \(-0.712061\pi\)
−0.618009 + 0.786171i \(0.712061\pi\)
\(140\) 0 0
\(141\) 408693. 1.73121
\(142\) 0 0
\(143\) 327724. 1.34019
\(144\) 0 0
\(145\) 740458. 2.92469
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −128283. −0.473372 −0.236686 0.971586i \(-0.576061\pi\)
−0.236686 + 0.971586i \(0.576061\pi\)
\(150\) 0 0
\(151\) −19017.7 −0.0678760 −0.0339380 0.999424i \(-0.510805\pi\)
−0.0339380 + 0.999424i \(0.510805\pi\)
\(152\) 0 0
\(153\) 275186. 0.950381
\(154\) 0 0
\(155\) 868259. 2.90282
\(156\) 0 0
\(157\) 272988. 0.883883 0.441941 0.897044i \(-0.354290\pi\)
0.441941 + 0.897044i \(0.354290\pi\)
\(158\) 0 0
\(159\) −764028. −2.39672
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −315849. −0.931131 −0.465565 0.885013i \(-0.654149\pi\)
−0.465565 + 0.885013i \(0.654149\pi\)
\(164\) 0 0
\(165\) 1.04420e6 2.98589
\(166\) 0 0
\(167\) −588655. −1.63331 −0.816657 0.577123i \(-0.804175\pi\)
−0.816657 + 0.577123i \(0.804175\pi\)
\(168\) 0 0
\(169\) −19440.5 −0.0523590
\(170\) 0 0
\(171\) 61724.1 0.161423
\(172\) 0 0
\(173\) −718256. −1.82458 −0.912292 0.409540i \(-0.865689\pi\)
−0.912292 + 0.409540i \(0.865689\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −341837. −0.820136
\(178\) 0 0
\(179\) −53637.2 −0.125122 −0.0625610 0.998041i \(-0.519927\pi\)
−0.0625610 + 0.998041i \(0.519927\pi\)
\(180\) 0 0
\(181\) 392213. 0.889867 0.444934 0.895564i \(-0.353227\pi\)
0.444934 + 0.895564i \(0.353227\pi\)
\(182\) 0 0
\(183\) −227584. −0.502359
\(184\) 0 0
\(185\) −468645. −1.00673
\(186\) 0 0
\(187\) 785753. 1.64317
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −395509. −0.784463 −0.392232 0.919866i \(-0.628297\pi\)
−0.392232 + 0.919866i \(0.628297\pi\)
\(192\) 0 0
\(193\) −562892. −1.08776 −0.543878 0.839164i \(-0.683045\pi\)
−0.543878 + 0.839164i \(0.683045\pi\)
\(194\) 0 0
\(195\) 1.12108e6 2.11130
\(196\) 0 0
\(197\) 402202. 0.738378 0.369189 0.929354i \(-0.379635\pi\)
0.369189 + 0.929354i \(0.379635\pi\)
\(198\) 0 0
\(199\) −455975. −0.816222 −0.408111 0.912932i \(-0.633812\pi\)
−0.408111 + 0.912932i \(0.633812\pi\)
\(200\) 0 0
\(201\) 167890. 0.293112
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −198335. −0.329621
\(206\) 0 0
\(207\) −127697. −0.207136
\(208\) 0 0
\(209\) 176244. 0.279093
\(210\) 0 0
\(211\) 1.18264e6 1.82871 0.914356 0.404911i \(-0.132698\pi\)
0.914356 + 0.404911i \(0.132698\pi\)
\(212\) 0 0
\(213\) 1.16963e6 1.76644
\(214\) 0 0
\(215\) 674693. 0.995429
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.62444e6 −2.28872
\(220\) 0 0
\(221\) 843604. 1.16187
\(222\) 0 0
\(223\) 931112. 1.25383 0.626917 0.779086i \(-0.284317\pi\)
0.626917 + 0.779086i \(0.284317\pi\)
\(224\) 0 0
\(225\) 978774. 1.28892
\(226\) 0 0
\(227\) 192653. 0.248149 0.124074 0.992273i \(-0.460404\pi\)
0.124074 + 0.992273i \(0.460404\pi\)
\(228\) 0 0
\(229\) 783934. 0.987850 0.493925 0.869505i \(-0.335562\pi\)
0.493925 + 0.869505i \(0.335562\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.39976e6 −1.68914 −0.844568 0.535448i \(-0.820143\pi\)
−0.844568 + 0.535448i \(0.820143\pi\)
\(234\) 0 0
\(235\) 1.76960e6 2.09029
\(236\) 0 0
\(237\) −67032.0 −0.0775196
\(238\) 0 0
\(239\) 643631. 0.728857 0.364429 0.931231i \(-0.381264\pi\)
0.364429 + 0.931231i \(0.381264\pi\)
\(240\) 0 0
\(241\) 58756.4 0.0651647 0.0325824 0.999469i \(-0.489627\pi\)
0.0325824 + 0.999469i \(0.489627\pi\)
\(242\) 0 0
\(243\) 1.18247e6 1.28462
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 189220. 0.197344
\(248\) 0 0
\(249\) −1.60092e6 −1.63633
\(250\) 0 0
\(251\) −641680. −0.642886 −0.321443 0.946929i \(-0.604168\pi\)
−0.321443 + 0.946929i \(0.604168\pi\)
\(252\) 0 0
\(253\) −364621. −0.358129
\(254\) 0 0
\(255\) 2.68791e6 2.58860
\(256\) 0 0
\(257\) −810671. −0.765617 −0.382809 0.923828i \(-0.625043\pi\)
−0.382809 + 0.923828i \(0.625043\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −1.58380e6 −1.43913
\(262\) 0 0
\(263\) 2.04061e6 1.81916 0.909581 0.415526i \(-0.136403\pi\)
0.909581 + 0.415526i \(0.136403\pi\)
\(264\) 0 0
\(265\) −3.30817e6 −2.89383
\(266\) 0 0
\(267\) −1.76100e6 −1.51175
\(268\) 0 0
\(269\) 1.28300e6 1.08105 0.540524 0.841328i \(-0.318226\pi\)
0.540524 + 0.841328i \(0.318226\pi\)
\(270\) 0 0
\(271\) −22511.3 −0.0186199 −0.00930994 0.999957i \(-0.502963\pi\)
−0.00930994 + 0.999957i \(0.502963\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.79474e6 2.22849
\(276\) 0 0
\(277\) 368210. 0.288334 0.144167 0.989553i \(-0.453950\pi\)
0.144167 + 0.989553i \(0.453950\pi\)
\(278\) 0 0
\(279\) −1.85716e6 −1.42837
\(280\) 0 0
\(281\) 2.03709e6 1.53902 0.769511 0.638634i \(-0.220500\pi\)
0.769511 + 0.638634i \(0.220500\pi\)
\(282\) 0 0
\(283\) −656410. −0.487202 −0.243601 0.969876i \(-0.578329\pi\)
−0.243601 + 0.969876i \(0.578329\pi\)
\(284\) 0 0
\(285\) 602897. 0.439675
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 602773. 0.424531
\(290\) 0 0
\(291\) 2.11583e6 1.46470
\(292\) 0 0
\(293\) 962295. 0.654846 0.327423 0.944878i \(-0.393820\pi\)
0.327423 + 0.944878i \(0.393820\pi\)
\(294\) 0 0
\(295\) −1.48012e6 −0.990243
\(296\) 0 0
\(297\) 571443. 0.375908
\(298\) 0 0
\(299\) −391466. −0.253230
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.61826e6 1.01261
\(304\) 0 0
\(305\) −985418. −0.606556
\(306\) 0 0
\(307\) −296468. −0.179528 −0.0897638 0.995963i \(-0.528611\pi\)
−0.0897638 + 0.995963i \(0.528611\pi\)
\(308\) 0 0
\(309\) 1.18495e6 0.706001
\(310\) 0 0
\(311\) 1.12063e6 0.656996 0.328498 0.944505i \(-0.393458\pi\)
0.328498 + 0.944505i \(0.393458\pi\)
\(312\) 0 0
\(313\) −1.74908e6 −1.00913 −0.504567 0.863373i \(-0.668348\pi\)
−0.504567 + 0.863373i \(0.668348\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 3.17498e6 1.77457 0.887284 0.461223i \(-0.152589\pi\)
0.887284 + 0.461223i \(0.152589\pi\)
\(318\) 0 0
\(319\) −4.52232e6 −2.48819
\(320\) 0 0
\(321\) −808520. −0.437954
\(322\) 0 0
\(323\) 453675. 0.241957
\(324\) 0 0
\(325\) 3.00051e6 1.57575
\(326\) 0 0
\(327\) 346715. 0.179310
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −878405. −0.440681 −0.220341 0.975423i \(-0.570717\pi\)
−0.220341 + 0.975423i \(0.570717\pi\)
\(332\) 0 0
\(333\) 1.00241e6 0.495375
\(334\) 0 0
\(335\) 726946. 0.353908
\(336\) 0 0
\(337\) 2.05261e6 0.984536 0.492268 0.870444i \(-0.336168\pi\)
0.492268 + 0.870444i \(0.336168\pi\)
\(338\) 0 0
\(339\) 1.60295e6 0.757566
\(340\) 0 0
\(341\) −5.30286e6 −2.46958
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.24730e6 −0.564186
\(346\) 0 0
\(347\) −476182. −0.212300 −0.106150 0.994350i \(-0.533852\pi\)
−0.106150 + 0.994350i \(0.533852\pi\)
\(348\) 0 0
\(349\) −351681. −0.154556 −0.0772780 0.997010i \(-0.524623\pi\)
−0.0772780 + 0.997010i \(0.524623\pi\)
\(350\) 0 0
\(351\) 613515. 0.265802
\(352\) 0 0
\(353\) 1.73722e6 0.742023 0.371011 0.928628i \(-0.379011\pi\)
0.371011 + 0.928628i \(0.379011\pi\)
\(354\) 0 0
\(355\) 5.06438e6 2.13282
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.69731e6 0.695063 0.347531 0.937668i \(-0.387020\pi\)
0.347531 + 0.937668i \(0.387020\pi\)
\(360\) 0 0
\(361\) −2.37434e6 −0.958903
\(362\) 0 0
\(363\) −3.01267e6 −1.20001
\(364\) 0 0
\(365\) −7.03366e6 −2.76344
\(366\) 0 0
\(367\) −1.11920e6 −0.433752 −0.216876 0.976199i \(-0.569587\pi\)
−0.216876 + 0.976199i \(0.569587\pi\)
\(368\) 0 0
\(369\) 424228. 0.162194
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −837822. −0.311803 −0.155901 0.987773i \(-0.549828\pi\)
−0.155901 + 0.987773i \(0.549828\pi\)
\(374\) 0 0
\(375\) 3.65411e6 1.34185
\(376\) 0 0
\(377\) −4.85527e6 −1.75938
\(378\) 0 0
\(379\) 1.94713e6 0.696300 0.348150 0.937439i \(-0.386810\pi\)
0.348150 + 0.937439i \(0.386810\pi\)
\(380\) 0 0
\(381\) 1.43195e6 0.505378
\(382\) 0 0
\(383\) −202063. −0.0703866 −0.0351933 0.999381i \(-0.511205\pi\)
−0.0351933 + 0.999381i \(0.511205\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −1.44314e6 −0.489812
\(388\) 0 0
\(389\) 3.23741e6 1.08473 0.542367 0.840141i \(-0.317528\pi\)
0.542367 + 0.840141i \(0.317528\pi\)
\(390\) 0 0
\(391\) −938581. −0.310477
\(392\) 0 0
\(393\) −2.00434e6 −0.654622
\(394\) 0 0
\(395\) −290242. −0.0935982
\(396\) 0 0
\(397\) −823921. −0.262367 −0.131183 0.991358i \(-0.541878\pi\)
−0.131183 + 0.991358i \(0.541878\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 2.39337e6 0.743273 0.371637 0.928378i \(-0.378797\pi\)
0.371637 + 0.928378i \(0.378797\pi\)
\(402\) 0 0
\(403\) −5.69328e6 −1.74622
\(404\) 0 0
\(405\) 6.20825e6 1.88075
\(406\) 0 0
\(407\) 2.86223e6 0.856483
\(408\) 0 0
\(409\) 581801. 0.171975 0.0859876 0.996296i \(-0.472595\pi\)
0.0859876 + 0.996296i \(0.472595\pi\)
\(410\) 0 0
\(411\) −6.08587e6 −1.77713
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −6.93184e6 −1.97573
\(416\) 0 0
\(417\) 5.88236e6 1.65658
\(418\) 0 0
\(419\) 3.11898e6 0.867915 0.433957 0.900933i \(-0.357117\pi\)
0.433957 + 0.900933i \(0.357117\pi\)
\(420\) 0 0
\(421\) −1.14481e6 −0.314796 −0.157398 0.987535i \(-0.550311\pi\)
−0.157398 + 0.987535i \(0.550311\pi\)
\(422\) 0 0
\(423\) −3.78509e6 −1.02855
\(424\) 0 0
\(425\) 7.19403e6 1.93197
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −6.84695e6 −1.79620
\(430\) 0 0
\(431\) 4.31012e6 1.11762 0.558812 0.829294i \(-0.311257\pi\)
0.558812 + 0.829294i \(0.311257\pi\)
\(432\) 0 0
\(433\) 2.79301e6 0.715901 0.357950 0.933741i \(-0.383476\pi\)
0.357950 + 0.933741i \(0.383476\pi\)
\(434\) 0 0
\(435\) −1.54700e7 −3.91982
\(436\) 0 0
\(437\) −210523. −0.0527347
\(438\) 0 0
\(439\) 252467. 0.0625236 0.0312618 0.999511i \(-0.490047\pi\)
0.0312618 + 0.999511i \(0.490047\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 3.43282e6 0.831077 0.415539 0.909576i \(-0.363593\pi\)
0.415539 + 0.909576i \(0.363593\pi\)
\(444\) 0 0
\(445\) −7.62494e6 −1.82531
\(446\) 0 0
\(447\) 2.68014e6 0.634437
\(448\) 0 0
\(449\) −1.68031e6 −0.393345 −0.196673 0.980469i \(-0.563014\pi\)
−0.196673 + 0.980469i \(0.563014\pi\)
\(450\) 0 0
\(451\) 1.21132e6 0.280426
\(452\) 0 0
\(453\) 397327. 0.0909709
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.94585e6 −0.659812 −0.329906 0.944014i \(-0.607017\pi\)
−0.329906 + 0.944014i \(0.607017\pi\)
\(458\) 0 0
\(459\) 1.47097e6 0.325890
\(460\) 0 0
\(461\) 1.91583e6 0.419860 0.209930 0.977716i \(-0.432676\pi\)
0.209930 + 0.977716i \(0.432676\pi\)
\(462\) 0 0
\(463\) 3.75401e6 0.813847 0.406924 0.913462i \(-0.366602\pi\)
0.406924 + 0.913462i \(0.366602\pi\)
\(464\) 0 0
\(465\) −1.81401e7 −3.89051
\(466\) 0 0
\(467\) −2.10594e6 −0.446842 −0.223421 0.974722i \(-0.571722\pi\)
−0.223421 + 0.974722i \(0.571722\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −5.70339e6 −1.18462
\(472\) 0 0
\(473\) −4.12066e6 −0.846864
\(474\) 0 0
\(475\) 1.61362e6 0.328146
\(476\) 0 0
\(477\) 7.07600e6 1.42394
\(478\) 0 0
\(479\) −274926. −0.0547491 −0.0273745 0.999625i \(-0.508715\pi\)
−0.0273745 + 0.999625i \(0.508715\pi\)
\(480\) 0 0
\(481\) 3.07296e6 0.605612
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 9.16135e6 1.76850
\(486\) 0 0
\(487\) −7.67128e6 −1.46570 −0.732851 0.680389i \(-0.761811\pi\)
−0.732851 + 0.680389i \(0.761811\pi\)
\(488\) 0 0
\(489\) 6.59886e6 1.24795
\(490\) 0 0
\(491\) 2.42352e6 0.453673 0.226837 0.973933i \(-0.427162\pi\)
0.226837 + 0.973933i \(0.427162\pi\)
\(492\) 0 0
\(493\) −1.16410e7 −2.15712
\(494\) 0 0
\(495\) −9.67081e6 −1.77399
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.22317e6 1.47839 0.739193 0.673494i \(-0.235207\pi\)
0.739193 + 0.673494i \(0.235207\pi\)
\(500\) 0 0
\(501\) 1.22984e7 2.18905
\(502\) 0 0
\(503\) 2.98186e6 0.525493 0.262746 0.964865i \(-0.415372\pi\)
0.262746 + 0.964865i \(0.415372\pi\)
\(504\) 0 0
\(505\) 7.00689e6 1.22263
\(506\) 0 0
\(507\) 406160. 0.0701741
\(508\) 0 0
\(509\) 6.26867e6 1.07246 0.536230 0.844072i \(-0.319848\pi\)
0.536230 + 0.844072i \(0.319848\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 329938. 0.0553527
\(514\) 0 0
\(515\) 5.13073e6 0.852435
\(516\) 0 0
\(517\) −1.08078e7 −1.77832
\(518\) 0 0
\(519\) 1.50061e7 2.44540
\(520\) 0 0
\(521\) 4.12134e6 0.665188 0.332594 0.943070i \(-0.392076\pi\)
0.332594 + 0.943070i \(0.392076\pi\)
\(522\) 0 0
\(523\) −4.70469e6 −0.752102 −0.376051 0.926599i \(-0.622718\pi\)
−0.376051 + 0.926599i \(0.622718\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.36502e7 −2.14099
\(528\) 0 0
\(529\) −6.00080e6 −0.932331
\(530\) 0 0
\(531\) 3.16590e6 0.487261
\(532\) 0 0
\(533\) 1.30051e6 0.198287
\(534\) 0 0
\(535\) −3.50081e6 −0.528791
\(536\) 0 0
\(537\) 1.12061e6 0.167695
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.47840e6 0.657855 0.328927 0.944355i \(-0.393313\pi\)
0.328927 + 0.944355i \(0.393313\pi\)
\(542\) 0 0
\(543\) −8.19428e6 −1.19265
\(544\) 0 0
\(545\) 1.50124e6 0.216501
\(546\) 0 0
\(547\) 6.49187e6 0.927687 0.463843 0.885917i \(-0.346470\pi\)
0.463843 + 0.885917i \(0.346470\pi\)
\(548\) 0 0
\(549\) 2.10776e6 0.298463
\(550\) 0 0
\(551\) −2.61108e6 −0.366388
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 9.79115e6 1.34928
\(556\) 0 0
\(557\) −2.50858e6 −0.342602 −0.171301 0.985219i \(-0.554797\pi\)
−0.171301 + 0.985219i \(0.554797\pi\)
\(558\) 0 0
\(559\) −4.42404e6 −0.598811
\(560\) 0 0
\(561\) −1.64163e7 −2.20226
\(562\) 0 0
\(563\) −3.52702e6 −0.468961 −0.234480 0.972121i \(-0.575339\pi\)
−0.234480 + 0.972121i \(0.575339\pi\)
\(564\) 0 0
\(565\) 6.94061e6 0.914696
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 9.75283e6 1.26284 0.631422 0.775439i \(-0.282471\pi\)
0.631422 + 0.775439i \(0.282471\pi\)
\(570\) 0 0
\(571\) −1.70085e6 −0.218312 −0.109156 0.994025i \(-0.534815\pi\)
−0.109156 + 0.994025i \(0.534815\pi\)
\(572\) 0 0
\(573\) 8.26314e6 1.05138
\(574\) 0 0
\(575\) −3.33832e6 −0.421074
\(576\) 0 0
\(577\) 1.17066e7 1.46383 0.731914 0.681397i \(-0.238627\pi\)
0.731914 + 0.681397i \(0.238627\pi\)
\(578\) 0 0
\(579\) 1.17602e7 1.45787
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 2.02045e7 2.46193
\(584\) 0 0
\(585\) −1.03828e7 −1.25437
\(586\) 0 0
\(587\) −3.75683e6 −0.450015 −0.225007 0.974357i \(-0.572241\pi\)
−0.225007 + 0.974357i \(0.572241\pi\)
\(588\) 0 0
\(589\) −3.06175e6 −0.363648
\(590\) 0 0
\(591\) −8.40299e6 −0.989612
\(592\) 0 0
\(593\) −8.64338e6 −1.00936 −0.504681 0.863306i \(-0.668390\pi\)
−0.504681 + 0.863306i \(0.668390\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9.52643e6 1.09394
\(598\) 0 0
\(599\) −9.31930e6 −1.06125 −0.530623 0.847608i \(-0.678042\pi\)
−0.530623 + 0.847608i \(0.678042\pi\)
\(600\) 0 0
\(601\) −910438. −0.102817 −0.0514084 0.998678i \(-0.516371\pi\)
−0.0514084 + 0.998678i \(0.516371\pi\)
\(602\) 0 0
\(603\) −1.55490e6 −0.174144
\(604\) 0 0
\(605\) −1.30445e7 −1.44891
\(606\) 0 0
\(607\) 5.70173e6 0.628109 0.314054 0.949405i \(-0.398313\pi\)
0.314054 + 0.949405i \(0.398313\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.16035e7 −1.25743
\(612\) 0 0
\(613\) 1.61327e7 1.73403 0.867016 0.498280i \(-0.166035\pi\)
0.867016 + 0.498280i \(0.166035\pi\)
\(614\) 0 0
\(615\) 4.14370e6 0.441774
\(616\) 0 0
\(617\) −5.53575e6 −0.585415 −0.292708 0.956202i \(-0.594556\pi\)
−0.292708 + 0.956202i \(0.594556\pi\)
\(618\) 0 0
\(619\) −1.88448e7 −1.97681 −0.988407 0.151828i \(-0.951484\pi\)
−0.988407 + 0.151828i \(0.951484\pi\)
\(620\) 0 0
\(621\) −682588. −0.0710280
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 14378.1 0.00147232
\(626\) 0 0
\(627\) −3.68217e6 −0.374055
\(628\) 0 0
\(629\) 7.36776e6 0.742521
\(630\) 0 0
\(631\) −2.63269e6 −0.263224 −0.131612 0.991301i \(-0.542015\pi\)
−0.131612 + 0.991301i \(0.542015\pi\)
\(632\) 0 0
\(633\) −2.47082e7 −2.45093
\(634\) 0 0
\(635\) 6.20021e6 0.610200
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.08324e7 −1.04948
\(640\) 0 0
\(641\) 1.42939e7 1.37406 0.687028 0.726631i \(-0.258915\pi\)
0.687028 + 0.726631i \(0.258915\pi\)
\(642\) 0 0
\(643\) −1.63874e7 −1.56308 −0.781542 0.623853i \(-0.785566\pi\)
−0.781542 + 0.623853i \(0.785566\pi\)
\(644\) 0 0
\(645\) −1.40960e7 −1.33412
\(646\) 0 0
\(647\) 1.19303e7 1.12045 0.560224 0.828341i \(-0.310715\pi\)
0.560224 + 0.828341i \(0.310715\pi\)
\(648\) 0 0
\(649\) 9.03977e6 0.842453
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.47862e6 0.319245 0.159622 0.987178i \(-0.448972\pi\)
0.159622 + 0.987178i \(0.448972\pi\)
\(654\) 0 0
\(655\) −8.67860e6 −0.790399
\(656\) 0 0
\(657\) 1.50447e7 1.35978
\(658\) 0 0
\(659\) −2.09397e7 −1.87826 −0.939131 0.343560i \(-0.888367\pi\)
−0.939131 + 0.343560i \(0.888367\pi\)
\(660\) 0 0
\(661\) 1.02566e7 0.913059 0.456530 0.889708i \(-0.349092\pi\)
0.456530 + 0.889708i \(0.349092\pi\)
\(662\) 0 0
\(663\) −1.76249e7 −1.55720
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 5.40190e6 0.470145
\(668\) 0 0
\(669\) −1.94532e7 −1.68045
\(670\) 0 0
\(671\) 6.01840e6 0.516029
\(672\) 0 0
\(673\) 716398. 0.0609701 0.0304851 0.999535i \(-0.490295\pi\)
0.0304851 + 0.999535i \(0.490295\pi\)
\(674\) 0 0
\(675\) 5.23190e6 0.441977
\(676\) 0 0
\(677\) −945625. −0.0792953 −0.0396476 0.999214i \(-0.512624\pi\)
−0.0396476 + 0.999214i \(0.512624\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −4.02500e6 −0.332582
\(682\) 0 0
\(683\) −3.56992e6 −0.292824 −0.146412 0.989224i \(-0.546773\pi\)
−0.146412 + 0.989224i \(0.546773\pi\)
\(684\) 0 0
\(685\) −2.63512e7 −2.14573
\(686\) 0 0
\(687\) −1.63783e7 −1.32397
\(688\) 0 0
\(689\) 2.16920e7 1.74081
\(690\) 0 0
\(691\) 9.67811e6 0.771073 0.385536 0.922693i \(-0.374016\pi\)
0.385536 + 0.922693i \(0.374016\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.54700e7 2.00017
\(696\) 0 0
\(697\) 3.11810e6 0.243113
\(698\) 0 0
\(699\) 2.92445e7 2.26387
\(700\) 0 0
\(701\) 2.52404e7 1.94000 0.970000 0.243105i \(-0.0781659\pi\)
0.970000 + 0.243105i \(0.0781659\pi\)
\(702\) 0 0
\(703\) 1.65259e6 0.126118
\(704\) 0 0
\(705\) −3.69713e7 −2.80151
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.74744e7 −1.30553 −0.652765 0.757560i \(-0.726391\pi\)
−0.652765 + 0.757560i \(0.726391\pi\)
\(710\) 0 0
\(711\) 620813. 0.0460561
\(712\) 0 0
\(713\) 6.33426e6 0.466629
\(714\) 0 0
\(715\) −2.96466e7 −2.16875
\(716\) 0 0
\(717\) −1.34470e7 −0.976852
\(718\) 0 0
\(719\) −9.73361e6 −0.702185 −0.351093 0.936341i \(-0.614190\pi\)
−0.351093 + 0.936341i \(0.614190\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.22756e6 −0.0873371
\(724\) 0 0
\(725\) −4.14045e7 −2.92552
\(726\) 0 0
\(727\) −1.60454e7 −1.12594 −0.562971 0.826477i \(-0.690342\pi\)
−0.562971 + 0.826477i \(0.690342\pi\)
\(728\) 0 0
\(729\) −8.02815e6 −0.559496
\(730\) 0 0
\(731\) −1.06071e7 −0.734182
\(732\) 0 0
\(733\) −1.04534e7 −0.718615 −0.359307 0.933219i \(-0.616987\pi\)
−0.359307 + 0.933219i \(0.616987\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −4.43979e6 −0.301088
\(738\) 0 0
\(739\) 7.47638e6 0.503594 0.251797 0.967780i \(-0.418978\pi\)
0.251797 + 0.967780i \(0.418978\pi\)
\(740\) 0 0
\(741\) −3.95327e6 −0.264491
\(742\) 0 0
\(743\) 1.33998e7 0.890483 0.445241 0.895411i \(-0.353118\pi\)
0.445241 + 0.895411i \(0.353118\pi\)
\(744\) 0 0
\(745\) 1.16047e7 0.766028
\(746\) 0 0
\(747\) 1.48269e7 0.972182
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −9.13903e6 −0.591290 −0.295645 0.955298i \(-0.595535\pi\)
−0.295645 + 0.955298i \(0.595535\pi\)
\(752\) 0 0
\(753\) 1.34063e7 0.861629
\(754\) 0 0
\(755\) 1.72039e6 0.109840
\(756\) 0 0
\(757\) −1.16376e7 −0.738117 −0.369059 0.929406i \(-0.620320\pi\)
−0.369059 + 0.929406i \(0.620320\pi\)
\(758\) 0 0
\(759\) 7.61782e6 0.479983
\(760\) 0 0
\(761\) 8.07072e6 0.505186 0.252593 0.967573i \(-0.418717\pi\)
0.252593 + 0.967573i \(0.418717\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −2.48939e7 −1.53794
\(766\) 0 0
\(767\) 9.70532e6 0.595692
\(768\) 0 0
\(769\) 1.30085e7 0.793255 0.396628 0.917980i \(-0.370180\pi\)
0.396628 + 0.917980i \(0.370180\pi\)
\(770\) 0 0
\(771\) 1.69369e7 1.02612
\(772\) 0 0
\(773\) −2.37637e7 −1.43043 −0.715214 0.698906i \(-0.753671\pi\)
−0.715214 + 0.698906i \(0.753671\pi\)
\(774\) 0 0
\(775\) −4.85508e7 −2.90364
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 699389. 0.0412929
\(780\) 0 0
\(781\) −3.09305e7 −1.81451
\(782\) 0 0
\(783\) −8.46600e6 −0.493485
\(784\) 0 0
\(785\) −2.46951e7 −1.43033
\(786\) 0 0
\(787\) −2.84940e7 −1.63989 −0.819947 0.572439i \(-0.805997\pi\)
−0.819947 + 0.572439i \(0.805997\pi\)
\(788\) 0 0
\(789\) −4.26334e7 −2.43813
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.46150e6 0.364880
\(794\) 0 0
\(795\) 6.91157e7 3.87845
\(796\) 0 0
\(797\) −1.43450e7 −0.799938 −0.399969 0.916529i \(-0.630979\pi\)
−0.399969 + 0.916529i \(0.630979\pi\)
\(798\) 0 0
\(799\) −2.78206e7 −1.54170
\(800\) 0 0
\(801\) 1.63094e7 0.898164
\(802\) 0 0
\(803\) 4.29578e7 2.35100
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −2.68050e7 −1.44888
\(808\) 0 0
\(809\) −3.59284e6 −0.193004 −0.0965020 0.995333i \(-0.530765\pi\)
−0.0965020 + 0.995333i \(0.530765\pi\)
\(810\) 0 0
\(811\) 3.52968e7 1.88445 0.942223 0.334988i \(-0.108732\pi\)
0.942223 + 0.334988i \(0.108732\pi\)
\(812\) 0 0
\(813\) 470316. 0.0249553
\(814\) 0 0
\(815\) 2.85724e7 1.50679
\(816\) 0 0
\(817\) −2.37917e6 −0.124701
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1.04558e7 0.541378 0.270689 0.962667i \(-0.412748\pi\)
0.270689 + 0.962667i \(0.412748\pi\)
\(822\) 0 0
\(823\) −4.99190e6 −0.256901 −0.128451 0.991716i \(-0.541000\pi\)
−0.128451 + 0.991716i \(0.541000\pi\)
\(824\) 0 0
\(825\) −5.83890e7 −2.98673
\(826\) 0 0
\(827\) 2.06198e7 1.04839 0.524193 0.851599i \(-0.324367\pi\)
0.524193 + 0.851599i \(0.324367\pi\)
\(828\) 0 0
\(829\) 506843. 0.0256146 0.0128073 0.999918i \(-0.495923\pi\)
0.0128073 + 0.999918i \(0.495923\pi\)
\(830\) 0 0
\(831\) −7.69281e6 −0.386440
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 5.32511e7 2.64309
\(836\) 0 0
\(837\) −9.92721e6 −0.489794
\(838\) 0 0
\(839\) −4.41851e6 −0.216706 −0.108353 0.994112i \(-0.534558\pi\)
−0.108353 + 0.994112i \(0.534558\pi\)
\(840\) 0 0
\(841\) 4.64876e7 2.26645
\(842\) 0 0
\(843\) −4.25598e7 −2.06267
\(844\) 0 0
\(845\) 1.75863e6 0.0847292
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 1.37140e7 0.652973
\(850\) 0 0
\(851\) −3.41893e6 −0.161833
\(852\) 0 0
\(853\) 1.11737e7 0.525806 0.262903 0.964822i \(-0.415320\pi\)
0.262903 + 0.964822i \(0.415320\pi\)
\(854\) 0 0
\(855\) −5.58370e6 −0.261220
\(856\) 0 0
\(857\) −2.12308e7 −0.987448 −0.493724 0.869619i \(-0.664365\pi\)
−0.493724 + 0.869619i \(0.664365\pi\)
\(858\) 0 0
\(859\) 3.64229e7 1.68419 0.842096 0.539328i \(-0.181322\pi\)
0.842096 + 0.539328i \(0.181322\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.53298e7 1.15772 0.578861 0.815426i \(-0.303497\pi\)
0.578861 + 0.815426i \(0.303497\pi\)
\(864\) 0 0
\(865\) 6.49750e7 2.95261
\(866\) 0 0
\(867\) −1.25934e7 −0.568978
\(868\) 0 0
\(869\) 1.77264e6 0.0796290
\(870\) 0 0
\(871\) −4.76667e6 −0.212897
\(872\) 0 0
\(873\) −1.95957e7 −0.870211
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −577138. −0.0253385 −0.0126692 0.999920i \(-0.504033\pi\)
−0.0126692 + 0.999920i \(0.504033\pi\)
\(878\) 0 0
\(879\) −2.01047e7 −0.877658
\(880\) 0 0
\(881\) 2.15071e7 0.933561 0.466781 0.884373i \(-0.345414\pi\)
0.466781 + 0.884373i \(0.345414\pi\)
\(882\) 0 0
\(883\) 3.71948e6 0.160539 0.0802695 0.996773i \(-0.474422\pi\)
0.0802695 + 0.996773i \(0.474422\pi\)
\(884\) 0 0
\(885\) 3.09233e7 1.32717
\(886\) 0 0
\(887\) 1.81760e7 0.775694 0.387847 0.921724i \(-0.373219\pi\)
0.387847 + 0.921724i \(0.373219\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −3.79166e7 −1.60006
\(892\) 0 0
\(893\) −6.24015e6 −0.261858
\(894\) 0 0
\(895\) 4.85214e6 0.202477
\(896\) 0 0
\(897\) 8.17868e6 0.339392
\(898\) 0 0
\(899\) 7.85625e7 3.24202
\(900\) 0 0
\(901\) 5.20090e7 2.13435
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −3.54804e7 −1.44002
\(906\) 0 0
\(907\) 1.35430e7 0.546635 0.273317 0.961924i \(-0.411879\pi\)
0.273317 + 0.961924i \(0.411879\pi\)
\(908\) 0 0
\(909\) −1.49874e7 −0.601612
\(910\) 0 0
\(911\) 412746. 0.0164773 0.00823866 0.999966i \(-0.497378\pi\)
0.00823866 + 0.999966i \(0.497378\pi\)
\(912\) 0 0
\(913\) 4.23359e7 1.68086
\(914\) 0 0
\(915\) 2.05878e7 0.812937
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −2.79059e7 −1.08995 −0.544976 0.838452i \(-0.683461\pi\)
−0.544976 + 0.838452i \(0.683461\pi\)
\(920\) 0 0
\(921\) 6.19394e6 0.240612
\(922\) 0 0
\(923\) −3.32077e7 −1.28302
\(924\) 0 0
\(925\) 2.62054e7 1.00702
\(926\) 0 0
\(927\) −1.09744e7 −0.419451
\(928\) 0 0
\(929\) 1.94840e7 0.740695 0.370348 0.928893i \(-0.379239\pi\)
0.370348 + 0.928893i \(0.379239\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −2.34128e7 −0.880539
\(934\) 0 0
\(935\) −7.10809e7 −2.65904
\(936\) 0 0
\(937\) 1.89631e7 0.705602 0.352801 0.935698i \(-0.385229\pi\)
0.352801 + 0.935698i \(0.385229\pi\)
\(938\) 0 0
\(939\) 3.65425e7 1.35249
\(940\) 0 0
\(941\) 2.30498e7 0.848579 0.424290 0.905526i \(-0.360524\pi\)
0.424290 + 0.905526i \(0.360524\pi\)
\(942\) 0 0
\(943\) −1.44692e6 −0.0529866
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.49310e7 1.26572 0.632858 0.774268i \(-0.281882\pi\)
0.632858 + 0.774268i \(0.281882\pi\)
\(948\) 0 0
\(949\) 4.61206e7 1.66238
\(950\) 0 0
\(951\) −6.63331e7 −2.37837
\(952\) 0 0
\(953\) 2.74501e7 0.979066 0.489533 0.871985i \(-0.337167\pi\)
0.489533 + 0.871985i \(0.337167\pi\)
\(954\) 0 0
\(955\) 3.57786e7 1.26945
\(956\) 0 0
\(957\) 9.44822e7 3.33480
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 6.34930e7 2.21778
\(962\) 0 0
\(963\) 7.48807e6 0.260198
\(964\) 0 0
\(965\) 5.09204e7 1.76025
\(966\) 0 0
\(967\) 9.37608e6 0.322445 0.161222 0.986918i \(-0.448456\pi\)
0.161222 + 0.986918i \(0.448456\pi\)
\(968\) 0 0
\(969\) −9.47839e6 −0.324284
\(970\) 0 0
\(971\) 7.23359e6 0.246210 0.123105 0.992394i \(-0.460715\pi\)
0.123105 + 0.992394i \(0.460715\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −6.26879e7 −2.11190
\(976\) 0 0
\(977\) −2.88022e7 −0.965360 −0.482680 0.875797i \(-0.660337\pi\)
−0.482680 + 0.875797i \(0.660337\pi\)
\(978\) 0 0
\(979\) 4.65690e7 1.55289
\(980\) 0 0
\(981\) −3.21109e6 −0.106532
\(982\) 0 0
\(983\) 5.21848e7 1.72250 0.861252 0.508178i \(-0.169681\pi\)
0.861252 + 0.508178i \(0.169681\pi\)
\(984\) 0 0
\(985\) −3.63841e7 −1.19487
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 4.92212e6 0.160015
\(990\) 0 0
\(991\) 3.89578e7 1.26012 0.630058 0.776548i \(-0.283031\pi\)
0.630058 + 0.776548i \(0.283031\pi\)
\(992\) 0 0
\(993\) 1.83520e7 0.590624
\(994\) 0 0
\(995\) 4.12485e7 1.32084
\(996\) 0 0
\(997\) 3.01716e7 0.961305 0.480652 0.876911i \(-0.340400\pi\)
0.480652 + 0.876911i \(0.340400\pi\)
\(998\) 0 0
\(999\) 5.35824e6 0.169867
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.q.1.1 2
4.3 odd 2 392.6.a.e.1.2 2
7.6 odd 2 112.6.a.j.1.2 2
21.20 even 2 1008.6.a.bi.1.1 2
28.3 even 6 392.6.i.k.177.2 4
28.11 odd 6 392.6.i.h.177.1 4
28.19 even 6 392.6.i.k.361.2 4
28.23 odd 6 392.6.i.h.361.1 4
28.27 even 2 56.6.a.d.1.1 2
56.13 odd 2 448.6.a.r.1.1 2
56.27 even 2 448.6.a.x.1.2 2
84.83 odd 2 504.6.a.m.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.6.a.d.1.1 2 28.27 even 2
112.6.a.j.1.2 2 7.6 odd 2
392.6.a.e.1.2 2 4.3 odd 2
392.6.i.h.177.1 4 28.11 odd 6
392.6.i.h.361.1 4 28.23 odd 6
392.6.i.k.177.2 4 28.3 even 6
392.6.i.k.361.2 4 28.19 even 6
448.6.a.r.1.1 2 56.13 odd 2
448.6.a.x.1.2 2 56.27 even 2
504.6.a.m.1.1 2 84.83 odd 2
784.6.a.q.1.1 2 1.1 even 1 trivial
1008.6.a.bi.1.1 2 21.20 even 2