Properties

Label 784.6.a.bi.1.3
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,1480] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{1177})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 591x^{2} + 592x + 85262 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 196)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(19.0679\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+19.3093 q^{3} -49.9872 q^{5} +129.848 q^{9} +351.152 q^{11} -853.910 q^{13} -965.216 q^{15} -2267.40 q^{17} +201.628 q^{19} +1069.22 q^{23} -626.281 q^{25} -2184.88 q^{27} +6862.06 q^{29} +5402.82 q^{31} +6780.49 q^{33} +9917.10 q^{37} -16488.4 q^{39} +9383.43 q^{41} +22378.6 q^{43} -6490.74 q^{45} -6792.94 q^{47} -43781.9 q^{51} +3494.13 q^{53} -17553.1 q^{55} +3893.29 q^{57} +27543.5 q^{59} +28901.8 q^{61} +42684.6 q^{65} -70459.7 q^{67} +20645.8 q^{69} -24149.9 q^{71} -62230.6 q^{73} -12093.0 q^{75} +79757.9 q^{79} -73741.6 q^{81} +6356.40 q^{83} +113341. q^{85} +132501. q^{87} +60189.5 q^{89} +104324. q^{93} -10078.8 q^{95} +3180.12 q^{97} +45596.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 1480 q^{9} + 444 q^{11} + 3824 q^{15} - 3408 q^{23} + 11904 q^{25} + 20724 q^{29} + 13732 q^{37} - 25608 q^{39} + 28996 q^{43} - 181852 q^{51} + 528 q^{53} + 89540 q^{57} + 110220 q^{65} - 195384 q^{67}+ \cdots - 66412 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 19.3093 1.23869 0.619345 0.785119i \(-0.287398\pi\)
0.619345 + 0.785119i \(0.287398\pi\)
\(4\) 0 0
\(5\) −49.9872 −0.894198 −0.447099 0.894484i \(-0.647543\pi\)
−0.447099 + 0.894484i \(0.647543\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 129.848 0.534354
\(10\) 0 0
\(11\) 351.152 0.875011 0.437505 0.899216i \(-0.355862\pi\)
0.437505 + 0.899216i \(0.355862\pi\)
\(12\) 0 0
\(13\) −853.910 −1.40137 −0.700687 0.713469i \(-0.747123\pi\)
−0.700687 + 0.713469i \(0.747123\pi\)
\(14\) 0 0
\(15\) −965.216 −1.10763
\(16\) 0 0
\(17\) −2267.40 −1.90286 −0.951430 0.307866i \(-0.900385\pi\)
−0.951430 + 0.307866i \(0.900385\pi\)
\(18\) 0 0
\(19\) 201.628 0.128135 0.0640674 0.997946i \(-0.479593\pi\)
0.0640674 + 0.997946i \(0.479593\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 1069.22 0.421450 0.210725 0.977545i \(-0.432418\pi\)
0.210725 + 0.977545i \(0.432418\pi\)
\(24\) 0 0
\(25\) −626.281 −0.200410
\(26\) 0 0
\(27\) −2184.88 −0.576791
\(28\) 0 0
\(29\) 6862.06 1.51516 0.757582 0.652740i \(-0.226380\pi\)
0.757582 + 0.652740i \(0.226380\pi\)
\(30\) 0 0
\(31\) 5402.82 1.00975 0.504877 0.863191i \(-0.331538\pi\)
0.504877 + 0.863191i \(0.331538\pi\)
\(32\) 0 0
\(33\) 6780.49 1.08387
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 9917.10 1.19091 0.595457 0.803387i \(-0.296971\pi\)
0.595457 + 0.803387i \(0.296971\pi\)
\(38\) 0 0
\(39\) −16488.4 −1.73587
\(40\) 0 0
\(41\) 9383.43 0.871770 0.435885 0.900002i \(-0.356435\pi\)
0.435885 + 0.900002i \(0.356435\pi\)
\(42\) 0 0
\(43\) 22378.6 1.84570 0.922851 0.385158i \(-0.125853\pi\)
0.922851 + 0.385158i \(0.125853\pi\)
\(44\) 0 0
\(45\) −6490.74 −0.477818
\(46\) 0 0
\(47\) −6792.94 −0.448552 −0.224276 0.974526i \(-0.572002\pi\)
−0.224276 + 0.974526i \(0.572002\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −43781.9 −2.35705
\(52\) 0 0
\(53\) 3494.13 0.170863 0.0854317 0.996344i \(-0.472773\pi\)
0.0854317 + 0.996344i \(0.472773\pi\)
\(54\) 0 0
\(55\) −17553.1 −0.782433
\(56\) 0 0
\(57\) 3893.29 0.158719
\(58\) 0 0
\(59\) 27543.5 1.03012 0.515062 0.857153i \(-0.327769\pi\)
0.515062 + 0.857153i \(0.327769\pi\)
\(60\) 0 0
\(61\) 28901.8 0.994490 0.497245 0.867610i \(-0.334345\pi\)
0.497245 + 0.867610i \(0.334345\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 42684.6 1.25311
\(66\) 0 0
\(67\) −70459.7 −1.91758 −0.958790 0.284114i \(-0.908300\pi\)
−0.958790 + 0.284114i \(0.908300\pi\)
\(68\) 0 0
\(69\) 20645.8 0.522046
\(70\) 0 0
\(71\) −24149.9 −0.568550 −0.284275 0.958743i \(-0.591753\pi\)
−0.284275 + 0.958743i \(0.591753\pi\)
\(72\) 0 0
\(73\) −62230.6 −1.36677 −0.683387 0.730056i \(-0.739494\pi\)
−0.683387 + 0.730056i \(0.739494\pi\)
\(74\) 0 0
\(75\) −12093.0 −0.248246
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 79757.9 1.43783 0.718913 0.695100i \(-0.244640\pi\)
0.718913 + 0.695100i \(0.244640\pi\)
\(80\) 0 0
\(81\) −73741.6 −1.24882
\(82\) 0 0
\(83\) 6356.40 0.101278 0.0506391 0.998717i \(-0.483874\pi\)
0.0506391 + 0.998717i \(0.483874\pi\)
\(84\) 0 0
\(85\) 113341. 1.70153
\(86\) 0 0
\(87\) 132501. 1.87682
\(88\) 0 0
\(89\) 60189.5 0.805464 0.402732 0.915318i \(-0.368061\pi\)
0.402732 + 0.915318i \(0.368061\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 104324. 1.25077
\(94\) 0 0
\(95\) −10078.8 −0.114578
\(96\) 0 0
\(97\) 3180.12 0.0343174 0.0171587 0.999853i \(-0.494538\pi\)
0.0171587 + 0.999853i \(0.494538\pi\)
\(98\) 0 0
\(99\) 45596.4 0.467565
\(100\) 0 0
\(101\) 115219. 1.12388 0.561941 0.827177i \(-0.310055\pi\)
0.561941 + 0.827177i \(0.310055\pi\)
\(102\) 0 0
\(103\) 122065. 1.13370 0.566852 0.823820i \(-0.308161\pi\)
0.566852 + 0.823820i \(0.308161\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 54130.9 0.457074 0.228537 0.973535i \(-0.426606\pi\)
0.228537 + 0.973535i \(0.426606\pi\)
\(108\) 0 0
\(109\) 39838.5 0.321171 0.160586 0.987022i \(-0.448662\pi\)
0.160586 + 0.987022i \(0.448662\pi\)
\(110\) 0 0
\(111\) 191492. 1.47517
\(112\) 0 0
\(113\) −68432.6 −0.504159 −0.252079 0.967707i \(-0.581114\pi\)
−0.252079 + 0.967707i \(0.581114\pi\)
\(114\) 0 0
\(115\) −53447.1 −0.376860
\(116\) 0 0
\(117\) −110879. −0.748829
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −37743.2 −0.234356
\(122\) 0 0
\(123\) 181187. 1.07985
\(124\) 0 0
\(125\) 187516. 1.07340
\(126\) 0 0
\(127\) 256765. 1.41262 0.706312 0.707901i \(-0.250358\pi\)
0.706312 + 0.707901i \(0.250358\pi\)
\(128\) 0 0
\(129\) 432114. 2.28625
\(130\) 0 0
\(131\) −222523. −1.13291 −0.566457 0.824091i \(-0.691686\pi\)
−0.566457 + 0.824091i \(0.691686\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 109216. 0.515766
\(136\) 0 0
\(137\) 88409.0 0.402434 0.201217 0.979547i \(-0.435510\pi\)
0.201217 + 0.979547i \(0.435510\pi\)
\(138\) 0 0
\(139\) −105621. −0.463674 −0.231837 0.972755i \(-0.574474\pi\)
−0.231837 + 0.972755i \(0.574474\pi\)
\(140\) 0 0
\(141\) −131167. −0.555618
\(142\) 0 0
\(143\) −299852. −1.22622
\(144\) 0 0
\(145\) −343015. −1.35486
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −449212. −1.65762 −0.828811 0.559528i \(-0.810982\pi\)
−0.828811 + 0.559528i \(0.810982\pi\)
\(150\) 0 0
\(151\) −12824.7 −0.0457727 −0.0228863 0.999738i \(-0.507286\pi\)
−0.0228863 + 0.999738i \(0.507286\pi\)
\(152\) 0 0
\(153\) −294418. −1.01680
\(154\) 0 0
\(155\) −270072. −0.902921
\(156\) 0 0
\(157\) 155429. 0.503249 0.251624 0.967825i \(-0.419035\pi\)
0.251624 + 0.967825i \(0.419035\pi\)
\(158\) 0 0
\(159\) 67469.1 0.211647
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 474063. 1.39755 0.698774 0.715342i \(-0.253729\pi\)
0.698774 + 0.715342i \(0.253729\pi\)
\(164\) 0 0
\(165\) −338938. −0.969192
\(166\) 0 0
\(167\) 308200. 0.855147 0.427574 0.903981i \(-0.359368\pi\)
0.427574 + 0.903981i \(0.359368\pi\)
\(168\) 0 0
\(169\) 357870. 0.963847
\(170\) 0 0
\(171\) 26181.0 0.0684693
\(172\) 0 0
\(173\) −474941. −1.20649 −0.603245 0.797556i \(-0.706126\pi\)
−0.603245 + 0.797556i \(0.706126\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 531846. 1.27601
\(178\) 0 0
\(179\) 619706. 1.44562 0.722808 0.691049i \(-0.242851\pi\)
0.722808 + 0.691049i \(0.242851\pi\)
\(180\) 0 0
\(181\) 108568. 0.246324 0.123162 0.992387i \(-0.460697\pi\)
0.123162 + 0.992387i \(0.460697\pi\)
\(182\) 0 0
\(183\) 558073. 1.23187
\(184\) 0 0
\(185\) −495728. −1.06491
\(186\) 0 0
\(187\) −796204. −1.66502
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 244317. 0.484585 0.242293 0.970203i \(-0.422101\pi\)
0.242293 + 0.970203i \(0.422101\pi\)
\(192\) 0 0
\(193\) 64918.4 0.125451 0.0627255 0.998031i \(-0.480021\pi\)
0.0627255 + 0.998031i \(0.480021\pi\)
\(194\) 0 0
\(195\) 824208. 1.55221
\(196\) 0 0
\(197\) 876652. 1.60939 0.804696 0.593687i \(-0.202328\pi\)
0.804696 + 0.593687i \(0.202328\pi\)
\(198\) 0 0
\(199\) 82565.9 0.147798 0.0738989 0.997266i \(-0.476456\pi\)
0.0738989 + 0.997266i \(0.476456\pi\)
\(200\) 0 0
\(201\) −1.36053e6 −2.37529
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −469051. −0.779535
\(206\) 0 0
\(207\) 138836. 0.225203
\(208\) 0 0
\(209\) 70802.1 0.112119
\(210\) 0 0
\(211\) 271448. 0.419740 0.209870 0.977729i \(-0.432696\pi\)
0.209870 + 0.977729i \(0.432696\pi\)
\(212\) 0 0
\(213\) −466316. −0.704257
\(214\) 0 0
\(215\) −1.11864e6 −1.65042
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −1.20163e6 −1.69301
\(220\) 0 0
\(221\) 1.93616e6 2.66662
\(222\) 0 0
\(223\) −1.33163e6 −1.79316 −0.896582 0.442878i \(-0.853957\pi\)
−0.896582 + 0.442878i \(0.853957\pi\)
\(224\) 0 0
\(225\) −81321.3 −0.107090
\(226\) 0 0
\(227\) −551492. −0.710354 −0.355177 0.934799i \(-0.615579\pi\)
−0.355177 + 0.934799i \(0.615579\pi\)
\(228\) 0 0
\(229\) 759511. 0.957074 0.478537 0.878067i \(-0.341167\pi\)
0.478537 + 0.878067i \(0.341167\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 806195. 0.972860 0.486430 0.873720i \(-0.338299\pi\)
0.486430 + 0.873720i \(0.338299\pi\)
\(234\) 0 0
\(235\) 339560. 0.401095
\(236\) 0 0
\(237\) 1.54007e6 1.78102
\(238\) 0 0
\(239\) 798850. 0.904629 0.452315 0.891858i \(-0.350598\pi\)
0.452315 + 0.891858i \(0.350598\pi\)
\(240\) 0 0
\(241\) 73687.9 0.0817247 0.0408624 0.999165i \(-0.486989\pi\)
0.0408624 + 0.999165i \(0.486989\pi\)
\(242\) 0 0
\(243\) −892969. −0.970110
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −172172. −0.179565
\(248\) 0 0
\(249\) 122737. 0.125452
\(250\) 0 0
\(251\) 25091.9 0.0251391 0.0125696 0.999921i \(-0.495999\pi\)
0.0125696 + 0.999921i \(0.495999\pi\)
\(252\) 0 0
\(253\) 375457. 0.368773
\(254\) 0 0
\(255\) 2.18854e6 2.10767
\(256\) 0 0
\(257\) −363530. −0.343326 −0.171663 0.985156i \(-0.554914\pi\)
−0.171663 + 0.985156i \(0.554914\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 891025. 0.809634
\(262\) 0 0
\(263\) −2.10649e6 −1.87789 −0.938946 0.344064i \(-0.888196\pi\)
−0.938946 + 0.344064i \(0.888196\pi\)
\(264\) 0 0
\(265\) −174662. −0.152786
\(266\) 0 0
\(267\) 1.16222e6 0.997720
\(268\) 0 0
\(269\) 736198. 0.620318 0.310159 0.950685i \(-0.399618\pi\)
0.310159 + 0.950685i \(0.399618\pi\)
\(270\) 0 0
\(271\) −565623. −0.467847 −0.233924 0.972255i \(-0.575157\pi\)
−0.233924 + 0.972255i \(0.575157\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −219920. −0.175361
\(276\) 0 0
\(277\) −512229. −0.401111 −0.200555 0.979682i \(-0.564275\pi\)
−0.200555 + 0.979682i \(0.564275\pi\)
\(278\) 0 0
\(279\) 701545. 0.539566
\(280\) 0 0
\(281\) 541721. 0.409270 0.204635 0.978838i \(-0.434399\pi\)
0.204635 + 0.978838i \(0.434399\pi\)
\(282\) 0 0
\(283\) 1.65919e6 1.23149 0.615744 0.787946i \(-0.288856\pi\)
0.615744 + 0.787946i \(0.288856\pi\)
\(284\) 0 0
\(285\) −194615. −0.141927
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 3.72127e6 2.62088
\(290\) 0 0
\(291\) 61405.8 0.0425086
\(292\) 0 0
\(293\) 130633. 0.0888962 0.0444481 0.999012i \(-0.485847\pi\)
0.0444481 + 0.999012i \(0.485847\pi\)
\(294\) 0 0
\(295\) −1.37682e6 −0.921136
\(296\) 0 0
\(297\) −767226. −0.504699
\(298\) 0 0
\(299\) −913015. −0.590609
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 2.22480e6 1.39214
\(304\) 0 0
\(305\) −1.44472e6 −0.889271
\(306\) 0 0
\(307\) 789634. 0.478167 0.239084 0.970999i \(-0.423153\pi\)
0.239084 + 0.970999i \(0.423153\pi\)
\(308\) 0 0
\(309\) 2.35699e6 1.40431
\(310\) 0 0
\(311\) 1.93597e6 1.13500 0.567502 0.823372i \(-0.307910\pi\)
0.567502 + 0.823372i \(0.307910\pi\)
\(312\) 0 0
\(313\) −1.82834e6 −1.05486 −0.527430 0.849598i \(-0.676844\pi\)
−0.527430 + 0.849598i \(0.676844\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.68315e6 −0.940751 −0.470376 0.882466i \(-0.655882\pi\)
−0.470376 + 0.882466i \(0.655882\pi\)
\(318\) 0 0
\(319\) 2.40963e6 1.32579
\(320\) 0 0
\(321\) 1.04523e6 0.566173
\(322\) 0 0
\(323\) −457173. −0.243823
\(324\) 0 0
\(325\) 534787. 0.280849
\(326\) 0 0
\(327\) 769252. 0.397832
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.98161e6 1.49582 0.747912 0.663798i \(-0.231057\pi\)
0.747912 + 0.663798i \(0.231057\pi\)
\(332\) 0 0
\(333\) 1.28772e6 0.636370
\(334\) 0 0
\(335\) 3.52208e6 1.71470
\(336\) 0 0
\(337\) −1.45801e6 −0.699335 −0.349668 0.936874i \(-0.613705\pi\)
−0.349668 + 0.936874i \(0.613705\pi\)
\(338\) 0 0
\(339\) −1.32138e6 −0.624496
\(340\) 0 0
\(341\) 1.89721e6 0.883547
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −1.03202e6 −0.466812
\(346\) 0 0
\(347\) −3.34680e6 −1.49213 −0.746065 0.665873i \(-0.768059\pi\)
−0.746065 + 0.665873i \(0.768059\pi\)
\(348\) 0 0
\(349\) 3.49755e6 1.53709 0.768546 0.639794i \(-0.220980\pi\)
0.768546 + 0.639794i \(0.220980\pi\)
\(350\) 0 0
\(351\) 1.86569e6 0.808300
\(352\) 0 0
\(353\) 3.00600e6 1.28396 0.641981 0.766721i \(-0.278113\pi\)
0.641981 + 0.766721i \(0.278113\pi\)
\(354\) 0 0
\(355\) 1.20718e6 0.508396
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −1.23247e6 −0.504708 −0.252354 0.967635i \(-0.581205\pi\)
−0.252354 + 0.967635i \(0.581205\pi\)
\(360\) 0 0
\(361\) −2.43545e6 −0.983581
\(362\) 0 0
\(363\) −728795. −0.290294
\(364\) 0 0
\(365\) 3.11073e6 1.22217
\(366\) 0 0
\(367\) −2.16047e6 −0.837305 −0.418653 0.908146i \(-0.637498\pi\)
−0.418653 + 0.908146i \(0.637498\pi\)
\(368\) 0 0
\(369\) 1.21842e6 0.465834
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.33520e6 −0.496908 −0.248454 0.968644i \(-0.579922\pi\)
−0.248454 + 0.968644i \(0.579922\pi\)
\(374\) 0 0
\(375\) 3.62080e6 1.32962
\(376\) 0 0
\(377\) −5.85959e6 −2.12331
\(378\) 0 0
\(379\) 3.68471e6 1.31767 0.658834 0.752289i \(-0.271050\pi\)
0.658834 + 0.752289i \(0.271050\pi\)
\(380\) 0 0
\(381\) 4.95795e6 1.74980
\(382\) 0 0
\(383\) 4.01114e6 1.39724 0.698620 0.715493i \(-0.253798\pi\)
0.698620 + 0.715493i \(0.253798\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 2.90581e6 0.986257
\(388\) 0 0
\(389\) −1.80717e6 −0.605515 −0.302757 0.953068i \(-0.597907\pi\)
−0.302757 + 0.953068i \(0.597907\pi\)
\(390\) 0 0
\(391\) −2.42435e6 −0.801960
\(392\) 0 0
\(393\) −4.29676e6 −1.40333
\(394\) 0 0
\(395\) −3.98687e6 −1.28570
\(396\) 0 0
\(397\) −3.28328e6 −1.04552 −0.522759 0.852480i \(-0.675097\pi\)
−0.522759 + 0.852480i \(0.675097\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 3.09097e6 0.959918 0.479959 0.877291i \(-0.340652\pi\)
0.479959 + 0.877291i \(0.340652\pi\)
\(402\) 0 0
\(403\) −4.61352e6 −1.41504
\(404\) 0 0
\(405\) 3.68613e6 1.11669
\(406\) 0 0
\(407\) 3.48241e6 1.04206
\(408\) 0 0
\(409\) 416847. 0.123216 0.0616082 0.998100i \(-0.480377\pi\)
0.0616082 + 0.998100i \(0.480377\pi\)
\(410\) 0 0
\(411\) 1.70711e6 0.498492
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −317739. −0.0905628
\(416\) 0 0
\(417\) −2.03946e6 −0.574348
\(418\) 0 0
\(419\) 4.70440e6 1.30909 0.654544 0.756024i \(-0.272861\pi\)
0.654544 + 0.756024i \(0.272861\pi\)
\(420\) 0 0
\(421\) −2.75525e6 −0.757626 −0.378813 0.925473i \(-0.623668\pi\)
−0.378813 + 0.925473i \(0.623668\pi\)
\(422\) 0 0
\(423\) −882050. −0.239686
\(424\) 0 0
\(425\) 1.42003e6 0.381352
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −5.78993e6 −1.51890
\(430\) 0 0
\(431\) 249909. 0.0648022 0.0324011 0.999475i \(-0.489685\pi\)
0.0324011 + 0.999475i \(0.489685\pi\)
\(432\) 0 0
\(433\) −7.61708e6 −1.95240 −0.976199 0.216875i \(-0.930414\pi\)
−0.976199 + 0.216875i \(0.930414\pi\)
\(434\) 0 0
\(435\) −6.62338e6 −1.67825
\(436\) 0 0
\(437\) 215584. 0.0540024
\(438\) 0 0
\(439\) −3.30848e6 −0.819345 −0.409672 0.912233i \(-0.634357\pi\)
−0.409672 + 0.912233i \(0.634357\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.39077e6 −0.336703 −0.168351 0.985727i \(-0.553844\pi\)
−0.168351 + 0.985727i \(0.553844\pi\)
\(444\) 0 0
\(445\) −3.00871e6 −0.720244
\(446\) 0 0
\(447\) −8.67396e6 −2.05328
\(448\) 0 0
\(449\) 7.39368e6 1.73079 0.865396 0.501089i \(-0.167067\pi\)
0.865396 + 0.501089i \(0.167067\pi\)
\(450\) 0 0
\(451\) 3.29501e6 0.762809
\(452\) 0 0
\(453\) −247636. −0.0566982
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.54533e6 −0.794085 −0.397042 0.917800i \(-0.629963\pi\)
−0.397042 + 0.917800i \(0.629963\pi\)
\(458\) 0 0
\(459\) 4.95402e6 1.09755
\(460\) 0 0
\(461\) −4.59122e6 −1.00618 −0.503090 0.864234i \(-0.667804\pi\)
−0.503090 + 0.864234i \(0.667804\pi\)
\(462\) 0 0
\(463\) 183800. 0.0398468 0.0199234 0.999802i \(-0.493658\pi\)
0.0199234 + 0.999802i \(0.493658\pi\)
\(464\) 0 0
\(465\) −5.21489e6 −1.11844
\(466\) 0 0
\(467\) −2.58361e6 −0.548194 −0.274097 0.961702i \(-0.588379\pi\)
−0.274097 + 0.961702i \(0.588379\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 3.00122e6 0.623370
\(472\) 0 0
\(473\) 7.85828e6 1.61501
\(474\) 0 0
\(475\) −126276. −0.0256795
\(476\) 0 0
\(477\) 453705. 0.0913015
\(478\) 0 0
\(479\) −7.30745e6 −1.45522 −0.727608 0.685993i \(-0.759368\pi\)
−0.727608 + 0.685993i \(0.759368\pi\)
\(480\) 0 0
\(481\) −8.46832e6 −1.66892
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −158965. −0.0306866
\(486\) 0 0
\(487\) 5.08456e6 0.971473 0.485737 0.874105i \(-0.338551\pi\)
0.485737 + 0.874105i \(0.338551\pi\)
\(488\) 0 0
\(489\) 9.15381e6 1.73113
\(490\) 0 0
\(491\) −5.83908e6 −1.09305 −0.546526 0.837442i \(-0.684050\pi\)
−0.546526 + 0.837442i \(0.684050\pi\)
\(492\) 0 0
\(493\) −1.55591e7 −2.88315
\(494\) 0 0
\(495\) −2.27923e6 −0.418096
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −8.78201e6 −1.57886 −0.789428 0.613843i \(-0.789623\pi\)
−0.789428 + 0.613843i \(0.789623\pi\)
\(500\) 0 0
\(501\) 5.95111e6 1.05926
\(502\) 0 0
\(503\) 2.64568e6 0.466248 0.233124 0.972447i \(-0.425105\pi\)
0.233124 + 0.972447i \(0.425105\pi\)
\(504\) 0 0
\(505\) −5.75948e6 −1.00497
\(506\) 0 0
\(507\) 6.91020e6 1.19391
\(508\) 0 0
\(509\) 1.11720e7 1.91134 0.955668 0.294445i \(-0.0951349\pi\)
0.955668 + 0.294445i \(0.0951349\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −440534. −0.0739071
\(514\) 0 0
\(515\) −6.10171e6 −1.01376
\(516\) 0 0
\(517\) −2.38535e6 −0.392488
\(518\) 0 0
\(519\) −9.17076e6 −1.49447
\(520\) 0 0
\(521\) −2.17607e6 −0.351219 −0.175610 0.984460i \(-0.556190\pi\)
−0.175610 + 0.984460i \(0.556190\pi\)
\(522\) 0 0
\(523\) 7.26978e6 1.16216 0.581082 0.813845i \(-0.302630\pi\)
0.581082 + 0.813845i \(0.302630\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.22504e7 −1.92142
\(528\) 0 0
\(529\) −5.29312e6 −0.822380
\(530\) 0 0
\(531\) 3.57647e6 0.550451
\(532\) 0 0
\(533\) −8.01261e6 −1.22168
\(534\) 0 0
\(535\) −2.70585e6 −0.408714
\(536\) 0 0
\(537\) 1.19661e7 1.79067
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 3.66943e6 0.539021 0.269510 0.962998i \(-0.413138\pi\)
0.269510 + 0.962998i \(0.413138\pi\)
\(542\) 0 0
\(543\) 2.09637e6 0.305119
\(544\) 0 0
\(545\) −1.99141e6 −0.287191
\(546\) 0 0
\(547\) 2.30515e6 0.329406 0.164703 0.986343i \(-0.447333\pi\)
0.164703 + 0.986343i \(0.447333\pi\)
\(548\) 0 0
\(549\) 3.75284e6 0.531410
\(550\) 0 0
\(551\) 1.38359e6 0.194145
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −9.57215e6 −1.31910
\(556\) 0 0
\(557\) 1.13750e7 1.55350 0.776752 0.629807i \(-0.216866\pi\)
0.776752 + 0.629807i \(0.216866\pi\)
\(558\) 0 0
\(559\) −1.91093e7 −2.58652
\(560\) 0 0
\(561\) −1.53741e7 −2.06245
\(562\) 0 0
\(563\) −3.48375e6 −0.463208 −0.231604 0.972810i \(-0.574397\pi\)
−0.231604 + 0.972810i \(0.574397\pi\)
\(564\) 0 0
\(565\) 3.42076e6 0.450818
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 4.96029e6 0.642283 0.321142 0.947031i \(-0.395933\pi\)
0.321142 + 0.947031i \(0.395933\pi\)
\(570\) 0 0
\(571\) −1.08592e7 −1.39382 −0.696912 0.717156i \(-0.745443\pi\)
−0.696912 + 0.717156i \(0.745443\pi\)
\(572\) 0 0
\(573\) 4.71758e6 0.600251
\(574\) 0 0
\(575\) −669629. −0.0844627
\(576\) 0 0
\(577\) −5.84580e6 −0.730978 −0.365489 0.930816i \(-0.619098\pi\)
−0.365489 + 0.930816i \(0.619098\pi\)
\(578\) 0 0
\(579\) 1.25353e6 0.155395
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.22697e6 0.149507
\(584\) 0 0
\(585\) 5.54251e6 0.669602
\(586\) 0 0
\(587\) 4.30716e6 0.515936 0.257968 0.966153i \(-0.416947\pi\)
0.257968 + 0.966153i \(0.416947\pi\)
\(588\) 0 0
\(589\) 1.08936e6 0.129385
\(590\) 0 0
\(591\) 1.69275e7 1.99354
\(592\) 0 0
\(593\) −1.98311e6 −0.231585 −0.115792 0.993273i \(-0.536941\pi\)
−0.115792 + 0.993273i \(0.536941\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.59429e6 0.183076
\(598\) 0 0
\(599\) 5.16092e6 0.587706 0.293853 0.955851i \(-0.405062\pi\)
0.293853 + 0.955851i \(0.405062\pi\)
\(600\) 0 0
\(601\) 9.35142e6 1.05607 0.528033 0.849224i \(-0.322930\pi\)
0.528033 + 0.849224i \(0.322930\pi\)
\(602\) 0 0
\(603\) −9.14905e6 −1.02467
\(604\) 0 0
\(605\) 1.88668e6 0.209561
\(606\) 0 0
\(607\) −4.99700e6 −0.550475 −0.275237 0.961376i \(-0.588756\pi\)
−0.275237 + 0.961376i \(0.588756\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.80056e6 0.628589
\(612\) 0 0
\(613\) −3.63239e6 −0.390428 −0.195214 0.980761i \(-0.562540\pi\)
−0.195214 + 0.980761i \(0.562540\pi\)
\(614\) 0 0
\(615\) −9.05704e6 −0.965603
\(616\) 0 0
\(617\) 8.56763e6 0.906041 0.453021 0.891500i \(-0.350346\pi\)
0.453021 + 0.891500i \(0.350346\pi\)
\(618\) 0 0
\(619\) −1.70312e7 −1.78656 −0.893282 0.449497i \(-0.851603\pi\)
−0.893282 + 0.449497i \(0.851603\pi\)
\(620\) 0 0
\(621\) −2.33611e6 −0.243089
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −7.41627e6 −0.759426
\(626\) 0 0
\(627\) 1.36714e6 0.138881
\(628\) 0 0
\(629\) −2.24861e7 −2.26614
\(630\) 0 0
\(631\) −5.97254e6 −0.597153 −0.298576 0.954386i \(-0.596512\pi\)
−0.298576 + 0.954386i \(0.596512\pi\)
\(632\) 0 0
\(633\) 5.24146e6 0.519928
\(634\) 0 0
\(635\) −1.28350e7 −1.26317
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −3.13581e6 −0.303807
\(640\) 0 0
\(641\) 6.39027e6 0.614291 0.307146 0.951663i \(-0.400626\pi\)
0.307146 + 0.951663i \(0.400626\pi\)
\(642\) 0 0
\(643\) −4.19353e6 −0.399993 −0.199996 0.979797i \(-0.564093\pi\)
−0.199996 + 0.979797i \(0.564093\pi\)
\(644\) 0 0
\(645\) −2.16002e7 −2.04436
\(646\) 0 0
\(647\) 9.03770e6 0.848784 0.424392 0.905478i \(-0.360488\pi\)
0.424392 + 0.905478i \(0.360488\pi\)
\(648\) 0 0
\(649\) 9.67197e6 0.901370
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −8.76742e6 −0.804616 −0.402308 0.915504i \(-0.631792\pi\)
−0.402308 + 0.915504i \(0.631792\pi\)
\(654\) 0 0
\(655\) 1.11233e7 1.01305
\(656\) 0 0
\(657\) −8.08051e6 −0.730341
\(658\) 0 0
\(659\) −1.87668e7 −1.68336 −0.841680 0.539977i \(-0.818433\pi\)
−0.841680 + 0.539977i \(0.818433\pi\)
\(660\) 0 0
\(661\) −7.01945e6 −0.624884 −0.312442 0.949937i \(-0.601147\pi\)
−0.312442 + 0.949937i \(0.601147\pi\)
\(662\) 0 0
\(663\) 3.73858e7 3.30311
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 7.33703e6 0.638566
\(668\) 0 0
\(669\) −2.57127e7 −2.22117
\(670\) 0 0
\(671\) 1.01489e7 0.870190
\(672\) 0 0
\(673\) 1.21574e7 1.03468 0.517338 0.855781i \(-0.326923\pi\)
0.517338 + 0.855781i \(0.326923\pi\)
\(674\) 0 0
\(675\) 1.36835e6 0.115595
\(676\) 0 0
\(677\) 890977. 0.0747127 0.0373564 0.999302i \(-0.488106\pi\)
0.0373564 + 0.999302i \(0.488106\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.06489e7 −0.879909
\(682\) 0 0
\(683\) −1.97098e7 −1.61670 −0.808351 0.588700i \(-0.799640\pi\)
−0.808351 + 0.588700i \(0.799640\pi\)
\(684\) 0 0
\(685\) −4.41932e6 −0.359856
\(686\) 0 0
\(687\) 1.46656e7 1.18552
\(688\) 0 0
\(689\) −2.98367e6 −0.239444
\(690\) 0 0
\(691\) 1.37488e7 1.09539 0.547697 0.836677i \(-0.315505\pi\)
0.547697 + 0.836677i \(0.315505\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 5.27969e6 0.414616
\(696\) 0 0
\(697\) −2.12760e7 −1.65886
\(698\) 0 0
\(699\) 1.55670e7 1.20507
\(700\) 0 0
\(701\) 1.40261e7 1.07806 0.539031 0.842286i \(-0.318791\pi\)
0.539031 + 0.842286i \(0.318791\pi\)
\(702\) 0 0
\(703\) 1.99957e6 0.152598
\(704\) 0 0
\(705\) 6.55666e6 0.496832
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.19993e7 0.896479 0.448239 0.893914i \(-0.352051\pi\)
0.448239 + 0.893914i \(0.352051\pi\)
\(710\) 0 0
\(711\) 1.03564e7 0.768307
\(712\) 0 0
\(713\) 5.77678e6 0.425561
\(714\) 0 0
\(715\) 1.49888e7 1.09648
\(716\) 0 0
\(717\) 1.54252e7 1.12056
\(718\) 0 0
\(719\) 2.31346e7 1.66894 0.834470 0.551054i \(-0.185774\pi\)
0.834470 + 0.551054i \(0.185774\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.42286e6 0.101232
\(724\) 0 0
\(725\) −4.29758e6 −0.303654
\(726\) 0 0
\(727\) 117783. 0.00826505 0.00413252 0.999991i \(-0.498685\pi\)
0.00413252 + 0.999991i \(0.498685\pi\)
\(728\) 0 0
\(729\) 676615. 0.0471545
\(730\) 0 0
\(731\) −5.07413e7 −3.51211
\(732\) 0 0
\(733\) 1.09660e7 0.753854 0.376927 0.926243i \(-0.376981\pi\)
0.376927 + 0.926243i \(0.376981\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2.47421e7 −1.67790
\(738\) 0 0
\(739\) −4.66161e6 −0.313996 −0.156998 0.987599i \(-0.550182\pi\)
−0.156998 + 0.987599i \(0.550182\pi\)
\(740\) 0 0
\(741\) −3.32452e6 −0.222425
\(742\) 0 0
\(743\) 1.32766e7 0.882296 0.441148 0.897434i \(-0.354571\pi\)
0.441148 + 0.897434i \(0.354571\pi\)
\(744\) 0 0
\(745\) 2.24549e7 1.48224
\(746\) 0 0
\(747\) 825366. 0.0541184
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.26804e7 0.820412 0.410206 0.911993i \(-0.365457\pi\)
0.410206 + 0.911993i \(0.365457\pi\)
\(752\) 0 0
\(753\) 484507. 0.0311396
\(754\) 0 0
\(755\) 641073. 0.0409298
\(756\) 0 0
\(757\) −9.32262e6 −0.591287 −0.295643 0.955298i \(-0.595534\pi\)
−0.295643 + 0.955298i \(0.595534\pi\)
\(758\) 0 0
\(759\) 7.24981e6 0.456796
\(760\) 0 0
\(761\) 1.89841e7 1.18831 0.594153 0.804352i \(-0.297487\pi\)
0.594153 + 0.804352i \(0.297487\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.47171e7 0.909221
\(766\) 0 0
\(767\) −2.35197e7 −1.44359
\(768\) 0 0
\(769\) 9.22276e6 0.562400 0.281200 0.959649i \(-0.409268\pi\)
0.281200 + 0.959649i \(0.409268\pi\)
\(770\) 0 0
\(771\) −7.01949e6 −0.425275
\(772\) 0 0
\(773\) −7.55017e6 −0.454473 −0.227236 0.973840i \(-0.572969\pi\)
−0.227236 + 0.973840i \(0.572969\pi\)
\(774\) 0 0
\(775\) −3.38368e6 −0.202365
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 1.89196e6 0.111704
\(780\) 0 0
\(781\) −8.48027e6 −0.497488
\(782\) 0 0
\(783\) −1.49928e7 −0.873934
\(784\) 0 0
\(785\) −7.76946e6 −0.450004
\(786\) 0 0
\(787\) 5.66483e6 0.326024 0.163012 0.986624i \(-0.447879\pi\)
0.163012 + 0.986624i \(0.447879\pi\)
\(788\) 0 0
\(789\) −4.06748e7 −2.32613
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.46796e7 −1.39365
\(794\) 0 0
\(795\) −3.37259e6 −0.189254
\(796\) 0 0
\(797\) 2.25166e6 0.125561 0.0627807 0.998027i \(-0.480003\pi\)
0.0627807 + 0.998027i \(0.480003\pi\)
\(798\) 0 0
\(799\) 1.54023e7 0.853532
\(800\) 0 0
\(801\) 7.81549e6 0.430403
\(802\) 0 0
\(803\) −2.18524e7 −1.19594
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.42155e7 0.768381
\(808\) 0 0
\(809\) 1.19636e7 0.642675 0.321338 0.946965i \(-0.395868\pi\)
0.321338 + 0.946965i \(0.395868\pi\)
\(810\) 0 0
\(811\) −958303. −0.0511624 −0.0255812 0.999673i \(-0.508144\pi\)
−0.0255812 + 0.999673i \(0.508144\pi\)
\(812\) 0 0
\(813\) −1.09218e7 −0.579518
\(814\) 0 0
\(815\) −2.36971e7 −1.24969
\(816\) 0 0
\(817\) 4.51215e6 0.236499
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.56029e7 1.32566 0.662828 0.748772i \(-0.269356\pi\)
0.662828 + 0.748772i \(0.269356\pi\)
\(822\) 0 0
\(823\) 1.15955e7 0.596748 0.298374 0.954449i \(-0.403556\pi\)
0.298374 + 0.954449i \(0.403556\pi\)
\(824\) 0 0
\(825\) −4.24649e6 −0.217218
\(826\) 0 0
\(827\) 4.22668e6 0.214900 0.107450 0.994211i \(-0.465731\pi\)
0.107450 + 0.994211i \(0.465731\pi\)
\(828\) 0 0
\(829\) 1.33000e7 0.672148 0.336074 0.941836i \(-0.390901\pi\)
0.336074 + 0.941836i \(0.390901\pi\)
\(830\) 0 0
\(831\) −9.89076e6 −0.496852
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −1.54060e7 −0.764671
\(836\) 0 0
\(837\) −1.18045e7 −0.582418
\(838\) 0 0
\(839\) −3.03054e7 −1.48633 −0.743166 0.669107i \(-0.766677\pi\)
−0.743166 + 0.669107i \(0.766677\pi\)
\(840\) 0 0
\(841\) 2.65768e7 1.29572
\(842\) 0 0
\(843\) 1.04602e7 0.506959
\(844\) 0 0
\(845\) −1.78889e7 −0.861870
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 3.20378e7 1.52543
\(850\) 0 0
\(851\) 1.06035e7 0.501911
\(852\) 0 0
\(853\) −1.04047e7 −0.489616 −0.244808 0.969572i \(-0.578725\pi\)
−0.244808 + 0.969572i \(0.578725\pi\)
\(854\) 0 0
\(855\) −1.30872e6 −0.0612251
\(856\) 0 0
\(857\) −2.19500e7 −1.02090 −0.510448 0.859909i \(-0.670520\pi\)
−0.510448 + 0.859909i \(0.670520\pi\)
\(858\) 0 0
\(859\) −9.08936e6 −0.420291 −0.210146 0.977670i \(-0.567394\pi\)
−0.210146 + 0.977670i \(0.567394\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.82502e6 −0.0834141 −0.0417071 0.999130i \(-0.513280\pi\)
−0.0417071 + 0.999130i \(0.513280\pi\)
\(864\) 0 0
\(865\) 2.37409e7 1.07884
\(866\) 0 0
\(867\) 7.18550e7 3.24645
\(868\) 0 0
\(869\) 2.80072e7 1.25811
\(870\) 0 0
\(871\) 6.01662e7 2.68725
\(872\) 0 0
\(873\) 412932. 0.0183376
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.49949e7 −0.658331 −0.329166 0.944272i \(-0.606767\pi\)
−0.329166 + 0.944272i \(0.606767\pi\)
\(878\) 0 0
\(879\) 2.52242e6 0.110115
\(880\) 0 0
\(881\) −1.71560e6 −0.0744692 −0.0372346 0.999307i \(-0.511855\pi\)
−0.0372346 + 0.999307i \(0.511855\pi\)
\(882\) 0 0
\(883\) −3.86989e7 −1.67031 −0.835155 0.550015i \(-0.814622\pi\)
−0.835155 + 0.550015i \(0.814622\pi\)
\(884\) 0 0
\(885\) −2.65855e7 −1.14100
\(886\) 0 0
\(887\) −5.82614e6 −0.248641 −0.124320 0.992242i \(-0.539675\pi\)
−0.124320 + 0.992242i \(0.539675\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −2.58945e7 −1.09273
\(892\) 0 0
\(893\) −1.36965e6 −0.0574752
\(894\) 0 0
\(895\) −3.09774e7 −1.29267
\(896\) 0 0
\(897\) −1.76297e7 −0.731581
\(898\) 0 0
\(899\) 3.70745e7 1.52994
\(900\) 0 0
\(901\) −7.92260e6 −0.325129
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −5.42702e6 −0.220262
\(906\) 0 0
\(907\) −9.83957e6 −0.397153 −0.198577 0.980085i \(-0.563632\pi\)
−0.198577 + 0.980085i \(0.563632\pi\)
\(908\) 0 0
\(909\) 1.49610e7 0.600551
\(910\) 0 0
\(911\) 2.53673e7 1.01269 0.506347 0.862330i \(-0.330996\pi\)
0.506347 + 0.862330i \(0.330996\pi\)
\(912\) 0 0
\(913\) 2.23206e6 0.0886196
\(914\) 0 0
\(915\) −2.78965e7 −1.10153
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 5.85847e6 0.228821 0.114410 0.993434i \(-0.463502\pi\)
0.114410 + 0.993434i \(0.463502\pi\)
\(920\) 0 0
\(921\) 1.52472e7 0.592301
\(922\) 0 0
\(923\) 2.06218e7 0.796751
\(924\) 0 0
\(925\) −6.21089e6 −0.238671
\(926\) 0 0
\(927\) 1.58500e7 0.605799
\(928\) 0 0
\(929\) 18528.6 0.000704374 0 0.000352187 1.00000i \(-0.499888\pi\)
0.000352187 1.00000i \(0.499888\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.73821e7 1.40592
\(934\) 0 0
\(935\) 3.98000e7 1.48886
\(936\) 0 0
\(937\) 3.91119e7 1.45533 0.727663 0.685935i \(-0.240606\pi\)
0.727663 + 0.685935i \(0.240606\pi\)
\(938\) 0 0
\(939\) −3.53038e7 −1.30665
\(940\) 0 0
\(941\) −8.90516e6 −0.327844 −0.163922 0.986473i \(-0.552415\pi\)
−0.163922 + 0.986473i \(0.552415\pi\)
\(942\) 0 0
\(943\) 1.00329e7 0.367408
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 7.43836e6 0.269527 0.134764 0.990878i \(-0.456973\pi\)
0.134764 + 0.990878i \(0.456973\pi\)
\(948\) 0 0
\(949\) 5.31393e7 1.91536
\(950\) 0 0
\(951\) −3.25004e7 −1.16530
\(952\) 0 0
\(953\) 3.87886e7 1.38348 0.691739 0.722148i \(-0.256845\pi\)
0.691739 + 0.722148i \(0.256845\pi\)
\(954\) 0 0
\(955\) −1.22127e7 −0.433315
\(956\) 0 0
\(957\) 4.65282e7 1.64224
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 561277. 0.0196051
\(962\) 0 0
\(963\) 7.02879e6 0.244239
\(964\) 0 0
\(965\) −3.24509e6 −0.112178
\(966\) 0 0
\(967\) 2.80184e7 0.963557 0.481779 0.876293i \(-0.339991\pi\)
0.481779 + 0.876293i \(0.339991\pi\)
\(968\) 0 0
\(969\) −8.82767e6 −0.302021
\(970\) 0 0
\(971\) −4.45242e7 −1.51547 −0.757736 0.652561i \(-0.773695\pi\)
−0.757736 + 0.652561i \(0.773695\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 1.03264e7 0.347885
\(976\) 0 0
\(977\) 922043. 0.0309040 0.0154520 0.999881i \(-0.495081\pi\)
0.0154520 + 0.999881i \(0.495081\pi\)
\(978\) 0 0
\(979\) 2.11357e7 0.704790
\(980\) 0 0
\(981\) 5.17294e6 0.171619
\(982\) 0 0
\(983\) 4.12706e6 0.136225 0.0681125 0.997678i \(-0.478302\pi\)
0.0681125 + 0.997678i \(0.478302\pi\)
\(984\) 0 0
\(985\) −4.38214e7 −1.43912
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.39275e7 0.777871
\(990\) 0 0
\(991\) −3.49392e6 −0.113013 −0.0565065 0.998402i \(-0.517996\pi\)
−0.0565065 + 0.998402i \(0.517996\pi\)
\(992\) 0 0
\(993\) 5.75726e7 1.85286
\(994\) 0 0
\(995\) −4.12724e6 −0.132161
\(996\) 0 0
\(997\) −1.16105e7 −0.369924 −0.184962 0.982746i \(-0.559216\pi\)
−0.184962 + 0.982746i \(0.559216\pi\)
\(998\) 0 0
\(999\) −2.16677e7 −0.686909
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.bi.1.3 4
4.3 odd 2 196.6.a.k.1.2 4
7.6 odd 2 inner 784.6.a.bi.1.2 4
28.3 even 6 196.6.e.l.177.2 8
28.11 odd 6 196.6.e.l.177.3 8
28.19 even 6 196.6.e.l.165.2 8
28.23 odd 6 196.6.e.l.165.3 8
28.27 even 2 196.6.a.k.1.3 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.6.a.k.1.2 4 4.3 odd 2
196.6.a.k.1.3 yes 4 28.27 even 2
196.6.e.l.165.2 8 28.19 even 6
196.6.e.l.165.3 8 28.23 odd 6
196.6.e.l.177.2 8 28.3 even 6
196.6.e.l.177.3 8 28.11 odd 6
784.6.a.bi.1.2 4 7.6 odd 2 inner
784.6.a.bi.1.3 4 1.1 even 1 trivial