Properties

Label 784.6.a.bi.1.1
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,1480] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{1177})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 591x^{2} + 592x + 85262 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 196)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-15.2395\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-29.2088 q^{3} -98.5052 q^{5} +610.152 q^{9} -129.152 q^{11} -126.140 q^{13} +2877.22 q^{15} +1614.04 q^{17} -1399.47 q^{19} -2773.22 q^{23} +6578.28 q^{25} -10724.1 q^{27} +3499.94 q^{29} -710.456 q^{31} +3772.37 q^{33} -3051.10 q^{37} +3684.39 q^{39} -15263.7 q^{41} -7880.58 q^{43} -60103.2 q^{45} -16787.7 q^{47} -47144.1 q^{51} -3230.13 q^{53} +12722.2 q^{55} +40876.7 q^{57} +12163.3 q^{59} -51007.4 q^{61} +12425.4 q^{65} -27232.3 q^{67} +81002.2 q^{69} +13313.9 q^{71} -49712.9 q^{73} -192143. q^{75} -21105.9 q^{79} +164970. q^{81} -79860.2 q^{83} -158991. q^{85} -102229. q^{87} -36846.5 q^{89} +20751.5 q^{93} +137855. q^{95} -27968.5 q^{97} -78802.4 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 1480 q^{9} + 444 q^{11} + 3824 q^{15} - 3408 q^{23} + 11904 q^{25} + 20724 q^{29} + 13732 q^{37} - 25608 q^{39} + 28996 q^{43} - 181852 q^{51} + 528 q^{53} + 89540 q^{57} + 110220 q^{65} - 195384 q^{67}+ \cdots - 66412 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −29.2088 −1.87374 −0.936872 0.349674i \(-0.886293\pi\)
−0.936872 + 0.349674i \(0.886293\pi\)
\(4\) 0 0
\(5\) −98.5052 −1.76212 −0.881058 0.473009i \(-0.843168\pi\)
−0.881058 + 0.473009i \(0.843168\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 610.152 2.51091
\(10\) 0 0
\(11\) −129.152 −0.321825 −0.160912 0.986969i \(-0.551444\pi\)
−0.160912 + 0.986969i \(0.551444\pi\)
\(12\) 0 0
\(13\) −126.140 −0.207011 −0.103506 0.994629i \(-0.533006\pi\)
−0.103506 + 0.994629i \(0.533006\pi\)
\(14\) 0 0
\(15\) 2877.22 3.30175
\(16\) 0 0
\(17\) 1614.04 1.35454 0.677269 0.735735i \(-0.263163\pi\)
0.677269 + 0.735735i \(0.263163\pi\)
\(18\) 0 0
\(19\) −1399.47 −0.889362 −0.444681 0.895689i \(-0.646683\pi\)
−0.444681 + 0.895689i \(0.646683\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2773.22 −1.09311 −0.546555 0.837423i \(-0.684061\pi\)
−0.546555 + 0.837423i \(0.684061\pi\)
\(24\) 0 0
\(25\) 6578.28 2.10505
\(26\) 0 0
\(27\) −10724.1 −2.83106
\(28\) 0 0
\(29\) 3499.94 0.772796 0.386398 0.922332i \(-0.373719\pi\)
0.386398 + 0.922332i \(0.373719\pi\)
\(30\) 0 0
\(31\) −710.456 −0.132780 −0.0663901 0.997794i \(-0.521148\pi\)
−0.0663901 + 0.997794i \(0.521148\pi\)
\(32\) 0 0
\(33\) 3772.37 0.603017
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3051.10 −0.366398 −0.183199 0.983076i \(-0.558645\pi\)
−0.183199 + 0.983076i \(0.558645\pi\)
\(38\) 0 0
\(39\) 3684.39 0.387885
\(40\) 0 0
\(41\) −15263.7 −1.41808 −0.709041 0.705168i \(-0.750872\pi\)
−0.709041 + 0.705168i \(0.750872\pi\)
\(42\) 0 0
\(43\) −7880.58 −0.649960 −0.324980 0.945721i \(-0.605358\pi\)
−0.324980 + 0.945721i \(0.605358\pi\)
\(44\) 0 0
\(45\) −60103.2 −4.42452
\(46\) 0 0
\(47\) −16787.7 −1.10852 −0.554262 0.832342i \(-0.687000\pi\)
−0.554262 + 0.832342i \(0.687000\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −47144.1 −2.53806
\(52\) 0 0
\(53\) −3230.13 −0.157954 −0.0789769 0.996876i \(-0.525165\pi\)
−0.0789769 + 0.996876i \(0.525165\pi\)
\(54\) 0 0
\(55\) 12722.2 0.567092
\(56\) 0 0
\(57\) 40876.7 1.66644
\(58\) 0 0
\(59\) 12163.3 0.454907 0.227453 0.973789i \(-0.426960\pi\)
0.227453 + 0.973789i \(0.426960\pi\)
\(60\) 0 0
\(61\) −51007.4 −1.75513 −0.877563 0.479461i \(-0.840832\pi\)
−0.877563 + 0.479461i \(0.840832\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 12425.4 0.364777
\(66\) 0 0
\(67\) −27232.3 −0.741135 −0.370568 0.928805i \(-0.620837\pi\)
−0.370568 + 0.928805i \(0.620837\pi\)
\(68\) 0 0
\(69\) 81002.2 2.04821
\(70\) 0 0
\(71\) 13313.9 0.313443 0.156721 0.987643i \(-0.449908\pi\)
0.156721 + 0.987643i \(0.449908\pi\)
\(72\) 0 0
\(73\) −49712.9 −1.09185 −0.545924 0.837835i \(-0.683821\pi\)
−0.545924 + 0.837835i \(0.683821\pi\)
\(74\) 0 0
\(75\) −192143. −3.94432
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −21105.9 −0.380484 −0.190242 0.981737i \(-0.560927\pi\)
−0.190242 + 0.981737i \(0.560927\pi\)
\(80\) 0 0
\(81\) 164970. 2.79377
\(82\) 0 0
\(83\) −79860.2 −1.27243 −0.636216 0.771511i \(-0.719501\pi\)
−0.636216 + 0.771511i \(0.719501\pi\)
\(84\) 0 0
\(85\) −158991. −2.38685
\(86\) 0 0
\(87\) −102229. −1.44802
\(88\) 0 0
\(89\) −36846.5 −0.493085 −0.246542 0.969132i \(-0.579294\pi\)
−0.246542 + 0.969132i \(0.579294\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 20751.5 0.248796
\(94\) 0 0
\(95\) 137855. 1.56716
\(96\) 0 0
\(97\) −27968.5 −0.301814 −0.150907 0.988548i \(-0.548219\pi\)
−0.150907 + 0.988548i \(0.548219\pi\)
\(98\) 0 0
\(99\) −78802.4 −0.808074
\(100\) 0 0
\(101\) 93531.5 0.912336 0.456168 0.889894i \(-0.349222\pi\)
0.456168 + 0.889894i \(0.349222\pi\)
\(102\) 0 0
\(103\) 179414. 1.66634 0.833168 0.553020i \(-0.186525\pi\)
0.833168 + 0.553020i \(0.186525\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −188903. −1.59507 −0.797534 0.603274i \(-0.793863\pi\)
−0.797534 + 0.603274i \(0.793863\pi\)
\(108\) 0 0
\(109\) 104680. 0.843909 0.421954 0.906617i \(-0.361344\pi\)
0.421954 + 0.906617i \(0.361344\pi\)
\(110\) 0 0
\(111\) 89119.0 0.686535
\(112\) 0 0
\(113\) 25226.6 0.185850 0.0929252 0.995673i \(-0.470378\pi\)
0.0929252 + 0.995673i \(0.470378\pi\)
\(114\) 0 0
\(115\) 273176. 1.92619
\(116\) 0 0
\(117\) −76964.4 −0.519787
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −144371. −0.896429
\(122\) 0 0
\(123\) 445835. 2.65712
\(124\) 0 0
\(125\) −340166. −1.94722
\(126\) 0 0
\(127\) −5481.01 −0.0301544 −0.0150772 0.999886i \(-0.504799\pi\)
−0.0150772 + 0.999886i \(0.504799\pi\)
\(128\) 0 0
\(129\) 230182. 1.21786
\(130\) 0 0
\(131\) −195305. −0.994339 −0.497169 0.867653i \(-0.665627\pi\)
−0.497169 + 0.867653i \(0.665627\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 1.05638e6 4.98866
\(136\) 0 0
\(137\) −173837. −0.791299 −0.395650 0.918402i \(-0.629481\pi\)
−0.395650 + 0.918402i \(0.629481\pi\)
\(138\) 0 0
\(139\) 283445. 1.24432 0.622160 0.782890i \(-0.286255\pi\)
0.622160 + 0.782890i \(0.286255\pi\)
\(140\) 0 0
\(141\) 490347. 2.07709
\(142\) 0 0
\(143\) 16291.2 0.0666213
\(144\) 0 0
\(145\) −344762. −1.36176
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 227056. 0.837852 0.418926 0.908020i \(-0.362407\pi\)
0.418926 + 0.908020i \(0.362407\pi\)
\(150\) 0 0
\(151\) −332707. −1.18746 −0.593731 0.804663i \(-0.702346\pi\)
−0.593731 + 0.804663i \(0.702346\pi\)
\(152\) 0 0
\(153\) 984809. 3.40113
\(154\) 0 0
\(155\) 69983.6 0.233974
\(156\) 0 0
\(157\) 443481. 1.43590 0.717952 0.696093i \(-0.245080\pi\)
0.717952 + 0.696093i \(0.245080\pi\)
\(158\) 0 0
\(159\) 94348.1 0.295965
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −201725. −0.594690 −0.297345 0.954770i \(-0.596101\pi\)
−0.297345 + 0.954770i \(0.596101\pi\)
\(164\) 0 0
\(165\) −371598. −1.06259
\(166\) 0 0
\(167\) 567965. 1.57591 0.787953 0.615735i \(-0.211141\pi\)
0.787953 + 0.615735i \(0.211141\pi\)
\(168\) 0 0
\(169\) −355382. −0.957146
\(170\) 0 0
\(171\) −853888. −2.23311
\(172\) 0 0
\(173\) −301586. −0.766118 −0.383059 0.923724i \(-0.625129\pi\)
−0.383059 + 0.923724i \(0.625129\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −355276. −0.852378
\(178\) 0 0
\(179\) −466742. −1.08879 −0.544395 0.838829i \(-0.683241\pi\)
−0.544395 + 0.838829i \(0.683241\pi\)
\(180\) 0 0
\(181\) −530851. −1.20442 −0.602208 0.798340i \(-0.705712\pi\)
−0.602208 + 0.798340i \(0.705712\pi\)
\(182\) 0 0
\(183\) 1.48986e6 3.28866
\(184\) 0 0
\(185\) 300550. 0.645635
\(186\) 0 0
\(187\) −208456. −0.435924
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −523209. −1.03775 −0.518874 0.854851i \(-0.673649\pi\)
−0.518874 + 0.854851i \(0.673649\pi\)
\(192\) 0 0
\(193\) −956688. −1.84875 −0.924373 0.381490i \(-0.875411\pi\)
−0.924373 + 0.381490i \(0.875411\pi\)
\(194\) 0 0
\(195\) −362931. −0.683499
\(196\) 0 0
\(197\) −84916.4 −0.155893 −0.0779464 0.996958i \(-0.524836\pi\)
−0.0779464 + 0.996958i \(0.524836\pi\)
\(198\) 0 0
\(199\) 565514. 1.01230 0.506152 0.862444i \(-0.331067\pi\)
0.506152 + 0.862444i \(0.331067\pi\)
\(200\) 0 0
\(201\) 795422. 1.38870
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 1.50356e6 2.49882
\(206\) 0 0
\(207\) −1.69208e6 −2.74471
\(208\) 0 0
\(209\) 180744. 0.286219
\(210\) 0 0
\(211\) 303148. 0.468758 0.234379 0.972145i \(-0.424694\pi\)
0.234379 + 0.972145i \(0.424694\pi\)
\(212\) 0 0
\(213\) −388881. −0.587311
\(214\) 0 0
\(215\) 776278. 1.14531
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 1.45205e6 2.04584
\(220\) 0 0
\(221\) −203594. −0.280404
\(222\) 0 0
\(223\) −796568. −1.07266 −0.536328 0.844009i \(-0.680189\pi\)
−0.536328 + 0.844009i \(0.680189\pi\)
\(224\) 0 0
\(225\) 4.01375e6 5.28560
\(226\) 0 0
\(227\) 673345. 0.867308 0.433654 0.901080i \(-0.357224\pi\)
0.433654 + 0.901080i \(0.357224\pi\)
\(228\) 0 0
\(229\) −590794. −0.744471 −0.372235 0.928138i \(-0.621409\pi\)
−0.372235 + 0.928138i \(0.621409\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −479099. −0.578143 −0.289072 0.957307i \(-0.593347\pi\)
−0.289072 + 0.957307i \(0.593347\pi\)
\(234\) 0 0
\(235\) 1.65367e6 1.95335
\(236\) 0 0
\(237\) 616478. 0.712930
\(238\) 0 0
\(239\) 349286. 0.395536 0.197768 0.980249i \(-0.436631\pi\)
0.197768 + 0.980249i \(0.436631\pi\)
\(240\) 0 0
\(241\) −337648. −0.374474 −0.187237 0.982315i \(-0.559953\pi\)
−0.187237 + 0.982315i \(0.559953\pi\)
\(242\) 0 0
\(243\) −2.21261e6 −2.40375
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 176528. 0.184108
\(248\) 0 0
\(249\) 2.33262e6 2.38421
\(250\) 0 0
\(251\) 1.67737e6 1.68053 0.840264 0.542178i \(-0.182400\pi\)
0.840264 + 0.542178i \(0.182400\pi\)
\(252\) 0 0
\(253\) 358167. 0.351790
\(254\) 0 0
\(255\) 4.64394e6 4.47235
\(256\) 0 0
\(257\) 755490. 0.713503 0.356752 0.934199i \(-0.383884\pi\)
0.356752 + 0.934199i \(0.383884\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 2.13549e6 1.94043
\(262\) 0 0
\(263\) −74806.9 −0.0666887 −0.0333443 0.999444i \(-0.510616\pi\)
−0.0333443 + 0.999444i \(0.510616\pi\)
\(264\) 0 0
\(265\) 318185. 0.278333
\(266\) 0 0
\(267\) 1.07624e6 0.923914
\(268\) 0 0
\(269\) −607218. −0.511639 −0.255820 0.966725i \(-0.582345\pi\)
−0.255820 + 0.966725i \(0.582345\pi\)
\(270\) 0 0
\(271\) −1.48029e6 −1.22440 −0.612198 0.790704i \(-0.709715\pi\)
−0.612198 + 0.790704i \(0.709715\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −849598. −0.677457
\(276\) 0 0
\(277\) −1.32490e6 −1.03749 −0.518746 0.854928i \(-0.673601\pi\)
−0.518746 + 0.854928i \(0.673601\pi\)
\(278\) 0 0
\(279\) −433486. −0.333399
\(280\) 0 0
\(281\) −649433. −0.490646 −0.245323 0.969441i \(-0.578894\pi\)
−0.245323 + 0.969441i \(0.578894\pi\)
\(282\) 0 0
\(283\) −2.21531e6 −1.64426 −0.822128 0.569303i \(-0.807213\pi\)
−0.822128 + 0.569303i \(0.807213\pi\)
\(284\) 0 0
\(285\) −4.02657e6 −2.93645
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 1.18526e6 0.834776
\(290\) 0 0
\(291\) 816924. 0.565522
\(292\) 0 0
\(293\) −513832. −0.349665 −0.174833 0.984598i \(-0.555938\pi\)
−0.174833 + 0.984598i \(0.555938\pi\)
\(294\) 0 0
\(295\) −1.19815e6 −0.801598
\(296\) 0 0
\(297\) 1.38503e6 0.911107
\(298\) 0 0
\(299\) 349813. 0.226286
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −2.73194e6 −1.70948
\(304\) 0 0
\(305\) 5.02449e6 3.09274
\(306\) 0 0
\(307\) −835478. −0.505928 −0.252964 0.967476i \(-0.581406\pi\)
−0.252964 + 0.967476i \(0.581406\pi\)
\(308\) 0 0
\(309\) −5.24045e6 −3.12229
\(310\) 0 0
\(311\) −2.11820e6 −1.24184 −0.620920 0.783874i \(-0.713241\pi\)
−0.620920 + 0.783874i \(0.713241\pi\)
\(312\) 0 0
\(313\) 1.69582e6 0.978406 0.489203 0.872170i \(-0.337288\pi\)
0.489203 + 0.872170i \(0.337288\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 1.10549e6 0.617886 0.308943 0.951081i \(-0.400025\pi\)
0.308943 + 0.951081i \(0.400025\pi\)
\(318\) 0 0
\(319\) −452024. −0.248705
\(320\) 0 0
\(321\) 5.51762e6 2.98875
\(322\) 0 0
\(323\) −2.25879e6 −1.20468
\(324\) 0 0
\(325\) −829782. −0.435769
\(326\) 0 0
\(327\) −3.05756e6 −1.58127
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 2.87642e6 1.44305 0.721526 0.692387i \(-0.243441\pi\)
0.721526 + 0.692387i \(0.243441\pi\)
\(332\) 0 0
\(333\) −1.86164e6 −0.919993
\(334\) 0 0
\(335\) 2.68253e6 1.30597
\(336\) 0 0
\(337\) −1.71881e6 −0.824430 −0.412215 0.911087i \(-0.635245\pi\)
−0.412215 + 0.911087i \(0.635245\pi\)
\(338\) 0 0
\(339\) −736839. −0.348236
\(340\) 0 0
\(341\) 91756.8 0.0427319
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −7.97914e6 −3.60918
\(346\) 0 0
\(347\) −235874. −0.105162 −0.0525808 0.998617i \(-0.516745\pi\)
−0.0525808 + 0.998617i \(0.516745\pi\)
\(348\) 0 0
\(349\) −611300. −0.268652 −0.134326 0.990937i \(-0.542887\pi\)
−0.134326 + 0.990937i \(0.542887\pi\)
\(350\) 0 0
\(351\) 1.35273e6 0.586062
\(352\) 0 0
\(353\) 3.26751e6 1.39566 0.697831 0.716263i \(-0.254149\pi\)
0.697831 + 0.716263i \(0.254149\pi\)
\(354\) 0 0
\(355\) −1.31148e6 −0.552322
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.44281e6 1.40986 0.704932 0.709275i \(-0.250978\pi\)
0.704932 + 0.709275i \(0.250978\pi\)
\(360\) 0 0
\(361\) −517591. −0.209035
\(362\) 0 0
\(363\) 4.21689e6 1.67968
\(364\) 0 0
\(365\) 4.89698e6 1.92396
\(366\) 0 0
\(367\) 141610. 0.0548819 0.0274410 0.999623i \(-0.491264\pi\)
0.0274410 + 0.999623i \(0.491264\pi\)
\(368\) 0 0
\(369\) −9.31320e6 −3.56068
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 2.90684e6 1.08181 0.540903 0.841085i \(-0.318083\pi\)
0.540903 + 0.841085i \(0.318083\pi\)
\(374\) 0 0
\(375\) 9.93583e6 3.64860
\(376\) 0 0
\(377\) −441481. −0.159977
\(378\) 0 0
\(379\) −1.38009e6 −0.493526 −0.246763 0.969076i \(-0.579367\pi\)
−0.246763 + 0.969076i \(0.579367\pi\)
\(380\) 0 0
\(381\) 160094. 0.0565017
\(382\) 0 0
\(383\) −1.95357e6 −0.680506 −0.340253 0.940334i \(-0.610513\pi\)
−0.340253 + 0.940334i \(0.610513\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.80835e6 −1.63199
\(388\) 0 0
\(389\) 4.18943e6 1.40372 0.701860 0.712315i \(-0.252353\pi\)
0.701860 + 0.712315i \(0.252353\pi\)
\(390\) 0 0
\(391\) −4.47608e6 −1.48066
\(392\) 0 0
\(393\) 5.70461e6 1.86314
\(394\) 0 0
\(395\) 2.07904e6 0.670457
\(396\) 0 0
\(397\) −5.87109e6 −1.86957 −0.934786 0.355211i \(-0.884409\pi\)
−0.934786 + 0.355211i \(0.884409\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −2.70005e6 −0.838516 −0.419258 0.907867i \(-0.637710\pi\)
−0.419258 + 0.907867i \(0.637710\pi\)
\(402\) 0 0
\(403\) 89616.7 0.0274869
\(404\) 0 0
\(405\) −1.62504e7 −4.92295
\(406\) 0 0
\(407\) 394056. 0.117916
\(408\) 0 0
\(409\) −5.19426e6 −1.53538 −0.767690 0.640822i \(-0.778594\pi\)
−0.767690 + 0.640822i \(0.778594\pi\)
\(410\) 0 0
\(411\) 5.07756e6 1.48269
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 7.86664e6 2.24217
\(416\) 0 0
\(417\) −8.27909e6 −2.33154
\(418\) 0 0
\(419\) 1.48129e6 0.412198 0.206099 0.978531i \(-0.433923\pi\)
0.206099 + 0.978531i \(0.433923\pi\)
\(420\) 0 0
\(421\) −4.52469e6 −1.24418 −0.622090 0.782946i \(-0.713716\pi\)
−0.622090 + 0.782946i \(0.713716\pi\)
\(422\) 0 0
\(423\) −1.02430e7 −2.78341
\(424\) 0 0
\(425\) 1.06176e7 2.85137
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −475846. −0.124831
\(430\) 0 0
\(431\) 4.23835e6 1.09902 0.549508 0.835488i \(-0.314815\pi\)
0.549508 + 0.835488i \(0.314815\pi\)
\(432\) 0 0
\(433\) 3.31287e6 0.849152 0.424576 0.905392i \(-0.360423\pi\)
0.424576 + 0.905392i \(0.360423\pi\)
\(434\) 0 0
\(435\) 1.00701e7 2.55158
\(436\) 0 0
\(437\) 3.88102e6 0.972171
\(438\) 0 0
\(439\) 6.60667e6 1.63614 0.818072 0.575116i \(-0.195043\pi\)
0.818072 + 0.575116i \(0.195043\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.57041e6 −0.380192 −0.190096 0.981766i \(-0.560880\pi\)
−0.190096 + 0.981766i \(0.560880\pi\)
\(444\) 0 0
\(445\) 3.62958e6 0.868872
\(446\) 0 0
\(447\) −6.63203e6 −1.56992
\(448\) 0 0
\(449\) 2.10265e6 0.492211 0.246106 0.969243i \(-0.420849\pi\)
0.246106 + 0.969243i \(0.420849\pi\)
\(450\) 0 0
\(451\) 1.97134e6 0.456374
\(452\) 0 0
\(453\) 9.71797e6 2.22500
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −6.31909e6 −1.41535 −0.707675 0.706538i \(-0.750256\pi\)
−0.707675 + 0.706538i \(0.750256\pi\)
\(458\) 0 0
\(459\) −1.73090e7 −3.83479
\(460\) 0 0
\(461\) 5.38278e6 1.17965 0.589826 0.807530i \(-0.299196\pi\)
0.589826 + 0.807530i \(0.299196\pi\)
\(462\) 0 0
\(463\) −2.50782e6 −0.543682 −0.271841 0.962342i \(-0.587632\pi\)
−0.271841 + 0.962342i \(0.587632\pi\)
\(464\) 0 0
\(465\) −2.04414e6 −0.438407
\(466\) 0 0
\(467\) −1.59292e6 −0.337988 −0.168994 0.985617i \(-0.554052\pi\)
−0.168994 + 0.985617i \(0.554052\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −1.29535e7 −2.69052
\(472\) 0 0
\(473\) 1.01779e6 0.209173
\(474\) 0 0
\(475\) −9.20609e6 −1.87215
\(476\) 0 0
\(477\) −1.97087e6 −0.396608
\(478\) 0 0
\(479\) −9.00646e6 −1.79356 −0.896779 0.442479i \(-0.854099\pi\)
−0.896779 + 0.442479i \(0.854099\pi\)
\(480\) 0 0
\(481\) 384866. 0.0758484
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 2.75504e6 0.531831
\(486\) 0 0
\(487\) −4.59261e6 −0.877479 −0.438740 0.898614i \(-0.644575\pi\)
−0.438740 + 0.898614i \(0.644575\pi\)
\(488\) 0 0
\(489\) 5.89214e6 1.11430
\(490\) 0 0
\(491\) −8.27422e6 −1.54890 −0.774450 0.632635i \(-0.781973\pi\)
−0.774450 + 0.632635i \(0.781973\pi\)
\(492\) 0 0
\(493\) 5.64903e6 1.04678
\(494\) 0 0
\(495\) 7.76245e6 1.42392
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 8.01038e6 1.44013 0.720065 0.693906i \(-0.244112\pi\)
0.720065 + 0.693906i \(0.244112\pi\)
\(500\) 0 0
\(501\) −1.65896e7 −2.95284
\(502\) 0 0
\(503\) 8.70461e6 1.53401 0.767007 0.641639i \(-0.221745\pi\)
0.767007 + 0.641639i \(0.221745\pi\)
\(504\) 0 0
\(505\) −9.21335e6 −1.60764
\(506\) 0 0
\(507\) 1.03803e7 1.79345
\(508\) 0 0
\(509\) −244907. −0.0418992 −0.0209496 0.999781i \(-0.506669\pi\)
−0.0209496 + 0.999781i \(0.506669\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.50080e7 2.51784
\(514\) 0 0
\(515\) −1.76732e7 −2.93628
\(516\) 0 0
\(517\) 2.16816e6 0.356751
\(518\) 0 0
\(519\) 8.80895e6 1.43551
\(520\) 0 0
\(521\) 2.21278e6 0.357144 0.178572 0.983927i \(-0.442852\pi\)
0.178572 + 0.983927i \(0.442852\pi\)
\(522\) 0 0
\(523\) −5.09897e6 −0.815133 −0.407566 0.913176i \(-0.633622\pi\)
−0.407566 + 0.913176i \(0.633622\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.14670e6 −0.179856
\(528\) 0 0
\(529\) 1.25439e6 0.194891
\(530\) 0 0
\(531\) 7.42148e6 1.14223
\(532\) 0 0
\(533\) 1.92536e6 0.293558
\(534\) 0 0
\(535\) 1.86079e7 2.81069
\(536\) 0 0
\(537\) 1.36330e7 2.04011
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 5.26596e6 0.773543 0.386771 0.922176i \(-0.373590\pi\)
0.386771 + 0.922176i \(0.373590\pi\)
\(542\) 0 0
\(543\) 1.55055e7 2.25676
\(544\) 0 0
\(545\) −1.03115e7 −1.48706
\(546\) 0 0
\(547\) −8.54636e6 −1.22127 −0.610636 0.791911i \(-0.709086\pi\)
−0.610636 + 0.791911i \(0.709086\pi\)
\(548\) 0 0
\(549\) −3.11223e7 −4.40697
\(550\) 0 0
\(551\) −4.89804e6 −0.687296
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −8.77869e6 −1.20975
\(556\) 0 0
\(557\) 1.59694e6 0.218097 0.109049 0.994036i \(-0.465220\pi\)
0.109049 + 0.994036i \(0.465220\pi\)
\(558\) 0 0
\(559\) 994054. 0.134549
\(560\) 0 0
\(561\) 6.08875e6 0.816810
\(562\) 0 0
\(563\) 1.79904e6 0.239205 0.119603 0.992822i \(-0.461838\pi\)
0.119603 + 0.992822i \(0.461838\pi\)
\(564\) 0 0
\(565\) −2.48496e6 −0.327490
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.05359e6 −0.265909 −0.132954 0.991122i \(-0.542446\pi\)
−0.132954 + 0.991122i \(0.542446\pi\)
\(570\) 0 0
\(571\) 3.22858e6 0.414402 0.207201 0.978298i \(-0.433565\pi\)
0.207201 + 0.978298i \(0.433565\pi\)
\(572\) 0 0
\(573\) 1.52823e7 1.94447
\(574\) 0 0
\(575\) −1.82430e7 −2.30105
\(576\) 0 0
\(577\) 8.26800e6 1.03386 0.516929 0.856028i \(-0.327075\pi\)
0.516929 + 0.856028i \(0.327075\pi\)
\(578\) 0 0
\(579\) 2.79437e7 3.46408
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 417178. 0.0508335
\(584\) 0 0
\(585\) 7.58140e6 0.915924
\(586\) 0 0
\(587\) 1.12852e7 1.35180 0.675901 0.736993i \(-0.263755\pi\)
0.675901 + 0.736993i \(0.263755\pi\)
\(588\) 0 0
\(589\) 994260. 0.118090
\(590\) 0 0
\(591\) 2.48030e6 0.292103
\(592\) 0 0
\(593\) 9.01399e6 1.05264 0.526320 0.850286i \(-0.323571\pi\)
0.526320 + 0.850286i \(0.323571\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.65180e7 −1.89680
\(598\) 0 0
\(599\) −9.92639e6 −1.13038 −0.565190 0.824961i \(-0.691197\pi\)
−0.565190 + 0.824961i \(0.691197\pi\)
\(600\) 0 0
\(601\) −7.45600e6 −0.842015 −0.421008 0.907057i \(-0.638323\pi\)
−0.421008 + 0.907057i \(0.638323\pi\)
\(602\) 0 0
\(603\) −1.66159e7 −1.86093
\(604\) 0 0
\(605\) 1.42213e7 1.57961
\(606\) 0 0
\(607\) 247024. 0.0272124 0.0136062 0.999907i \(-0.495669\pi\)
0.0136062 + 0.999907i \(0.495669\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 2.11759e6 0.229477
\(612\) 0 0
\(613\) −9.21880e6 −0.990885 −0.495443 0.868641i \(-0.664994\pi\)
−0.495443 + 0.868641i \(0.664994\pi\)
\(614\) 0 0
\(615\) −4.39171e7 −4.68215
\(616\) 0 0
\(617\) −1.17574e7 −1.24336 −0.621682 0.783270i \(-0.713550\pi\)
−0.621682 + 0.783270i \(0.713550\pi\)
\(618\) 0 0
\(619\) 2.63128e6 0.276020 0.138010 0.990431i \(-0.455929\pi\)
0.138010 + 0.990431i \(0.455929\pi\)
\(620\) 0 0
\(621\) 2.97401e7 3.09467
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.29510e7 1.32618
\(626\) 0 0
\(627\) −5.27931e6 −0.536301
\(628\) 0 0
\(629\) −4.92460e6 −0.496300
\(630\) 0 0
\(631\) 2.00147e6 0.200113 0.100057 0.994982i \(-0.468098\pi\)
0.100057 + 0.994982i \(0.468098\pi\)
\(632\) 0 0
\(633\) −8.85458e6 −0.878332
\(634\) 0 0
\(635\) 539908. 0.0531356
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 8.12348e6 0.787027
\(640\) 0 0
\(641\) 1.54877e7 1.48882 0.744410 0.667723i \(-0.232731\pi\)
0.744410 + 0.667723i \(0.232731\pi\)
\(642\) 0 0
\(643\) −4.97821e6 −0.474838 −0.237419 0.971407i \(-0.576301\pi\)
−0.237419 + 0.971407i \(0.576301\pi\)
\(644\) 0 0
\(645\) −2.26741e7 −2.14601
\(646\) 0 0
\(647\) 1.28137e7 1.20341 0.601704 0.798719i \(-0.294489\pi\)
0.601704 + 0.798719i \(0.294489\pi\)
\(648\) 0 0
\(649\) −1.57092e6 −0.146400
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.81501e6 −0.350116 −0.175058 0.984558i \(-0.556011\pi\)
−0.175058 + 0.984558i \(0.556011\pi\)
\(654\) 0 0
\(655\) 1.92385e7 1.75214
\(656\) 0 0
\(657\) −3.03324e7 −2.74154
\(658\) 0 0
\(659\) 1.25889e7 1.12921 0.564604 0.825362i \(-0.309029\pi\)
0.564604 + 0.825362i \(0.309029\pi\)
\(660\) 0 0
\(661\) 1.75130e7 1.55904 0.779518 0.626380i \(-0.215464\pi\)
0.779518 + 0.626380i \(0.215464\pi\)
\(662\) 0 0
\(663\) 5.94674e6 0.525406
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −9.70608e6 −0.844752
\(668\) 0 0
\(669\) 2.32668e7 2.00988
\(670\) 0 0
\(671\) 6.58771e6 0.564843
\(672\) 0 0
\(673\) −2.20008e7 −1.87241 −0.936205 0.351453i \(-0.885688\pi\)
−0.936205 + 0.351453i \(0.885688\pi\)
\(674\) 0 0
\(675\) −7.05459e7 −5.95953
\(676\) 0 0
\(677\) −1.02906e7 −0.862920 −0.431460 0.902132i \(-0.642001\pi\)
−0.431460 + 0.902132i \(0.642001\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.96676e7 −1.62511
\(682\) 0 0
\(683\) 2.15320e7 1.76617 0.883085 0.469213i \(-0.155462\pi\)
0.883085 + 0.469213i \(0.155462\pi\)
\(684\) 0 0
\(685\) 1.71239e7 1.39436
\(686\) 0 0
\(687\) 1.72564e7 1.39495
\(688\) 0 0
\(689\) 407447. 0.0326982
\(690\) 0 0
\(691\) −8.86868e6 −0.706584 −0.353292 0.935513i \(-0.614938\pi\)
−0.353292 + 0.935513i \(0.614938\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.79209e7 −2.19264
\(696\) 0 0
\(697\) −2.46362e7 −1.92085
\(698\) 0 0
\(699\) 1.39939e7 1.08329
\(700\) 0 0
\(701\) 1.79181e7 1.37720 0.688598 0.725143i \(-0.258227\pi\)
0.688598 + 0.725143i \(0.258227\pi\)
\(702\) 0 0
\(703\) 4.26992e6 0.325860
\(704\) 0 0
\(705\) −4.83017e7 −3.66007
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 2.48783e6 0.185868 0.0929341 0.995672i \(-0.470375\pi\)
0.0929341 + 0.995672i \(0.470375\pi\)
\(710\) 0 0
\(711\) −1.28778e7 −0.955363
\(712\) 0 0
\(713\) 1.97025e6 0.145143
\(714\) 0 0
\(715\) −1.60477e6 −0.117394
\(716\) 0 0
\(717\) −1.02022e7 −0.741133
\(718\) 0 0
\(719\) 1.29696e7 0.935632 0.467816 0.883826i \(-0.345041\pi\)
0.467816 + 0.883826i \(0.345041\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 9.86228e6 0.701668
\(724\) 0 0
\(725\) 2.30236e7 1.62677
\(726\) 0 0
\(727\) −3.25820e6 −0.228634 −0.114317 0.993444i \(-0.536468\pi\)
−0.114317 + 0.993444i \(0.536468\pi\)
\(728\) 0 0
\(729\) 2.45400e7 1.71024
\(730\) 0 0
\(731\) −1.27196e7 −0.880397
\(732\) 0 0
\(733\) −6.50445e6 −0.447148 −0.223574 0.974687i \(-0.571772\pi\)
−0.223574 + 0.974687i \(0.571772\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.51711e6 0.238516
\(738\) 0 0
\(739\) 1.58555e7 1.06800 0.533998 0.845486i \(-0.320689\pi\)
0.533998 + 0.845486i \(0.320689\pi\)
\(740\) 0 0
\(741\) −5.15618e6 −0.344971
\(742\) 0 0
\(743\) −2.11717e6 −0.140696 −0.0703482 0.997522i \(-0.522411\pi\)
−0.0703482 + 0.997522i \(0.522411\pi\)
\(744\) 0 0
\(745\) −2.23662e7 −1.47639
\(746\) 0 0
\(747\) −4.87268e7 −3.19497
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 4.55362e6 0.294616 0.147308 0.989091i \(-0.452939\pi\)
0.147308 + 0.989091i \(0.452939\pi\)
\(752\) 0 0
\(753\) −4.89940e7 −3.14888
\(754\) 0 0
\(755\) 3.27734e7 2.09245
\(756\) 0 0
\(757\) 6.04759e6 0.383568 0.191784 0.981437i \(-0.438573\pi\)
0.191784 + 0.981437i \(0.438573\pi\)
\(758\) 0 0
\(759\) −1.04616e7 −0.659164
\(760\) 0 0
\(761\) −1.35226e7 −0.846445 −0.423222 0.906026i \(-0.639101\pi\)
−0.423222 + 0.906026i \(0.639101\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −9.70088e7 −5.99318
\(766\) 0 0
\(767\) −1.53428e6 −0.0941707
\(768\) 0 0
\(769\) −6.83797e6 −0.416976 −0.208488 0.978025i \(-0.566854\pi\)
−0.208488 + 0.978025i \(0.566854\pi\)
\(770\) 0 0
\(771\) −2.20669e7 −1.33692
\(772\) 0 0
\(773\) −5.26405e6 −0.316863 −0.158431 0.987370i \(-0.550644\pi\)
−0.158431 + 0.987370i \(0.550644\pi\)
\(774\) 0 0
\(775\) −4.67358e6 −0.279509
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 2.13611e7 1.26119
\(780\) 0 0
\(781\) −1.71951e6 −0.100874
\(782\) 0 0
\(783\) −3.75335e7 −2.18784
\(784\) 0 0
\(785\) −4.36852e7 −2.53023
\(786\) 0 0
\(787\) −1.87800e7 −1.08083 −0.540416 0.841398i \(-0.681733\pi\)
−0.540416 + 0.841398i \(0.681733\pi\)
\(788\) 0 0
\(789\) 2.18502e6 0.124957
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 6.43406e6 0.363331
\(794\) 0 0
\(795\) −9.29378e6 −0.521524
\(796\) 0 0
\(797\) −2.71298e7 −1.51286 −0.756432 0.654072i \(-0.773059\pi\)
−0.756432 + 0.654072i \(0.773059\pi\)
\(798\) 0 0
\(799\) −2.70959e7 −1.50154
\(800\) 0 0
\(801\) −2.24820e7 −1.23809
\(802\) 0 0
\(803\) 6.42052e6 0.351384
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.77361e7 0.958680
\(808\) 0 0
\(809\) 4.53380e6 0.243552 0.121776 0.992558i \(-0.461141\pi\)
0.121776 + 0.992558i \(0.461141\pi\)
\(810\) 0 0
\(811\) 1.91621e7 1.02303 0.511517 0.859273i \(-0.329084\pi\)
0.511517 + 0.859273i \(0.329084\pi\)
\(812\) 0 0
\(813\) 4.32373e7 2.29421
\(814\) 0 0
\(815\) 1.98710e7 1.04791
\(816\) 0 0
\(817\) 1.10286e7 0.578050
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 3.22138e7 1.66795 0.833977 0.551800i \(-0.186059\pi\)
0.833977 + 0.551800i \(0.186059\pi\)
\(822\) 0 0
\(823\) 2.90394e6 0.149448 0.0747238 0.997204i \(-0.476192\pi\)
0.0747238 + 0.997204i \(0.476192\pi\)
\(824\) 0 0
\(825\) 2.48157e7 1.26938
\(826\) 0 0
\(827\) −3.30382e7 −1.67978 −0.839890 0.542756i \(-0.817381\pi\)
−0.839890 + 0.542756i \(0.817381\pi\)
\(828\) 0 0
\(829\) 3.55877e6 0.179851 0.0899257 0.995948i \(-0.471337\pi\)
0.0899257 + 0.995948i \(0.471337\pi\)
\(830\) 0 0
\(831\) 3.86988e7 1.94399
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −5.59475e7 −2.77693
\(836\) 0 0
\(837\) 7.61897e6 0.375909
\(838\) 0 0
\(839\) −7.33186e6 −0.359591 −0.179796 0.983704i \(-0.557544\pi\)
−0.179796 + 0.983704i \(0.557544\pi\)
\(840\) 0 0
\(841\) −8.26160e6 −0.402786
\(842\) 0 0
\(843\) 1.89691e7 0.919345
\(844\) 0 0
\(845\) 3.50070e7 1.68660
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 6.47066e7 3.08091
\(850\) 0 0
\(851\) 8.46137e6 0.400513
\(852\) 0 0
\(853\) 3.34015e6 0.157178 0.0785892 0.996907i \(-0.474958\pi\)
0.0785892 + 0.996907i \(0.474958\pi\)
\(854\) 0 0
\(855\) 8.41124e7 3.93500
\(856\) 0 0
\(857\) 2.96675e7 1.37984 0.689921 0.723885i \(-0.257645\pi\)
0.689921 + 0.723885i \(0.257645\pi\)
\(858\) 0 0
\(859\) 3.04453e7 1.40779 0.703895 0.710305i \(-0.251443\pi\)
0.703895 + 0.710305i \(0.251443\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.20240e7 1.00663 0.503314 0.864103i \(-0.332114\pi\)
0.503314 + 0.864103i \(0.332114\pi\)
\(864\) 0 0
\(865\) 2.97078e7 1.34999
\(866\) 0 0
\(867\) −3.46200e7 −1.56416
\(868\) 0 0
\(869\) 2.72587e6 0.122449
\(870\) 0 0
\(871\) 3.43508e6 0.153423
\(872\) 0 0
\(873\) −1.70650e7 −0.757829
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −1.60857e7 −0.706220 −0.353110 0.935582i \(-0.614876\pi\)
−0.353110 + 0.935582i \(0.614876\pi\)
\(878\) 0 0
\(879\) 1.50084e7 0.655183
\(880\) 0 0
\(881\) −2.03474e7 −0.883221 −0.441610 0.897207i \(-0.645593\pi\)
−0.441610 + 0.897207i \(0.645593\pi\)
\(882\) 0 0
\(883\) 3.79836e7 1.63943 0.819717 0.572769i \(-0.194131\pi\)
0.819717 + 0.572769i \(0.194131\pi\)
\(884\) 0 0
\(885\) 3.49965e7 1.50199
\(886\) 0 0
\(887\) −8.34995e6 −0.356349 −0.178174 0.983999i \(-0.557019\pi\)
−0.178174 + 0.983999i \(0.557019\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −2.13062e7 −0.899106
\(892\) 0 0
\(893\) 2.34938e7 0.985880
\(894\) 0 0
\(895\) 4.59765e7 1.91857
\(896\) 0 0
\(897\) −1.02176e7 −0.424002
\(898\) 0 0
\(899\) −2.48655e6 −0.102612
\(900\) 0 0
\(901\) −5.21355e6 −0.213955
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.22916e7 2.12232
\(906\) 0 0
\(907\) −2.69605e7 −1.08820 −0.544101 0.839020i \(-0.683129\pi\)
−0.544101 + 0.839020i \(0.683129\pi\)
\(908\) 0 0
\(909\) 5.70685e7 2.29080
\(910\) 0 0
\(911\) 3.84152e7 1.53358 0.766792 0.641896i \(-0.221852\pi\)
0.766792 + 0.641896i \(0.221852\pi\)
\(912\) 0 0
\(913\) 1.03141e7 0.409501
\(914\) 0 0
\(915\) −1.46759e8 −5.79499
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 2.52762e7 0.987241 0.493620 0.869678i \(-0.335673\pi\)
0.493620 + 0.869678i \(0.335673\pi\)
\(920\) 0 0
\(921\) 2.44033e7 0.947980
\(922\) 0 0
\(923\) −1.67941e6 −0.0648861
\(924\) 0 0
\(925\) −2.00710e7 −0.771286
\(926\) 0 0
\(927\) 1.09470e8 4.18403
\(928\) 0 0
\(929\) 9.16787e6 0.348521 0.174261 0.984700i \(-0.444247\pi\)
0.174261 + 0.984700i \(0.444247\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 6.18700e7 2.32689
\(934\) 0 0
\(935\) 2.05340e7 0.768149
\(936\) 0 0
\(937\) 7.16427e6 0.266577 0.133289 0.991077i \(-0.457446\pi\)
0.133289 + 0.991077i \(0.457446\pi\)
\(938\) 0 0
\(939\) −4.95328e7 −1.83328
\(940\) 0 0
\(941\) −8.49562e6 −0.312767 −0.156384 0.987696i \(-0.549984\pi\)
−0.156384 + 0.987696i \(0.549984\pi\)
\(942\) 0 0
\(943\) 4.23296e7 1.55012
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1.98201e7 0.718177 0.359088 0.933304i \(-0.383088\pi\)
0.359088 + 0.933304i \(0.383088\pi\)
\(948\) 0 0
\(949\) 6.27077e6 0.226025
\(950\) 0 0
\(951\) −3.22901e7 −1.15776
\(952\) 0 0
\(953\) 4.97501e7 1.77444 0.887221 0.461344i \(-0.152633\pi\)
0.887221 + 0.461344i \(0.152633\pi\)
\(954\) 0 0
\(955\) 5.15388e7 1.82863
\(956\) 0 0
\(957\) 1.32031e7 0.466009
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.81244e7 −0.982369
\(962\) 0 0
\(963\) −1.15260e8 −4.00508
\(964\) 0 0
\(965\) 9.42388e7 3.25770
\(966\) 0 0
\(967\) 1.50099e7 0.516192 0.258096 0.966119i \(-0.416905\pi\)
0.258096 + 0.966119i \(0.416905\pi\)
\(968\) 0 0
\(969\) 6.59766e7 2.25725
\(970\) 0 0
\(971\) 2.58655e7 0.880386 0.440193 0.897903i \(-0.354910\pi\)
0.440193 + 0.897903i \(0.354910\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 2.42369e7 0.816518
\(976\) 0 0
\(977\) −5.08788e7 −1.70530 −0.852649 0.522485i \(-0.825005\pi\)
−0.852649 + 0.522485i \(0.825005\pi\)
\(978\) 0 0
\(979\) 4.75880e6 0.158687
\(980\) 0 0
\(981\) 6.38704e7 2.11898
\(982\) 0 0
\(983\) −5.03176e7 −1.66087 −0.830437 0.557113i \(-0.811909\pi\)
−0.830437 + 0.557113i \(0.811909\pi\)
\(984\) 0 0
\(985\) 8.36471e6 0.274701
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 2.18545e7 0.710479
\(990\) 0 0
\(991\) 1.41832e7 0.458765 0.229382 0.973336i \(-0.426329\pi\)
0.229382 + 0.973336i \(0.426329\pi\)
\(992\) 0 0
\(993\) −8.40167e7 −2.70391
\(994\) 0 0
\(995\) −5.57061e7 −1.78380
\(996\) 0 0
\(997\) −1.63176e7 −0.519897 −0.259949 0.965622i \(-0.583706\pi\)
−0.259949 + 0.965622i \(0.583706\pi\)
\(998\) 0 0
\(999\) 3.27202e7 1.03730
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.bi.1.1 4
4.3 odd 2 196.6.a.k.1.4 yes 4
7.6 odd 2 inner 784.6.a.bi.1.4 4
28.3 even 6 196.6.e.l.177.4 8
28.11 odd 6 196.6.e.l.177.1 8
28.19 even 6 196.6.e.l.165.4 8
28.23 odd 6 196.6.e.l.165.1 8
28.27 even 2 196.6.a.k.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.6.a.k.1.1 4 28.27 even 2
196.6.a.k.1.4 yes 4 4.3 odd 2
196.6.e.l.165.1 8 28.23 odd 6
196.6.e.l.165.4 8 28.19 even 6
196.6.e.l.177.1 8 28.11 odd 6
196.6.e.l.177.4 8 28.3 even 6
784.6.a.bi.1.1 4 1.1 even 1 trivial
784.6.a.bi.1.4 4 7.6 odd 2 inner