Properties

Label 784.6.a.bg.1.2
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,6,Mod(1,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.1"); S:= CuspForms(chi, 6); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0, 0])) N = Newforms(chi, 6, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,712] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{2}, \sqrt{793})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 399x^{2} + 400x + 38414 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2\cdot 7^{2} \)
Twist minimal: no (minimal twist has level 98)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(13.1659\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-14.9626 q^{3} +34.9882 q^{5} -19.1218 q^{9} -748.365 q^{11} +12.4696 q^{13} -523.513 q^{15} -2213.03 q^{17} -1356.76 q^{19} -3021.46 q^{23} -1900.83 q^{25} +3922.01 q^{27} +5024.37 q^{29} +4554.07 q^{31} +11197.5 q^{33} -1041.10 q^{37} -186.577 q^{39} -3248.18 q^{41} +2863.29 q^{43} -669.037 q^{45} -20556.2 q^{47} +33112.5 q^{51} -22083.9 q^{53} -26183.9 q^{55} +20300.6 q^{57} +18875.7 q^{59} -56289.1 q^{61} +436.288 q^{65} -14070.6 q^{67} +45208.8 q^{69} +74485.3 q^{71} -39606.3 q^{73} +28441.2 q^{75} +39198.5 q^{79} -54036.8 q^{81} -13646.9 q^{83} -77429.8 q^{85} -75177.4 q^{87} +67288.1 q^{89} -68140.5 q^{93} -47470.6 q^{95} -88714.1 q^{97} +14310.1 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 712 q^{9} - 628 q^{11} - 5248 q^{15} - 2624 q^{23} + 4224 q^{25} + 17732 q^{29} + 2932 q^{37} + 41832 q^{39} - 9836 q^{43} + 51236 q^{51} + 1552 q^{53} - 104092 q^{57} - 142548 q^{65} - 13704 q^{67}+ \cdots + 354500 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −14.9626 −0.959849 −0.479924 0.877310i \(-0.659336\pi\)
−0.479924 + 0.877310i \(0.659336\pi\)
\(4\) 0 0
\(5\) 34.9882 0.625888 0.312944 0.949772i \(-0.398685\pi\)
0.312944 + 0.949772i \(0.398685\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −19.1218 −0.0786905
\(10\) 0 0
\(11\) −748.365 −1.86480 −0.932399 0.361430i \(-0.882289\pi\)
−0.932399 + 0.361430i \(0.882289\pi\)
\(12\) 0 0
\(13\) 12.4696 0.0204641 0.0102321 0.999948i \(-0.496743\pi\)
0.0102321 + 0.999948i \(0.496743\pi\)
\(14\) 0 0
\(15\) −523.513 −0.600757
\(16\) 0 0
\(17\) −2213.03 −1.85722 −0.928612 0.371052i \(-0.878997\pi\)
−0.928612 + 0.371052i \(0.878997\pi\)
\(18\) 0 0
\(19\) −1356.76 −0.862223 −0.431111 0.902299i \(-0.641878\pi\)
−0.431111 + 0.902299i \(0.641878\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −3021.46 −1.19096 −0.595480 0.803370i \(-0.703038\pi\)
−0.595480 + 0.803370i \(0.703038\pi\)
\(24\) 0 0
\(25\) −1900.83 −0.608265
\(26\) 0 0
\(27\) 3922.01 1.03538
\(28\) 0 0
\(29\) 5024.37 1.10940 0.554698 0.832052i \(-0.312834\pi\)
0.554698 + 0.832052i \(0.312834\pi\)
\(30\) 0 0
\(31\) 4554.07 0.851129 0.425564 0.904928i \(-0.360076\pi\)
0.425564 + 0.904928i \(0.360076\pi\)
\(32\) 0 0
\(33\) 11197.5 1.78992
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −1041.10 −0.125022 −0.0625110 0.998044i \(-0.519911\pi\)
−0.0625110 + 0.998044i \(0.519911\pi\)
\(38\) 0 0
\(39\) −186.577 −0.0196425
\(40\) 0 0
\(41\) −3248.18 −0.301773 −0.150886 0.988551i \(-0.548213\pi\)
−0.150886 + 0.988551i \(0.548213\pi\)
\(42\) 0 0
\(43\) 2863.29 0.236153 0.118077 0.993004i \(-0.462327\pi\)
0.118077 + 0.993004i \(0.462327\pi\)
\(44\) 0 0
\(45\) −669.037 −0.0492514
\(46\) 0 0
\(47\) −20556.2 −1.35737 −0.678684 0.734431i \(-0.737449\pi\)
−0.678684 + 0.734431i \(0.737449\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 33112.5 1.78265
\(52\) 0 0
\(53\) −22083.9 −1.07991 −0.539953 0.841695i \(-0.681558\pi\)
−0.539953 + 0.841695i \(0.681558\pi\)
\(54\) 0 0
\(55\) −26183.9 −1.16715
\(56\) 0 0
\(57\) 20300.6 0.827603
\(58\) 0 0
\(59\) 18875.7 0.705948 0.352974 0.935633i \(-0.385170\pi\)
0.352974 + 0.935633i \(0.385170\pi\)
\(60\) 0 0
\(61\) −56289.1 −1.93687 −0.968434 0.249270i \(-0.919809\pi\)
−0.968434 + 0.249270i \(0.919809\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 436.288 0.0128082
\(66\) 0 0
\(67\) −14070.6 −0.382935 −0.191467 0.981499i \(-0.561325\pi\)
−0.191467 + 0.981499i \(0.561325\pi\)
\(68\) 0 0
\(69\) 45208.8 1.14314
\(70\) 0 0
\(71\) 74485.3 1.75358 0.876788 0.480877i \(-0.159682\pi\)
0.876788 + 0.480877i \(0.159682\pi\)
\(72\) 0 0
\(73\) −39606.3 −0.869875 −0.434937 0.900461i \(-0.643230\pi\)
−0.434937 + 0.900461i \(0.643230\pi\)
\(74\) 0 0
\(75\) 28441.2 0.583842
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 39198.5 0.706646 0.353323 0.935501i \(-0.385052\pi\)
0.353323 + 0.935501i \(0.385052\pi\)
\(80\) 0 0
\(81\) −54036.8 −0.915117
\(82\) 0 0
\(83\) −13646.9 −0.217440 −0.108720 0.994072i \(-0.534675\pi\)
−0.108720 + 0.994072i \(0.534675\pi\)
\(84\) 0 0
\(85\) −77429.8 −1.16241
\(86\) 0 0
\(87\) −75177.4 −1.06485
\(88\) 0 0
\(89\) 67288.1 0.900457 0.450229 0.892913i \(-0.351343\pi\)
0.450229 + 0.892913i \(0.351343\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −68140.5 −0.816955
\(94\) 0 0
\(95\) −47470.6 −0.539655
\(96\) 0 0
\(97\) −88714.1 −0.957334 −0.478667 0.877997i \(-0.658880\pi\)
−0.478667 + 0.877997i \(0.658880\pi\)
\(98\) 0 0
\(99\) 14310.1 0.146742
\(100\) 0 0
\(101\) −89154.5 −0.869640 −0.434820 0.900517i \(-0.643188\pi\)
−0.434820 + 0.900517i \(0.643188\pi\)
\(102\) 0 0
\(103\) 2762.86 0.0256605 0.0128303 0.999918i \(-0.495916\pi\)
0.0128303 + 0.999918i \(0.495916\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −29402.0 −0.248266 −0.124133 0.992266i \(-0.539615\pi\)
−0.124133 + 0.992266i \(0.539615\pi\)
\(108\) 0 0
\(109\) −1239.90 −0.00999588 −0.00499794 0.999988i \(-0.501591\pi\)
−0.00499794 + 0.999988i \(0.501591\pi\)
\(110\) 0 0
\(111\) 15577.5 0.120002
\(112\) 0 0
\(113\) 209535. 1.54369 0.771846 0.635810i \(-0.219334\pi\)
0.771846 + 0.635810i \(0.219334\pi\)
\(114\) 0 0
\(115\) −105715. −0.745408
\(116\) 0 0
\(117\) −238.440 −0.00161033
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 399000. 2.47747
\(122\) 0 0
\(123\) 48601.0 0.289656
\(124\) 0 0
\(125\) −175845. −1.00659
\(126\) 0 0
\(127\) −181882. −1.00065 −0.500323 0.865839i \(-0.666786\pi\)
−0.500323 + 0.865839i \(0.666786\pi\)
\(128\) 0 0
\(129\) −42842.1 −0.226671
\(130\) 0 0
\(131\) −100024. −0.509244 −0.254622 0.967041i \(-0.581951\pi\)
−0.254622 + 0.967041i \(0.581951\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 137224. 0.648031
\(136\) 0 0
\(137\) 179675. 0.817874 0.408937 0.912563i \(-0.365900\pi\)
0.408937 + 0.912563i \(0.365900\pi\)
\(138\) 0 0
\(139\) −171096. −0.751108 −0.375554 0.926801i \(-0.622547\pi\)
−0.375554 + 0.926801i \(0.622547\pi\)
\(140\) 0 0
\(141\) 307573. 1.30287
\(142\) 0 0
\(143\) −9331.79 −0.0381615
\(144\) 0 0
\(145\) 175793. 0.694357
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 143150. 0.528234 0.264117 0.964491i \(-0.414920\pi\)
0.264117 + 0.964491i \(0.414920\pi\)
\(150\) 0 0
\(151\) −164944. −0.588699 −0.294350 0.955698i \(-0.595103\pi\)
−0.294350 + 0.955698i \(0.595103\pi\)
\(152\) 0 0
\(153\) 42317.0 0.146146
\(154\) 0 0
\(155\) 159339. 0.532711
\(156\) 0 0
\(157\) 418001. 1.35341 0.676703 0.736256i \(-0.263408\pi\)
0.676703 + 0.736256i \(0.263408\pi\)
\(158\) 0 0
\(159\) 330431. 1.03655
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −298894. −0.881147 −0.440573 0.897717i \(-0.645225\pi\)
−0.440573 + 0.897717i \(0.645225\pi\)
\(164\) 0 0
\(165\) 391779. 1.12029
\(166\) 0 0
\(167\) 119265. 0.330920 0.165460 0.986216i \(-0.447089\pi\)
0.165460 + 0.986216i \(0.447089\pi\)
\(168\) 0 0
\(169\) −371138. −0.999581
\(170\) 0 0
\(171\) 25943.7 0.0678487
\(172\) 0 0
\(173\) 423841. 1.07668 0.538341 0.842727i \(-0.319051\pi\)
0.538341 + 0.842727i \(0.319051\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −282429. −0.677603
\(178\) 0 0
\(179\) 668814. 1.56017 0.780086 0.625672i \(-0.215175\pi\)
0.780086 + 0.625672i \(0.215175\pi\)
\(180\) 0 0
\(181\) −566620. −1.28557 −0.642785 0.766047i \(-0.722221\pi\)
−0.642785 + 0.766047i \(0.722221\pi\)
\(182\) 0 0
\(183\) 842230. 1.85910
\(184\) 0 0
\(185\) −36426.1 −0.0782497
\(186\) 0 0
\(187\) 1.65615e6 3.46335
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 215834. 0.428091 0.214045 0.976824i \(-0.431336\pi\)
0.214045 + 0.976824i \(0.431336\pi\)
\(192\) 0 0
\(193\) −181256. −0.350268 −0.175134 0.984545i \(-0.556036\pi\)
−0.175134 + 0.984545i \(0.556036\pi\)
\(194\) 0 0
\(195\) −6527.98 −0.0122940
\(196\) 0 0
\(197\) 440619. 0.808906 0.404453 0.914559i \(-0.367462\pi\)
0.404453 + 0.914559i \(0.367462\pi\)
\(198\) 0 0
\(199\) −757541. −1.35604 −0.678022 0.735042i \(-0.737162\pi\)
−0.678022 + 0.735042i \(0.737162\pi\)
\(200\) 0 0
\(201\) 210532. 0.367560
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −113648. −0.188876
\(206\) 0 0
\(207\) 57775.8 0.0937173
\(208\) 0 0
\(209\) 1.01535e6 1.60787
\(210\) 0 0
\(211\) 290551. 0.449278 0.224639 0.974442i \(-0.427880\pi\)
0.224639 + 0.974442i \(0.427880\pi\)
\(212\) 0 0
\(213\) −1.11449e6 −1.68317
\(214\) 0 0
\(215\) 100181. 0.147805
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 592611. 0.834948
\(220\) 0 0
\(221\) −27595.5 −0.0380065
\(222\) 0 0
\(223\) −942010. −1.26851 −0.634254 0.773124i \(-0.718693\pi\)
−0.634254 + 0.773124i \(0.718693\pi\)
\(224\) 0 0
\(225\) 36347.2 0.0478646
\(226\) 0 0
\(227\) 507698. 0.653944 0.326972 0.945034i \(-0.393972\pi\)
0.326972 + 0.945034i \(0.393972\pi\)
\(228\) 0 0
\(229\) 911540. 1.14865 0.574324 0.818628i \(-0.305265\pi\)
0.574324 + 0.818628i \(0.305265\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 57291.9 0.0691359 0.0345679 0.999402i \(-0.488994\pi\)
0.0345679 + 0.999402i \(0.488994\pi\)
\(234\) 0 0
\(235\) −719223. −0.849560
\(236\) 0 0
\(237\) −586510. −0.678273
\(238\) 0 0
\(239\) 662765. 0.750524 0.375262 0.926919i \(-0.377553\pi\)
0.375262 + 0.926919i \(0.377553\pi\)
\(240\) 0 0
\(241\) 1.27757e6 1.41691 0.708454 0.705757i \(-0.249393\pi\)
0.708454 + 0.705757i \(0.249393\pi\)
\(242\) 0 0
\(243\) −144521. −0.157006
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −16918.2 −0.0176446
\(248\) 0 0
\(249\) 204193. 0.208710
\(250\) 0 0
\(251\) −422281. −0.423074 −0.211537 0.977370i \(-0.567847\pi\)
−0.211537 + 0.977370i \(0.567847\pi\)
\(252\) 0 0
\(253\) 2.26116e6 2.22090
\(254\) 0 0
\(255\) 1.15855e6 1.11574
\(256\) 0 0
\(257\) 1.66228e6 1.56990 0.784950 0.619559i \(-0.212689\pi\)
0.784950 + 0.619559i \(0.212689\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −96074.9 −0.0872988
\(262\) 0 0
\(263\) 1.98006e6 1.76518 0.882588 0.470147i \(-0.155799\pi\)
0.882588 + 0.470147i \(0.155799\pi\)
\(264\) 0 0
\(265\) −772675. −0.675900
\(266\) 0 0
\(267\) −1.00680e6 −0.864303
\(268\) 0 0
\(269\) −1.17111e6 −0.986774 −0.493387 0.869810i \(-0.664241\pi\)
−0.493387 + 0.869810i \(0.664241\pi\)
\(270\) 0 0
\(271\) −131162. −0.108489 −0.0542445 0.998528i \(-0.517275\pi\)
−0.0542445 + 0.998528i \(0.517275\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 1.42251e6 1.13429
\(276\) 0 0
\(277\) 1.07740e6 0.843676 0.421838 0.906671i \(-0.361385\pi\)
0.421838 + 0.906671i \(0.361385\pi\)
\(278\) 0 0
\(279\) −87081.9 −0.0669757
\(280\) 0 0
\(281\) −193756. −0.146382 −0.0731912 0.997318i \(-0.523318\pi\)
−0.0731912 + 0.997318i \(0.523318\pi\)
\(282\) 0 0
\(283\) 250024. 0.185573 0.0927867 0.995686i \(-0.470423\pi\)
0.0927867 + 0.995686i \(0.470423\pi\)
\(284\) 0 0
\(285\) 710282. 0.517987
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 3.47763e6 2.44928
\(290\) 0 0
\(291\) 1.32739e6 0.918896
\(292\) 0 0
\(293\) −2.13317e6 −1.45163 −0.725816 0.687889i \(-0.758537\pi\)
−0.725816 + 0.687889i \(0.758537\pi\)
\(294\) 0 0
\(295\) 660426. 0.441844
\(296\) 0 0
\(297\) −2.93510e6 −1.93077
\(298\) 0 0
\(299\) −37676.3 −0.0243720
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 1.33398e6 0.834723
\(304\) 0 0
\(305\) −1.96945e6 −1.21226
\(306\) 0 0
\(307\) 389090. 0.235616 0.117808 0.993036i \(-0.462413\pi\)
0.117808 + 0.993036i \(0.462413\pi\)
\(308\) 0 0
\(309\) −41339.4 −0.0246302
\(310\) 0 0
\(311\) −2.41308e6 −1.41472 −0.707360 0.706854i \(-0.750114\pi\)
−0.707360 + 0.706854i \(0.750114\pi\)
\(312\) 0 0
\(313\) 857374. 0.494663 0.247332 0.968931i \(-0.420446\pi\)
0.247332 + 0.968931i \(0.420446\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.18422e6 −1.22081 −0.610406 0.792088i \(-0.708994\pi\)
−0.610406 + 0.792088i \(0.708994\pi\)
\(318\) 0 0
\(319\) −3.76006e6 −2.06880
\(320\) 0 0
\(321\) 439930. 0.238298
\(322\) 0 0
\(323\) 3.00255e6 1.60134
\(324\) 0 0
\(325\) −23702.5 −0.0124476
\(326\) 0 0
\(327\) 18552.1 0.00959453
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −1.67770e6 −0.841675 −0.420838 0.907136i \(-0.638264\pi\)
−0.420838 + 0.907136i \(0.638264\pi\)
\(332\) 0 0
\(333\) 19907.6 0.00983804
\(334\) 0 0
\(335\) −492304. −0.239674
\(336\) 0 0
\(337\) 1.03458e6 0.496238 0.248119 0.968730i \(-0.420188\pi\)
0.248119 + 0.968730i \(0.420188\pi\)
\(338\) 0 0
\(339\) −3.13518e6 −1.48171
\(340\) 0 0
\(341\) −3.40811e6 −1.58718
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 1.58177e6 0.715479
\(346\) 0 0
\(347\) −2.93179e6 −1.30710 −0.653550 0.756884i \(-0.726721\pi\)
−0.653550 + 0.756884i \(0.726721\pi\)
\(348\) 0 0
\(349\) 1.58391e6 0.696093 0.348046 0.937477i \(-0.386845\pi\)
0.348046 + 0.937477i \(0.386845\pi\)
\(350\) 0 0
\(351\) 48905.8 0.0211881
\(352\) 0 0
\(353\) −693771. −0.296332 −0.148166 0.988962i \(-0.547337\pi\)
−0.148166 + 0.988962i \(0.547337\pi\)
\(354\) 0 0
\(355\) 2.60610e6 1.09754
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.64948e6 0.675477 0.337739 0.941240i \(-0.390338\pi\)
0.337739 + 0.941240i \(0.390338\pi\)
\(360\) 0 0
\(361\) −635298. −0.256572
\(362\) 0 0
\(363\) −5.97006e6 −2.37800
\(364\) 0 0
\(365\) −1.38575e6 −0.544444
\(366\) 0 0
\(367\) −1.41980e6 −0.550252 −0.275126 0.961408i \(-0.588720\pi\)
−0.275126 + 0.961408i \(0.588720\pi\)
\(368\) 0 0
\(369\) 62111.0 0.0237466
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −425803. −0.158466 −0.0792332 0.996856i \(-0.525247\pi\)
−0.0792332 + 0.996856i \(0.525247\pi\)
\(374\) 0 0
\(375\) 2.63108e6 0.966177
\(376\) 0 0
\(377\) 62651.7 0.0227028
\(378\) 0 0
\(379\) −176909. −0.0632633 −0.0316316 0.999500i \(-0.510070\pi\)
−0.0316316 + 0.999500i \(0.510070\pi\)
\(380\) 0 0
\(381\) 2.72142e6 0.960470
\(382\) 0 0
\(383\) 2.64656e6 0.921902 0.460951 0.887426i \(-0.347508\pi\)
0.460951 + 0.887426i \(0.347508\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −54751.2 −0.0185830
\(388\) 0 0
\(389\) −1.14149e6 −0.382470 −0.191235 0.981544i \(-0.561249\pi\)
−0.191235 + 0.981544i \(0.561249\pi\)
\(390\) 0 0
\(391\) 6.68657e6 2.21188
\(392\) 0 0
\(393\) 1.49662e6 0.488798
\(394\) 0 0
\(395\) 1.37148e6 0.442281
\(396\) 0 0
\(397\) −5.33798e6 −1.69981 −0.849906 0.526934i \(-0.823341\pi\)
−0.849906 + 0.526934i \(0.823341\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1.43598e6 0.445950 0.222975 0.974824i \(-0.428423\pi\)
0.222975 + 0.974824i \(0.428423\pi\)
\(402\) 0 0
\(403\) 56787.2 0.0174176
\(404\) 0 0
\(405\) −1.89065e6 −0.572761
\(406\) 0 0
\(407\) 779120. 0.233141
\(408\) 0 0
\(409\) 3.74760e6 1.10776 0.553878 0.832598i \(-0.313147\pi\)
0.553878 + 0.832598i \(0.313147\pi\)
\(410\) 0 0
\(411\) −2.68840e6 −0.785035
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −477481. −0.136093
\(416\) 0 0
\(417\) 2.56003e6 0.720950
\(418\) 0 0
\(419\) 1.51473e6 0.421503 0.210752 0.977540i \(-0.432409\pi\)
0.210752 + 0.977540i \(0.432409\pi\)
\(420\) 0 0
\(421\) 515241. 0.141679 0.0708395 0.997488i \(-0.477432\pi\)
0.0708395 + 0.997488i \(0.477432\pi\)
\(422\) 0 0
\(423\) 393071. 0.106812
\(424\) 0 0
\(425\) 4.20658e6 1.12968
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 139628. 0.0366292
\(430\) 0 0
\(431\) 3.28901e6 0.852849 0.426424 0.904523i \(-0.359773\pi\)
0.426424 + 0.904523i \(0.359773\pi\)
\(432\) 0 0
\(433\) 2.40962e6 0.617631 0.308816 0.951122i \(-0.400067\pi\)
0.308816 + 0.951122i \(0.400067\pi\)
\(434\) 0 0
\(435\) −2.63032e6 −0.666477
\(436\) 0 0
\(437\) 4.09940e6 1.02687
\(438\) 0 0
\(439\) −3.05894e6 −0.757547 −0.378773 0.925489i \(-0.623654\pi\)
−0.378773 + 0.925489i \(0.623654\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −1.51135e6 −0.365895 −0.182948 0.983123i \(-0.558564\pi\)
−0.182948 + 0.983123i \(0.558564\pi\)
\(444\) 0 0
\(445\) 2.35429e6 0.563585
\(446\) 0 0
\(447\) −2.14189e6 −0.507024
\(448\) 0 0
\(449\) −238029. −0.0557204 −0.0278602 0.999612i \(-0.508869\pi\)
−0.0278602 + 0.999612i \(0.508869\pi\)
\(450\) 0 0
\(451\) 2.43082e6 0.562745
\(452\) 0 0
\(453\) 2.46798e6 0.565062
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 2.28636e6 0.512100 0.256050 0.966664i \(-0.417579\pi\)
0.256050 + 0.966664i \(0.417579\pi\)
\(458\) 0 0
\(459\) −8.67952e6 −1.92293
\(460\) 0 0
\(461\) −7.83709e6 −1.71752 −0.858761 0.512376i \(-0.828765\pi\)
−0.858761 + 0.512376i \(0.828765\pi\)
\(462\) 0 0
\(463\) 187039. 0.0405489 0.0202744 0.999794i \(-0.493546\pi\)
0.0202744 + 0.999794i \(0.493546\pi\)
\(464\) 0 0
\(465\) −2.38411e6 −0.511322
\(466\) 0 0
\(467\) −5.59905e6 −1.18801 −0.594007 0.804460i \(-0.702455\pi\)
−0.594007 + 0.804460i \(0.702455\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −6.25437e6 −1.29907
\(472\) 0 0
\(473\) −2.14279e6 −0.440378
\(474\) 0 0
\(475\) 2.57897e6 0.524459
\(476\) 0 0
\(477\) 422283. 0.0849783
\(478\) 0 0
\(479\) 5.28367e6 1.05220 0.526098 0.850424i \(-0.323654\pi\)
0.526098 + 0.850424i \(0.323654\pi\)
\(480\) 0 0
\(481\) −12982.0 −0.00255847
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −3.10395e6 −0.599184
\(486\) 0 0
\(487\) 3.90472e6 0.746049 0.373024 0.927822i \(-0.378321\pi\)
0.373024 + 0.927822i \(0.378321\pi\)
\(488\) 0 0
\(489\) 4.47222e6 0.845768
\(490\) 0 0
\(491\) −3.55252e6 −0.665018 −0.332509 0.943100i \(-0.607895\pi\)
−0.332509 + 0.943100i \(0.607895\pi\)
\(492\) 0 0
\(493\) −1.11191e7 −2.06040
\(494\) 0 0
\(495\) 500684. 0.0918440
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.52545e6 0.454032 0.227016 0.973891i \(-0.427103\pi\)
0.227016 + 0.973891i \(0.427103\pi\)
\(500\) 0 0
\(501\) −1.78452e6 −0.317634
\(502\) 0 0
\(503\) 5.89904e6 1.03959 0.519795 0.854291i \(-0.326009\pi\)
0.519795 + 0.854291i \(0.326009\pi\)
\(504\) 0 0
\(505\) −3.11935e6 −0.544297
\(506\) 0 0
\(507\) 5.55317e6 0.959447
\(508\) 0 0
\(509\) 2.36970e6 0.405413 0.202707 0.979240i \(-0.435026\pi\)
0.202707 + 0.979240i \(0.435026\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −5.32124e6 −0.892728
\(514\) 0 0
\(515\) 96667.4 0.0160606
\(516\) 0 0
\(517\) 1.53835e7 2.53122
\(518\) 0 0
\(519\) −6.34174e6 −1.03345
\(520\) 0 0
\(521\) 8.20591e6 1.32444 0.662220 0.749309i \(-0.269614\pi\)
0.662220 + 0.749309i \(0.269614\pi\)
\(522\) 0 0
\(523\) 5.59590e6 0.894572 0.447286 0.894391i \(-0.352391\pi\)
0.447286 + 0.894391i \(0.352391\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −1.00783e7 −1.58074
\(528\) 0 0
\(529\) 2.69289e6 0.418388
\(530\) 0 0
\(531\) −360937. −0.0555514
\(532\) 0 0
\(533\) −40503.4 −0.00617551
\(534\) 0 0
\(535\) −1.02872e6 −0.155387
\(536\) 0 0
\(537\) −1.00072e7 −1.49753
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −1.11429e7 −1.63683 −0.818416 0.574626i \(-0.805148\pi\)
−0.818416 + 0.574626i \(0.805148\pi\)
\(542\) 0 0
\(543\) 8.47809e6 1.23395
\(544\) 0 0
\(545\) −43381.9 −0.00625630
\(546\) 0 0
\(547\) −1.03208e7 −1.47483 −0.737417 0.675438i \(-0.763955\pi\)
−0.737417 + 0.675438i \(0.763955\pi\)
\(548\) 0 0
\(549\) 1.07635e6 0.152413
\(550\) 0 0
\(551\) −6.81686e6 −0.956545
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 545027. 0.0751079
\(556\) 0 0
\(557\) 3.20238e6 0.437356 0.218678 0.975797i \(-0.429826\pi\)
0.218678 + 0.975797i \(0.429826\pi\)
\(558\) 0 0
\(559\) 35704.0 0.00483267
\(560\) 0 0
\(561\) −2.47803e7 −3.32429
\(562\) 0 0
\(563\) −1.60241e6 −0.213060 −0.106530 0.994309i \(-0.533974\pi\)
−0.106530 + 0.994309i \(0.533974\pi\)
\(564\) 0 0
\(565\) 7.33125e6 0.966178
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.47395e7 −1.90855 −0.954273 0.298936i \(-0.903368\pi\)
−0.954273 + 0.298936i \(0.903368\pi\)
\(570\) 0 0
\(571\) 5.87638e6 0.754257 0.377129 0.926161i \(-0.376911\pi\)
0.377129 + 0.926161i \(0.376911\pi\)
\(572\) 0 0
\(573\) −3.22943e6 −0.410903
\(574\) 0 0
\(575\) 5.74328e6 0.724419
\(576\) 0 0
\(577\) −244876. −0.0306200 −0.0153100 0.999883i \(-0.504874\pi\)
−0.0153100 + 0.999883i \(0.504874\pi\)
\(578\) 0 0
\(579\) 2.71206e6 0.336204
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 1.65268e7 2.01381
\(584\) 0 0
\(585\) −8342.60 −0.00100789
\(586\) 0 0
\(587\) −6.63168e6 −0.794380 −0.397190 0.917736i \(-0.630015\pi\)
−0.397190 + 0.917736i \(0.630015\pi\)
\(588\) 0 0
\(589\) −6.17878e6 −0.733862
\(590\) 0 0
\(591\) −6.59279e6 −0.776427
\(592\) 0 0
\(593\) −1.03581e7 −1.20961 −0.604803 0.796375i \(-0.706748\pi\)
−0.604803 + 0.796375i \(0.706748\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.13348e7 1.30160
\(598\) 0 0
\(599\) 7.13439e6 0.812437 0.406218 0.913776i \(-0.366847\pi\)
0.406218 + 0.913776i \(0.366847\pi\)
\(600\) 0 0
\(601\) 1.64350e6 0.185602 0.0928010 0.995685i \(-0.470418\pi\)
0.0928010 + 0.995685i \(0.470418\pi\)
\(602\) 0 0
\(603\) 269055. 0.0301333
\(604\) 0 0
\(605\) 1.39603e7 1.55062
\(606\) 0 0
\(607\) −1.09809e7 −1.20967 −0.604835 0.796351i \(-0.706761\pi\)
−0.604835 + 0.796351i \(0.706761\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −256326. −0.0277773
\(612\) 0 0
\(613\) −5.74628e6 −0.617640 −0.308820 0.951120i \(-0.599934\pi\)
−0.308820 + 0.951120i \(0.599934\pi\)
\(614\) 0 0
\(615\) 1.70046e6 0.181292
\(616\) 0 0
\(617\) 6.02625e6 0.637286 0.318643 0.947875i \(-0.396773\pi\)
0.318643 + 0.947875i \(0.396773\pi\)
\(618\) 0 0
\(619\) 1.72334e7 1.80777 0.903887 0.427771i \(-0.140701\pi\)
0.903887 + 0.427771i \(0.140701\pi\)
\(620\) 0 0
\(621\) −1.18502e7 −1.23310
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −212398. −0.0217496
\(626\) 0 0
\(627\) −1.51923e7 −1.54331
\(628\) 0 0
\(629\) 2.30397e6 0.232194
\(630\) 0 0
\(631\) 2.84236e6 0.284188 0.142094 0.989853i \(-0.454616\pi\)
0.142094 + 0.989853i \(0.454616\pi\)
\(632\) 0 0
\(633\) −4.34738e6 −0.431239
\(634\) 0 0
\(635\) −6.36373e6 −0.626293
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −1.42429e6 −0.137990
\(640\) 0 0
\(641\) −1.33572e7 −1.28402 −0.642008 0.766698i \(-0.721899\pi\)
−0.642008 + 0.766698i \(0.721899\pi\)
\(642\) 0 0
\(643\) −1.66914e7 −1.59208 −0.796042 0.605242i \(-0.793076\pi\)
−0.796042 + 0.605242i \(0.793076\pi\)
\(644\) 0 0
\(645\) −1.49897e6 −0.141871
\(646\) 0 0
\(647\) 3.43361e6 0.322471 0.161236 0.986916i \(-0.448452\pi\)
0.161236 + 0.986916i \(0.448452\pi\)
\(648\) 0 0
\(649\) −1.41259e7 −1.31645
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 1.76145e7 1.61655 0.808274 0.588807i \(-0.200402\pi\)
0.808274 + 0.588807i \(0.200402\pi\)
\(654\) 0 0
\(655\) −3.49966e6 −0.318730
\(656\) 0 0
\(657\) 757343. 0.0684509
\(658\) 0 0
\(659\) −8.15115e6 −0.731148 −0.365574 0.930782i \(-0.619127\pi\)
−0.365574 + 0.930782i \(0.619127\pi\)
\(660\) 0 0
\(661\) −3.06437e6 −0.272796 −0.136398 0.990654i \(-0.543553\pi\)
−0.136398 + 0.990654i \(0.543553\pi\)
\(662\) 0 0
\(663\) 412899. 0.0364804
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.51809e7 −1.32125
\(668\) 0 0
\(669\) 1.40949e7 1.21758
\(670\) 0 0
\(671\) 4.21248e7 3.61187
\(672\) 0 0
\(673\) 1.00272e7 0.853383 0.426691 0.904397i \(-0.359679\pi\)
0.426691 + 0.904397i \(0.359679\pi\)
\(674\) 0 0
\(675\) −7.45507e6 −0.629785
\(676\) 0 0
\(677\) −3.24118e6 −0.271789 −0.135894 0.990723i \(-0.543391\pi\)
−0.135894 + 0.990723i \(0.543391\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −7.59646e6 −0.627687
\(682\) 0 0
\(683\) −1.27107e7 −1.04260 −0.521301 0.853373i \(-0.674553\pi\)
−0.521301 + 0.853373i \(0.674553\pi\)
\(684\) 0 0
\(685\) 6.28650e6 0.511897
\(686\) 0 0
\(687\) −1.36390e7 −1.10253
\(688\) 0 0
\(689\) −275376. −0.0220993
\(690\) 0 0
\(691\) −1.10794e7 −0.882715 −0.441358 0.897331i \(-0.645503\pi\)
−0.441358 + 0.897331i \(0.645503\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.98633e6 −0.470109
\(696\) 0 0
\(697\) 7.18830e6 0.560460
\(698\) 0 0
\(699\) −857234. −0.0663600
\(700\) 0 0
\(701\) −1.02838e7 −0.790425 −0.395212 0.918590i \(-0.629329\pi\)
−0.395212 + 0.918590i \(0.629329\pi\)
\(702\) 0 0
\(703\) 1.41252e6 0.107797
\(704\) 0 0
\(705\) 1.07614e7 0.815449
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.01764e7 −0.760289 −0.380144 0.924927i \(-0.624126\pi\)
−0.380144 + 0.924927i \(0.624126\pi\)
\(710\) 0 0
\(711\) −749545. −0.0556063
\(712\) 0 0
\(713\) −1.37599e7 −1.01366
\(714\) 0 0
\(715\) −326502. −0.0238848
\(716\) 0 0
\(717\) −9.91666e6 −0.720390
\(718\) 0 0
\(719\) −1.03436e7 −0.746187 −0.373093 0.927794i \(-0.621703\pi\)
−0.373093 + 0.927794i \(0.621703\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −1.91157e7 −1.36002
\(724\) 0 0
\(725\) −9.55045e6 −0.674806
\(726\) 0 0
\(727\) −3.18206e6 −0.223291 −0.111646 0.993748i \(-0.535612\pi\)
−0.111646 + 0.993748i \(0.535612\pi\)
\(728\) 0 0
\(729\) 1.52933e7 1.06582
\(730\) 0 0
\(731\) −6.33653e6 −0.438590
\(732\) 0 0
\(733\) 1.11021e7 0.763210 0.381605 0.924326i \(-0.375371\pi\)
0.381605 + 0.924326i \(0.375371\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.05299e7 0.714096
\(738\) 0 0
\(739\) −1.95846e7 −1.31918 −0.659591 0.751625i \(-0.729270\pi\)
−0.659591 + 0.751625i \(0.729270\pi\)
\(740\) 0 0
\(741\) 253140. 0.0169362
\(742\) 0 0
\(743\) 4.83653e6 0.321412 0.160706 0.987002i \(-0.448623\pi\)
0.160706 + 0.987002i \(0.448623\pi\)
\(744\) 0 0
\(745\) 5.00856e6 0.330615
\(746\) 0 0
\(747\) 260954. 0.0171105
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 1.86920e6 0.120936 0.0604681 0.998170i \(-0.480741\pi\)
0.0604681 + 0.998170i \(0.480741\pi\)
\(752\) 0 0
\(753\) 6.31840e6 0.406087
\(754\) 0 0
\(755\) −5.77108e6 −0.368460
\(756\) 0 0
\(757\) −3.61268e6 −0.229134 −0.114567 0.993416i \(-0.536548\pi\)
−0.114567 + 0.993416i \(0.536548\pi\)
\(758\) 0 0
\(759\) −3.38327e7 −2.13173
\(760\) 0 0
\(761\) 1.51147e6 0.0946099 0.0473049 0.998880i \(-0.484937\pi\)
0.0473049 + 0.998880i \(0.484937\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.48060e6 0.0914709
\(766\) 0 0
\(767\) 235372. 0.0144466
\(768\) 0 0
\(769\) −3.96989e6 −0.242082 −0.121041 0.992648i \(-0.538623\pi\)
−0.121041 + 0.992648i \(0.538623\pi\)
\(770\) 0 0
\(771\) −2.48720e7 −1.50687
\(772\) 0 0
\(773\) 2.35033e7 1.41475 0.707377 0.706836i \(-0.249878\pi\)
0.707377 + 0.706836i \(0.249878\pi\)
\(774\) 0 0
\(775\) −8.65649e6 −0.517711
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 4.40700e6 0.260195
\(780\) 0 0
\(781\) −5.57422e7 −3.27007
\(782\) 0 0
\(783\) 1.97056e7 1.14865
\(784\) 0 0
\(785\) 1.46251e7 0.847081
\(786\) 0 0
\(787\) 2.75631e7 1.58632 0.793161 0.609012i \(-0.208434\pi\)
0.793161 + 0.609012i \(0.208434\pi\)
\(788\) 0 0
\(789\) −2.96267e7 −1.69430
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −701901. −0.0396363
\(794\) 0 0
\(795\) 1.15612e7 0.648761
\(796\) 0 0
\(797\) 1.97282e7 1.10012 0.550061 0.835124i \(-0.314604\pi\)
0.550061 + 0.835124i \(0.314604\pi\)
\(798\) 0 0
\(799\) 4.54913e7 2.52094
\(800\) 0 0
\(801\) −1.28667e6 −0.0708574
\(802\) 0 0
\(803\) 2.96400e7 1.62214
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 1.75228e7 0.947153
\(808\) 0 0
\(809\) 1.69706e7 0.911647 0.455824 0.890070i \(-0.349345\pi\)
0.455824 + 0.890070i \(0.349345\pi\)
\(810\) 0 0
\(811\) 5.79743e6 0.309516 0.154758 0.987952i \(-0.450540\pi\)
0.154758 + 0.987952i \(0.450540\pi\)
\(812\) 0 0
\(813\) 1.96252e6 0.104133
\(814\) 0 0
\(815\) −1.04578e7 −0.551499
\(816\) 0 0
\(817\) −3.88480e6 −0.203617
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 2.52205e7 1.30586 0.652928 0.757420i \(-0.273540\pi\)
0.652928 + 0.757420i \(0.273540\pi\)
\(822\) 0 0
\(823\) −4.50651e6 −0.231921 −0.115961 0.993254i \(-0.536995\pi\)
−0.115961 + 0.993254i \(0.536995\pi\)
\(824\) 0 0
\(825\) −2.12844e7 −1.08875
\(826\) 0 0
\(827\) 1.86065e7 0.946022 0.473011 0.881057i \(-0.343167\pi\)
0.473011 + 0.881057i \(0.343167\pi\)
\(828\) 0 0
\(829\) 3.74194e6 0.189108 0.0945540 0.995520i \(-0.469857\pi\)
0.0945540 + 0.995520i \(0.469857\pi\)
\(830\) 0 0
\(831\) −1.61206e7 −0.809801
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 4.17288e6 0.207119
\(836\) 0 0
\(837\) 1.78611e7 0.881241
\(838\) 0 0
\(839\) −3.60871e7 −1.76989 −0.884945 0.465695i \(-0.845804\pi\)
−0.884945 + 0.465695i \(0.845804\pi\)
\(840\) 0 0
\(841\) 4.73310e6 0.230757
\(842\) 0 0
\(843\) 2.89908e6 0.140505
\(844\) 0 0
\(845\) −1.29854e7 −0.625626
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −3.74100e6 −0.178122
\(850\) 0 0
\(851\) 3.14563e6 0.148896
\(852\) 0 0
\(853\) 1.45992e7 0.687001 0.343501 0.939152i \(-0.388387\pi\)
0.343501 + 0.939152i \(0.388387\pi\)
\(854\) 0 0
\(855\) 907723. 0.0424657
\(856\) 0 0
\(857\) −2.05674e7 −0.956594 −0.478297 0.878198i \(-0.658746\pi\)
−0.478297 + 0.878198i \(0.658746\pi\)
\(858\) 0 0
\(859\) 3.41480e7 1.57900 0.789500 0.613751i \(-0.210340\pi\)
0.789500 + 0.613751i \(0.210340\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 2.33245e7 1.06607 0.533034 0.846094i \(-0.321052\pi\)
0.533034 + 0.846094i \(0.321052\pi\)
\(864\) 0 0
\(865\) 1.48294e7 0.673882
\(866\) 0 0
\(867\) −5.20342e7 −2.35094
\(868\) 0 0
\(869\) −2.93348e7 −1.31775
\(870\) 0 0
\(871\) −175454. −0.00783642
\(872\) 0 0
\(873\) 1.69637e6 0.0753331
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.79697e7 −1.22797 −0.613986 0.789317i \(-0.710435\pi\)
−0.613986 + 0.789317i \(0.710435\pi\)
\(878\) 0 0
\(879\) 3.19177e7 1.39335
\(880\) 0 0
\(881\) 1.48700e6 0.0645464 0.0322732 0.999479i \(-0.489725\pi\)
0.0322732 + 0.999479i \(0.489725\pi\)
\(882\) 0 0
\(883\) −2.11130e7 −0.911274 −0.455637 0.890166i \(-0.650588\pi\)
−0.455637 + 0.890166i \(0.650588\pi\)
\(884\) 0 0
\(885\) −9.88166e6 −0.424104
\(886\) 0 0
\(887\) −4.19979e6 −0.179233 −0.0896165 0.995976i \(-0.528564\pi\)
−0.0896165 + 0.995976i \(0.528564\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 4.04392e7 1.70651
\(892\) 0 0
\(893\) 2.78898e7 1.17035
\(894\) 0 0
\(895\) 2.34006e7 0.976493
\(896\) 0 0
\(897\) 563734. 0.0233934
\(898\) 0 0
\(899\) 2.28813e7 0.944238
\(900\) 0 0
\(901\) 4.88722e7 2.00563
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −1.98250e7 −0.804622
\(906\) 0 0
\(907\) −3.19107e7 −1.28801 −0.644003 0.765023i \(-0.722727\pi\)
−0.644003 + 0.765023i \(0.722727\pi\)
\(908\) 0 0
\(909\) 1.70479e6 0.0684324
\(910\) 0 0
\(911\) 4.56611e7 1.82285 0.911424 0.411469i \(-0.134984\pi\)
0.911424 + 0.411469i \(0.134984\pi\)
\(912\) 0 0
\(913\) 1.02129e7 0.405482
\(914\) 0 0
\(915\) 2.94681e7 1.16359
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −4.13031e7 −1.61322 −0.806610 0.591083i \(-0.798700\pi\)
−0.806610 + 0.591083i \(0.798700\pi\)
\(920\) 0 0
\(921\) −5.82178e6 −0.226155
\(922\) 0 0
\(923\) 928799. 0.0358854
\(924\) 0 0
\(925\) 1.97894e6 0.0760465
\(926\) 0 0
\(927\) −52830.8 −0.00201924
\(928\) 0 0
\(929\) 1.44541e7 0.549482 0.274741 0.961518i \(-0.411408\pi\)
0.274741 + 0.961518i \(0.411408\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 3.61058e7 1.35792
\(934\) 0 0
\(935\) 5.79458e7 2.16767
\(936\) 0 0
\(937\) −3.53477e7 −1.31526 −0.657631 0.753340i \(-0.728441\pi\)
−0.657631 + 0.753340i \(0.728441\pi\)
\(938\) 0 0
\(939\) −1.28285e7 −0.474802
\(940\) 0 0
\(941\) −3.68406e6 −0.135629 −0.0678144 0.997698i \(-0.521603\pi\)
−0.0678144 + 0.997698i \(0.521603\pi\)
\(942\) 0 0
\(943\) 9.81424e6 0.359400
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −1.21957e6 −0.0441908 −0.0220954 0.999756i \(-0.507034\pi\)
−0.0220954 + 0.999756i \(0.507034\pi\)
\(948\) 0 0
\(949\) −493873. −0.0178012
\(950\) 0 0
\(951\) 3.26816e7 1.17180
\(952\) 0 0
\(953\) −1.22041e7 −0.435286 −0.217643 0.976028i \(-0.569837\pi\)
−0.217643 + 0.976028i \(0.569837\pi\)
\(954\) 0 0
\(955\) 7.55163e6 0.267937
\(956\) 0 0
\(957\) 5.62601e7 1.98573
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −7.88963e6 −0.275580
\(962\) 0 0
\(963\) 562220. 0.0195362
\(964\) 0 0
\(965\) −6.34184e6 −0.219228
\(966\) 0 0
\(967\) −4.11920e7 −1.41660 −0.708299 0.705913i \(-0.750537\pi\)
−0.708299 + 0.705913i \(0.750537\pi\)
\(968\) 0 0
\(969\) −4.49258e7 −1.53704
\(970\) 0 0
\(971\) 3.91352e6 0.133205 0.0666024 0.997780i \(-0.478784\pi\)
0.0666024 + 0.997780i \(0.478784\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 354650. 0.0119478
\(976\) 0 0
\(977\) −2.76330e7 −0.926171 −0.463086 0.886314i \(-0.653258\pi\)
−0.463086 + 0.886314i \(0.653258\pi\)
\(978\) 0 0
\(979\) −5.03561e7 −1.67917
\(980\) 0 0
\(981\) 23709.1 0.000786581 0
\(982\) 0 0
\(983\) −2.09731e7 −0.692276 −0.346138 0.938184i \(-0.612507\pi\)
−0.346138 + 0.938184i \(0.612507\pi\)
\(984\) 0 0
\(985\) 1.54165e7 0.506284
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −8.65132e6 −0.281249
\(990\) 0 0
\(991\) 3.91689e7 1.26694 0.633471 0.773766i \(-0.281630\pi\)
0.633471 + 0.773766i \(0.281630\pi\)
\(992\) 0 0
\(993\) 2.51027e7 0.807881
\(994\) 0 0
\(995\) −2.65050e7 −0.848731
\(996\) 0 0
\(997\) −4.21788e7 −1.34387 −0.671934 0.740611i \(-0.734536\pi\)
−0.671934 + 0.740611i \(0.734536\pi\)
\(998\) 0 0
\(999\) −4.08319e6 −0.129445
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.bg.1.2 4
4.3 odd 2 98.6.a.i.1.3 yes 4
7.6 odd 2 inner 784.6.a.bg.1.3 4
12.11 even 2 882.6.a.bv.1.2 4
28.3 even 6 98.6.c.i.79.3 8
28.11 odd 6 98.6.c.i.79.2 8
28.19 even 6 98.6.c.i.67.3 8
28.23 odd 6 98.6.c.i.67.2 8
28.27 even 2 98.6.a.i.1.2 4
84.83 odd 2 882.6.a.bv.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
98.6.a.i.1.2 4 28.27 even 2
98.6.a.i.1.3 yes 4 4.3 odd 2
98.6.c.i.67.2 8 28.23 odd 6
98.6.c.i.67.3 8 28.19 even 6
98.6.c.i.79.2 8 28.11 odd 6
98.6.c.i.79.3 8 28.3 even 6
784.6.a.bg.1.2 4 1.1 even 1 trivial
784.6.a.bg.1.3 4 7.6 odd 2 inner
882.6.a.bv.1.2 4 12.11 even 2
882.6.a.bv.1.3 4 84.83 odd 2