Properties

Label 784.6.a.ba.1.1
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,6,Mod(1,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{37}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 7)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-2.54138\) of defining polynomial
Character \(\chi\) \(=\) 784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.08276 q^{3} +41.8276 q^{5} -238.662 q^{9} +O(q^{10})\) \(q-2.08276 q^{3} +41.8276 q^{5} -238.662 q^{9} -72.0965 q^{11} -632.317 q^{13} -87.1170 q^{15} -1975.92 q^{17} +1864.93 q^{19} -413.711 q^{23} -1375.45 q^{25} +1003.19 q^{27} +731.934 q^{29} -6123.18 q^{31} +150.160 q^{33} +10350.4 q^{37} +1316.97 q^{39} -3529.84 q^{41} +14515.2 q^{43} -9982.67 q^{45} +21423.3 q^{47} +4115.38 q^{51} +12579.5 q^{53} -3015.62 q^{55} -3884.20 q^{57} +36133.9 q^{59} +4024.80 q^{61} -26448.3 q^{65} -15565.9 q^{67} +861.661 q^{69} -12180.8 q^{71} +19589.1 q^{73} +2864.74 q^{75} -36089.8 q^{79} +55905.5 q^{81} +24572.6 q^{83} -82648.2 q^{85} -1524.44 q^{87} -70243.3 q^{89} +12753.1 q^{93} +78005.4 q^{95} +105758. q^{97} +17206.7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 8 q^{3} - 38 q^{5} - 380 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 8 q^{3} - 38 q^{5} - 380 q^{9} - 424 q^{11} - 924 q^{13} - 892 q^{15} - 2346 q^{17} + 360 q^{19} + 12 q^{23} + 1872 q^{25} - 2872 q^{27} - 7052 q^{29} - 3548 q^{31} - 3398 q^{33} + 11090 q^{37} - 1624 q^{39} + 3500 q^{41} + 12680 q^{43} + 1300 q^{45} + 22956 q^{47} + 384 q^{51} + 3042 q^{53} + 25076 q^{55} - 19058 q^{57} + 65808 q^{59} - 42486 q^{61} - 3164 q^{65} - 42312 q^{67} + 5154 q^{69} + 2208 q^{71} - 50506 q^{73} + 35608 q^{75} - 9004 q^{79} + 51178 q^{81} + 104328 q^{83} - 53106 q^{85} - 80008 q^{87} - 26666 q^{89} + 38718 q^{93} + 198140 q^{95} + 209132 q^{97} + 66944 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.08276 −0.133609 −0.0668046 0.997766i \(-0.521280\pi\)
−0.0668046 + 0.997766i \(0.521280\pi\)
\(4\) 0 0
\(5\) 41.8276 0.748235 0.374118 0.927381i \(-0.377946\pi\)
0.374118 + 0.927381i \(0.377946\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −238.662 −0.982149
\(10\) 0 0
\(11\) −72.0965 −0.179652 −0.0898260 0.995957i \(-0.528631\pi\)
−0.0898260 + 0.995957i \(0.528631\pi\)
\(12\) 0 0
\(13\) −632.317 −1.03771 −0.518856 0.854862i \(-0.673642\pi\)
−0.518856 + 0.854862i \(0.673642\pi\)
\(14\) 0 0
\(15\) −87.1170 −0.0999712
\(16\) 0 0
\(17\) −1975.92 −1.65824 −0.829121 0.559069i \(-0.811159\pi\)
−0.829121 + 0.559069i \(0.811159\pi\)
\(18\) 0 0
\(19\) 1864.93 1.18516 0.592581 0.805511i \(-0.298109\pi\)
0.592581 + 0.805511i \(0.298109\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −413.711 −0.163071 −0.0815356 0.996670i \(-0.525982\pi\)
−0.0815356 + 0.996670i \(0.525982\pi\)
\(24\) 0 0
\(25\) −1375.45 −0.440144
\(26\) 0 0
\(27\) 1003.19 0.264833
\(28\) 0 0
\(29\) 731.934 0.161613 0.0808066 0.996730i \(-0.474250\pi\)
0.0808066 + 0.996730i \(0.474250\pi\)
\(30\) 0 0
\(31\) −6123.18 −1.14439 −0.572193 0.820119i \(-0.693907\pi\)
−0.572193 + 0.820119i \(0.693907\pi\)
\(32\) 0 0
\(33\) 150.160 0.0240032
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 10350.4 1.24295 0.621473 0.783436i \(-0.286535\pi\)
0.621473 + 0.783436i \(0.286535\pi\)
\(38\) 0 0
\(39\) 1316.97 0.138648
\(40\) 0 0
\(41\) −3529.84 −0.327941 −0.163970 0.986465i \(-0.552430\pi\)
−0.163970 + 0.986465i \(0.552430\pi\)
\(42\) 0 0
\(43\) 14515.2 1.19716 0.598581 0.801062i \(-0.295731\pi\)
0.598581 + 0.801062i \(0.295731\pi\)
\(44\) 0 0
\(45\) −9982.67 −0.734878
\(46\) 0 0
\(47\) 21423.3 1.41463 0.707314 0.706900i \(-0.249907\pi\)
0.707314 + 0.706900i \(0.249907\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 4115.38 0.221557
\(52\) 0 0
\(53\) 12579.5 0.615138 0.307569 0.951526i \(-0.400485\pi\)
0.307569 + 0.951526i \(0.400485\pi\)
\(54\) 0 0
\(55\) −3015.62 −0.134422
\(56\) 0 0
\(57\) −3884.20 −0.158349
\(58\) 0 0
\(59\) 36133.9 1.35140 0.675702 0.737175i \(-0.263841\pi\)
0.675702 + 0.737175i \(0.263841\pi\)
\(60\) 0 0
\(61\) 4024.80 0.138490 0.0692451 0.997600i \(-0.477941\pi\)
0.0692451 + 0.997600i \(0.477941\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −26448.3 −0.776453
\(66\) 0 0
\(67\) −15565.9 −0.423632 −0.211816 0.977310i \(-0.567938\pi\)
−0.211816 + 0.977310i \(0.567938\pi\)
\(68\) 0 0
\(69\) 861.661 0.0217878
\(70\) 0 0
\(71\) −12180.8 −0.286766 −0.143383 0.989667i \(-0.545798\pi\)
−0.143383 + 0.989667i \(0.545798\pi\)
\(72\) 0 0
\(73\) 19589.1 0.430237 0.215119 0.976588i \(-0.430986\pi\)
0.215119 + 0.976588i \(0.430986\pi\)
\(74\) 0 0
\(75\) 2864.74 0.0588073
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −36089.8 −0.650604 −0.325302 0.945610i \(-0.605466\pi\)
−0.325302 + 0.945610i \(0.605466\pi\)
\(80\) 0 0
\(81\) 55905.5 0.946764
\(82\) 0 0
\(83\) 24572.6 0.391522 0.195761 0.980652i \(-0.437282\pi\)
0.195761 + 0.980652i \(0.437282\pi\)
\(84\) 0 0
\(85\) −82648.2 −1.24076
\(86\) 0 0
\(87\) −1524.44 −0.0215930
\(88\) 0 0
\(89\) −70243.3 −0.940005 −0.470002 0.882665i \(-0.655747\pi\)
−0.470002 + 0.882665i \(0.655747\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 12753.1 0.152901
\(94\) 0 0
\(95\) 78005.4 0.886779
\(96\) 0 0
\(97\) 105758. 1.14126 0.570630 0.821207i \(-0.306699\pi\)
0.570630 + 0.821207i \(0.306699\pi\)
\(98\) 0 0
\(99\) 17206.7 0.176445
\(100\) 0 0
\(101\) 36461.8 0.355660 0.177830 0.984061i \(-0.443092\pi\)
0.177830 + 0.984061i \(0.443092\pi\)
\(102\) 0 0
\(103\) −64520.1 −0.599242 −0.299621 0.954058i \(-0.596860\pi\)
−0.299621 + 0.954058i \(0.596860\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −66045.6 −0.557679 −0.278840 0.960338i \(-0.589950\pi\)
−0.278840 + 0.960338i \(0.589950\pi\)
\(108\) 0 0
\(109\) −37938.0 −0.305850 −0.152925 0.988238i \(-0.548869\pi\)
−0.152925 + 0.988238i \(0.548869\pi\)
\(110\) 0 0
\(111\) −21557.4 −0.166069
\(112\) 0 0
\(113\) 123802. 0.912080 0.456040 0.889959i \(-0.349267\pi\)
0.456040 + 0.889959i \(0.349267\pi\)
\(114\) 0 0
\(115\) −17304.5 −0.122016
\(116\) 0 0
\(117\) 150910. 1.01919
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −155853. −0.967725
\(122\) 0 0
\(123\) 7351.81 0.0438159
\(124\) 0 0
\(125\) −188243. −1.07757
\(126\) 0 0
\(127\) −128724. −0.708189 −0.354095 0.935210i \(-0.615211\pi\)
−0.354095 + 0.935210i \(0.615211\pi\)
\(128\) 0 0
\(129\) −30231.8 −0.159952
\(130\) 0 0
\(131\) 147902. 0.753003 0.376501 0.926416i \(-0.377127\pi\)
0.376501 + 0.926416i \(0.377127\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 41961.0 0.198158
\(136\) 0 0
\(137\) −91157.4 −0.414945 −0.207472 0.978241i \(-0.566524\pi\)
−0.207472 + 0.978241i \(0.566524\pi\)
\(138\) 0 0
\(139\) 334657. 1.46914 0.734570 0.678533i \(-0.237384\pi\)
0.734570 + 0.678533i \(0.237384\pi\)
\(140\) 0 0
\(141\) −44619.7 −0.189007
\(142\) 0 0
\(143\) 45587.8 0.186427
\(144\) 0 0
\(145\) 30615.1 0.120925
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 138271. 0.510231 0.255115 0.966911i \(-0.417887\pi\)
0.255115 + 0.966911i \(0.417887\pi\)
\(150\) 0 0
\(151\) −111169. −0.396773 −0.198386 0.980124i \(-0.563570\pi\)
−0.198386 + 0.980124i \(0.563570\pi\)
\(152\) 0 0
\(153\) 471578. 1.62864
\(154\) 0 0
\(155\) −256118. −0.856270
\(156\) 0 0
\(157\) −38148.5 −0.123517 −0.0617587 0.998091i \(-0.519671\pi\)
−0.0617587 + 0.998091i \(0.519671\pi\)
\(158\) 0 0
\(159\) −26200.0 −0.0821881
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 212905. 0.627648 0.313824 0.949481i \(-0.398390\pi\)
0.313824 + 0.949481i \(0.398390\pi\)
\(164\) 0 0
\(165\) 6280.83 0.0179600
\(166\) 0 0
\(167\) 120396. 0.334057 0.167028 0.985952i \(-0.446583\pi\)
0.167028 + 0.985952i \(0.446583\pi\)
\(168\) 0 0
\(169\) 28532.2 0.0768456
\(170\) 0 0
\(171\) −445087. −1.16400
\(172\) 0 0
\(173\) 712914. 1.81101 0.905507 0.424331i \(-0.139491\pi\)
0.905507 + 0.424331i \(0.139491\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −75258.4 −0.180560
\(178\) 0 0
\(179\) 749738. 1.74895 0.874474 0.485072i \(-0.161207\pi\)
0.874474 + 0.485072i \(0.161207\pi\)
\(180\) 0 0
\(181\) 623718. 1.41511 0.707557 0.706656i \(-0.249797\pi\)
0.707557 + 0.706656i \(0.249797\pi\)
\(182\) 0 0
\(183\) −8382.69 −0.0185036
\(184\) 0 0
\(185\) 432932. 0.930016
\(186\) 0 0
\(187\) 142457. 0.297907
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −417726. −0.828530 −0.414265 0.910156i \(-0.635961\pi\)
−0.414265 + 0.910156i \(0.635961\pi\)
\(192\) 0 0
\(193\) 770700. 1.48933 0.744667 0.667436i \(-0.232608\pi\)
0.744667 + 0.667436i \(0.232608\pi\)
\(194\) 0 0
\(195\) 55085.6 0.103741
\(196\) 0 0
\(197\) −479193. −0.879721 −0.439861 0.898066i \(-0.644972\pi\)
−0.439861 + 0.898066i \(0.644972\pi\)
\(198\) 0 0
\(199\) 428686. 0.767373 0.383687 0.923463i \(-0.374654\pi\)
0.383687 + 0.923463i \(0.374654\pi\)
\(200\) 0 0
\(201\) 32420.2 0.0566011
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −147645. −0.245377
\(206\) 0 0
\(207\) 98737.0 0.160160
\(208\) 0 0
\(209\) −134455. −0.212917
\(210\) 0 0
\(211\) 588544. 0.910066 0.455033 0.890475i \(-0.349627\pi\)
0.455033 + 0.890475i \(0.349627\pi\)
\(212\) 0 0
\(213\) 25369.6 0.0383147
\(214\) 0 0
\(215\) 607138. 0.895759
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −40799.5 −0.0574837
\(220\) 0 0
\(221\) 1.24941e6 1.72078
\(222\) 0 0
\(223\) 363249. 0.489151 0.244575 0.969630i \(-0.421351\pi\)
0.244575 + 0.969630i \(0.421351\pi\)
\(224\) 0 0
\(225\) 328268. 0.432287
\(226\) 0 0
\(227\) 843041. 1.08589 0.542943 0.839770i \(-0.317310\pi\)
0.542943 + 0.839770i \(0.317310\pi\)
\(228\) 0 0
\(229\) −568666. −0.716587 −0.358293 0.933609i \(-0.616641\pi\)
−0.358293 + 0.933609i \(0.616641\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −1.05651e6 −1.27492 −0.637461 0.770482i \(-0.720015\pi\)
−0.637461 + 0.770482i \(0.720015\pi\)
\(234\) 0 0
\(235\) 896086. 1.05847
\(236\) 0 0
\(237\) 75166.5 0.0869267
\(238\) 0 0
\(239\) −853715. −0.966759 −0.483379 0.875411i \(-0.660591\pi\)
−0.483379 + 0.875411i \(0.660591\pi\)
\(240\) 0 0
\(241\) −388888. −0.431302 −0.215651 0.976470i \(-0.569187\pi\)
−0.215651 + 0.976470i \(0.569187\pi\)
\(242\) 0 0
\(243\) −360212. −0.391330
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.17922e6 −1.22986
\(248\) 0 0
\(249\) −51178.9 −0.0523109
\(250\) 0 0
\(251\) 839328. 0.840906 0.420453 0.907314i \(-0.361871\pi\)
0.420453 + 0.907314i \(0.361871\pi\)
\(252\) 0 0
\(253\) 29827.1 0.0292961
\(254\) 0 0
\(255\) 172137. 0.165776
\(256\) 0 0
\(257\) 291986. 0.275759 0.137879 0.990449i \(-0.455971\pi\)
0.137879 + 0.990449i \(0.455971\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −174685. −0.158728
\(262\) 0 0
\(263\) 288495. 0.257187 0.128594 0.991697i \(-0.458954\pi\)
0.128594 + 0.991697i \(0.458954\pi\)
\(264\) 0 0
\(265\) 526169. 0.460268
\(266\) 0 0
\(267\) 146300. 0.125593
\(268\) 0 0
\(269\) −259370. −0.218544 −0.109272 0.994012i \(-0.534852\pi\)
−0.109272 + 0.994012i \(0.534852\pi\)
\(270\) 0 0
\(271\) 2.19551e6 1.81599 0.907994 0.418984i \(-0.137614\pi\)
0.907994 + 0.418984i \(0.137614\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 99165.1 0.0790728
\(276\) 0 0
\(277\) 126991. 0.0994426 0.0497213 0.998763i \(-0.484167\pi\)
0.0497213 + 0.998763i \(0.484167\pi\)
\(278\) 0 0
\(279\) 1.46137e6 1.12396
\(280\) 0 0
\(281\) −2.22759e6 −1.68294 −0.841472 0.540301i \(-0.818310\pi\)
−0.841472 + 0.540301i \(0.818310\pi\)
\(282\) 0 0
\(283\) −1.18895e6 −0.882463 −0.441231 0.897393i \(-0.645458\pi\)
−0.441231 + 0.897393i \(0.645458\pi\)
\(284\) 0 0
\(285\) −162467. −0.118482
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2.48442e6 1.74977
\(290\) 0 0
\(291\) −220269. −0.152483
\(292\) 0 0
\(293\) 1.83223e6 1.24684 0.623421 0.781886i \(-0.285742\pi\)
0.623421 + 0.781886i \(0.285742\pi\)
\(294\) 0 0
\(295\) 1.51140e6 1.01117
\(296\) 0 0
\(297\) −72326.3 −0.0475779
\(298\) 0 0
\(299\) 261596. 0.169221
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −75941.3 −0.0475194
\(304\) 0 0
\(305\) 168348. 0.103623
\(306\) 0 0
\(307\) 717638. 0.434569 0.217285 0.976108i \(-0.430280\pi\)
0.217285 + 0.976108i \(0.430280\pi\)
\(308\) 0 0
\(309\) 134380. 0.0800642
\(310\) 0 0
\(311\) 856892. 0.502372 0.251186 0.967939i \(-0.419179\pi\)
0.251186 + 0.967939i \(0.419179\pi\)
\(312\) 0 0
\(313\) 1.61699e6 0.932924 0.466462 0.884541i \(-0.345528\pi\)
0.466462 + 0.884541i \(0.345528\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −2.26559e6 −1.26629 −0.633145 0.774033i \(-0.718236\pi\)
−0.633145 + 0.774033i \(0.718236\pi\)
\(318\) 0 0
\(319\) −52769.8 −0.0290341
\(320\) 0 0
\(321\) 137557. 0.0745111
\(322\) 0 0
\(323\) −3.68495e6 −1.96528
\(324\) 0 0
\(325\) 869721. 0.456743
\(326\) 0 0
\(327\) 79015.9 0.0408644
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −709650. −0.356020 −0.178010 0.984029i \(-0.556966\pi\)
−0.178010 + 0.984029i \(0.556966\pi\)
\(332\) 0 0
\(333\) −2.47024e6 −1.22076
\(334\) 0 0
\(335\) −651086. −0.316976
\(336\) 0 0
\(337\) 603572. 0.289504 0.144752 0.989468i \(-0.453762\pi\)
0.144752 + 0.989468i \(0.453762\pi\)
\(338\) 0 0
\(339\) −257851. −0.121862
\(340\) 0 0
\(341\) 441459. 0.205591
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 36041.2 0.0163024
\(346\) 0 0
\(347\) −1.75731e6 −0.783474 −0.391737 0.920077i \(-0.628126\pi\)
−0.391737 + 0.920077i \(0.628126\pi\)
\(348\) 0 0
\(349\) 391875. 0.172220 0.0861102 0.996286i \(-0.472556\pi\)
0.0861102 + 0.996286i \(0.472556\pi\)
\(350\) 0 0
\(351\) −634333. −0.274821
\(352\) 0 0
\(353\) 492407. 0.210323 0.105162 0.994455i \(-0.466464\pi\)
0.105162 + 0.994455i \(0.466464\pi\)
\(354\) 0 0
\(355\) −509492. −0.214569
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.77032e6 1.54398 0.771991 0.635634i \(-0.219261\pi\)
0.771991 + 0.635634i \(0.219261\pi\)
\(360\) 0 0
\(361\) 1.00185e6 0.404607
\(362\) 0 0
\(363\) 324605. 0.129297
\(364\) 0 0
\(365\) 819367. 0.321919
\(366\) 0 0
\(367\) 2.19768e6 0.851726 0.425863 0.904788i \(-0.359970\pi\)
0.425863 + 0.904788i \(0.359970\pi\)
\(368\) 0 0
\(369\) 842439. 0.322086
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.65636e6 −0.616427 −0.308213 0.951317i \(-0.599731\pi\)
−0.308213 + 0.951317i \(0.599731\pi\)
\(374\) 0 0
\(375\) 392066. 0.143973
\(376\) 0 0
\(377\) −462814. −0.167708
\(378\) 0 0
\(379\) 2.82050e6 1.00862 0.504310 0.863523i \(-0.331747\pi\)
0.504310 + 0.863523i \(0.331747\pi\)
\(380\) 0 0
\(381\) 268101. 0.0946206
\(382\) 0 0
\(383\) −3.24845e6 −1.13156 −0.565781 0.824555i \(-0.691425\pi\)
−0.565781 + 0.824555i \(0.691425\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −3.46424e6 −1.17579
\(388\) 0 0
\(389\) 4.65348e6 1.55921 0.779604 0.626273i \(-0.215420\pi\)
0.779604 + 0.626273i \(0.215420\pi\)
\(390\) 0 0
\(391\) 817461. 0.270411
\(392\) 0 0
\(393\) −308045. −0.100608
\(394\) 0 0
\(395\) −1.50955e6 −0.486805
\(396\) 0 0
\(397\) −1.16361e6 −0.370536 −0.185268 0.982688i \(-0.559315\pi\)
−0.185268 + 0.982688i \(0.559315\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 322380. 0.100117 0.0500584 0.998746i \(-0.484059\pi\)
0.0500584 + 0.998746i \(0.484059\pi\)
\(402\) 0 0
\(403\) 3.87179e6 1.18754
\(404\) 0 0
\(405\) 2.33839e6 0.708403
\(406\) 0 0
\(407\) −746226. −0.223298
\(408\) 0 0
\(409\) 1.38690e6 0.409956 0.204978 0.978767i \(-0.434288\pi\)
0.204978 + 0.978767i \(0.434288\pi\)
\(410\) 0 0
\(411\) 189859. 0.0554405
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 1.02781e6 0.292950
\(416\) 0 0
\(417\) −697011. −0.196291
\(418\) 0 0
\(419\) −4.90871e6 −1.36594 −0.682971 0.730446i \(-0.739312\pi\)
−0.682971 + 0.730446i \(0.739312\pi\)
\(420\) 0 0
\(421\) 2.43924e6 0.670733 0.335367 0.942088i \(-0.391140\pi\)
0.335367 + 0.942088i \(0.391140\pi\)
\(422\) 0 0
\(423\) −5.11293e6 −1.38937
\(424\) 0 0
\(425\) 2.71779e6 0.729865
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −94948.7 −0.0249084
\(430\) 0 0
\(431\) 5.22752e6 1.35551 0.677755 0.735288i \(-0.262953\pi\)
0.677755 + 0.735288i \(0.262953\pi\)
\(432\) 0 0
\(433\) −2.63022e6 −0.674174 −0.337087 0.941473i \(-0.609442\pi\)
−0.337087 + 0.941473i \(0.609442\pi\)
\(434\) 0 0
\(435\) −63763.9 −0.0161567
\(436\) 0 0
\(437\) −771539. −0.193266
\(438\) 0 0
\(439\) −2.55412e6 −0.632527 −0.316264 0.948671i \(-0.602428\pi\)
−0.316264 + 0.948671i \(0.602428\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.83900e6 −0.929414 −0.464707 0.885465i \(-0.653840\pi\)
−0.464707 + 0.885465i \(0.653840\pi\)
\(444\) 0 0
\(445\) −2.93811e6 −0.703345
\(446\) 0 0
\(447\) −287986. −0.0681715
\(448\) 0 0
\(449\) 1.49369e6 0.349658 0.174829 0.984599i \(-0.444063\pi\)
0.174829 + 0.984599i \(0.444063\pi\)
\(450\) 0 0
\(451\) 254489. 0.0589152
\(452\) 0 0
\(453\) 231539. 0.0530126
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −2.16221e6 −0.484293 −0.242146 0.970240i \(-0.577851\pi\)
−0.242146 + 0.970240i \(0.577851\pi\)
\(458\) 0 0
\(459\) −1.98222e6 −0.439158
\(460\) 0 0
\(461\) −6.11949e6 −1.34111 −0.670553 0.741862i \(-0.733943\pi\)
−0.670553 + 0.741862i \(0.733943\pi\)
\(462\) 0 0
\(463\) −3.93615e6 −0.853335 −0.426667 0.904409i \(-0.640313\pi\)
−0.426667 + 0.904409i \(0.640313\pi\)
\(464\) 0 0
\(465\) 533433. 0.114406
\(466\) 0 0
\(467\) 5.47044e6 1.16073 0.580363 0.814358i \(-0.302911\pi\)
0.580363 + 0.814358i \(0.302911\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 79454.3 0.0165031
\(472\) 0 0
\(473\) −1.04650e6 −0.215073
\(474\) 0 0
\(475\) −2.56511e6 −0.521641
\(476\) 0 0
\(477\) −3.00224e6 −0.604157
\(478\) 0 0
\(479\) 6.66289e6 1.32686 0.663428 0.748240i \(-0.269101\pi\)
0.663428 + 0.748240i \(0.269101\pi\)
\(480\) 0 0
\(481\) −6.54473e6 −1.28982
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.42362e6 0.853931
\(486\) 0 0
\(487\) −9.53693e6 −1.82216 −0.911079 0.412232i \(-0.864749\pi\)
−0.911079 + 0.412232i \(0.864749\pi\)
\(488\) 0 0
\(489\) −443430. −0.0838595
\(490\) 0 0
\(491\) 8.19294e6 1.53369 0.766843 0.641835i \(-0.221827\pi\)
0.766843 + 0.641835i \(0.221827\pi\)
\(492\) 0 0
\(493\) −1.44625e6 −0.267994
\(494\) 0 0
\(495\) 719715. 0.132022
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 4.31437e6 0.775650 0.387825 0.921733i \(-0.373226\pi\)
0.387825 + 0.921733i \(0.373226\pi\)
\(500\) 0 0
\(501\) −250756. −0.0446331
\(502\) 0 0
\(503\) 1.04015e7 1.83306 0.916529 0.399968i \(-0.130979\pi\)
0.916529 + 0.399968i \(0.130979\pi\)
\(504\) 0 0
\(505\) 1.52511e6 0.266117
\(506\) 0 0
\(507\) −59425.9 −0.0102673
\(508\) 0 0
\(509\) −3.09396e6 −0.529322 −0.264661 0.964342i \(-0.585260\pi\)
−0.264661 + 0.964342i \(0.585260\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 1.87087e6 0.313870
\(514\) 0 0
\(515\) −2.69872e6 −0.448374
\(516\) 0 0
\(517\) −1.54455e6 −0.254141
\(518\) 0 0
\(519\) −1.48483e6 −0.241968
\(520\) 0 0
\(521\) −7.60175e6 −1.22693 −0.613464 0.789723i \(-0.710224\pi\)
−0.613464 + 0.789723i \(0.710224\pi\)
\(522\) 0 0
\(523\) −4.75669e6 −0.760415 −0.380208 0.924901i \(-0.624147\pi\)
−0.380208 + 0.924901i \(0.624147\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.20989e7 1.89767
\(528\) 0 0
\(529\) −6.26519e6 −0.973408
\(530\) 0 0
\(531\) −8.62380e6 −1.32728
\(532\) 0 0
\(533\) 2.23198e6 0.340308
\(534\) 0 0
\(535\) −2.76253e6 −0.417275
\(536\) 0 0
\(537\) −1.56153e6 −0.233676
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 1.10052e7 1.61661 0.808305 0.588764i \(-0.200385\pi\)
0.808305 + 0.588764i \(0.200385\pi\)
\(542\) 0 0
\(543\) −1.29906e6 −0.189072
\(544\) 0 0
\(545\) −1.58686e6 −0.228848
\(546\) 0 0
\(547\) 4.46311e6 0.637778 0.318889 0.947792i \(-0.396690\pi\)
0.318889 + 0.947792i \(0.396690\pi\)
\(548\) 0 0
\(549\) −960566. −0.136018
\(550\) 0 0
\(551\) 1.36500e6 0.191538
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −901694. −0.124259
\(556\) 0 0
\(557\) −6.45222e6 −0.881194 −0.440597 0.897705i \(-0.645233\pi\)
−0.440597 + 0.897705i \(0.645233\pi\)
\(558\) 0 0
\(559\) −9.17823e6 −1.24231
\(560\) 0 0
\(561\) −296704. −0.0398031
\(562\) 0 0
\(563\) −1.74748e6 −0.232349 −0.116175 0.993229i \(-0.537063\pi\)
−0.116175 + 0.993229i \(0.537063\pi\)
\(564\) 0 0
\(565\) 5.17836e6 0.682450
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 512789. 0.0663985 0.0331992 0.999449i \(-0.489430\pi\)
0.0331992 + 0.999449i \(0.489430\pi\)
\(570\) 0 0
\(571\) −5.22364e6 −0.670475 −0.335238 0.942134i \(-0.608817\pi\)
−0.335238 + 0.942134i \(0.608817\pi\)
\(572\) 0 0
\(573\) 870024. 0.110699
\(574\) 0 0
\(575\) 569038. 0.0717748
\(576\) 0 0
\(577\) 6.63973e6 0.830254 0.415127 0.909763i \(-0.363737\pi\)
0.415127 + 0.909763i \(0.363737\pi\)
\(578\) 0 0
\(579\) −1.60519e6 −0.198989
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −906935. −0.110511
\(584\) 0 0
\(585\) 6.31221e6 0.762592
\(586\) 0 0
\(587\) −774096. −0.0927256 −0.0463628 0.998925i \(-0.514763\pi\)
−0.0463628 + 0.998925i \(0.514763\pi\)
\(588\) 0 0
\(589\) −1.14193e7 −1.35628
\(590\) 0 0
\(591\) 998046. 0.117539
\(592\) 0 0
\(593\) −1.43756e7 −1.67876 −0.839379 0.543546i \(-0.817081\pi\)
−0.839379 + 0.543546i \(0.817081\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −892851. −0.102528
\(598\) 0 0
\(599\) −1.20835e7 −1.37602 −0.688010 0.725701i \(-0.741516\pi\)
−0.688010 + 0.725701i \(0.741516\pi\)
\(600\) 0 0
\(601\) 5.75607e6 0.650040 0.325020 0.945707i \(-0.394629\pi\)
0.325020 + 0.945707i \(0.394629\pi\)
\(602\) 0 0
\(603\) 3.71500e6 0.416069
\(604\) 0 0
\(605\) −6.51897e6 −0.724086
\(606\) 0 0
\(607\) −4.20121e6 −0.462810 −0.231405 0.972858i \(-0.574332\pi\)
−0.231405 + 0.972858i \(0.574332\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −1.35463e7 −1.46798
\(612\) 0 0
\(613\) −2.64543e6 −0.284344 −0.142172 0.989842i \(-0.545409\pi\)
−0.142172 + 0.989842i \(0.545409\pi\)
\(614\) 0 0
\(615\) 307509. 0.0327846
\(616\) 0 0
\(617\) 6.43533e6 0.680546 0.340273 0.940327i \(-0.389480\pi\)
0.340273 + 0.940327i \(0.389480\pi\)
\(618\) 0 0
\(619\) −1.41177e7 −1.48094 −0.740469 0.672090i \(-0.765397\pi\)
−0.740469 + 0.672090i \(0.765397\pi\)
\(620\) 0 0
\(621\) −415029. −0.0431867
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −3.57548e6 −0.366129
\(626\) 0 0
\(627\) 280037. 0.0284476
\(628\) 0 0
\(629\) −2.04516e7 −2.06111
\(630\) 0 0
\(631\) 4.70856e6 0.470777 0.235388 0.971901i \(-0.424364\pi\)
0.235388 + 0.971901i \(0.424364\pi\)
\(632\) 0 0
\(633\) −1.22580e6 −0.121593
\(634\) 0 0
\(635\) −5.38421e6 −0.529892
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 2.90708e6 0.281647
\(640\) 0 0
\(641\) −1.04174e7 −1.00141 −0.500707 0.865617i \(-0.666927\pi\)
−0.500707 + 0.865617i \(0.666927\pi\)
\(642\) 0 0
\(643\) −1.27284e7 −1.21407 −0.607037 0.794674i \(-0.707642\pi\)
−0.607037 + 0.794674i \(0.707642\pi\)
\(644\) 0 0
\(645\) −1.26452e6 −0.119682
\(646\) 0 0
\(647\) 1.61348e7 1.51531 0.757657 0.652653i \(-0.226344\pi\)
0.757657 + 0.652653i \(0.226344\pi\)
\(648\) 0 0
\(649\) −2.60513e6 −0.242783
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −1.50295e7 −1.37931 −0.689654 0.724139i \(-0.742237\pi\)
−0.689654 + 0.724139i \(0.742237\pi\)
\(654\) 0 0
\(655\) 6.18640e6 0.563423
\(656\) 0 0
\(657\) −4.67518e6 −0.422557
\(658\) 0 0
\(659\) −1.67927e7 −1.50628 −0.753140 0.657860i \(-0.771462\pi\)
−0.753140 + 0.657860i \(0.771462\pi\)
\(660\) 0 0
\(661\) 1.08540e7 0.966246 0.483123 0.875552i \(-0.339502\pi\)
0.483123 + 0.875552i \(0.339502\pi\)
\(662\) 0 0
\(663\) −2.60223e6 −0.229912
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −302809. −0.0263544
\(668\) 0 0
\(669\) −756562. −0.0653551
\(670\) 0 0
\(671\) −290174. −0.0248801
\(672\) 0 0
\(673\) 1.23697e7 1.05274 0.526371 0.850255i \(-0.323552\pi\)
0.526371 + 0.850255i \(0.323552\pi\)
\(674\) 0 0
\(675\) −1.37983e6 −0.116565
\(676\) 0 0
\(677\) −1.00501e6 −0.0842746 −0.0421373 0.999112i \(-0.513417\pi\)
−0.0421373 + 0.999112i \(0.513417\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −1.75586e6 −0.145084
\(682\) 0 0
\(683\) −1.87019e6 −0.153403 −0.0767014 0.997054i \(-0.524439\pi\)
−0.0767014 + 0.997054i \(0.524439\pi\)
\(684\) 0 0
\(685\) −3.81290e6 −0.310476
\(686\) 0 0
\(687\) 1.18440e6 0.0957426
\(688\) 0 0
\(689\) −7.95421e6 −0.638336
\(690\) 0 0
\(691\) −1.93867e7 −1.54457 −0.772286 0.635275i \(-0.780887\pi\)
−0.772286 + 0.635275i \(0.780887\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 1.39979e7 1.09926
\(696\) 0 0
\(697\) 6.97469e6 0.543805
\(698\) 0 0
\(699\) 2.20046e6 0.170342
\(700\) 0 0
\(701\) 1.17488e7 0.903024 0.451512 0.892265i \(-0.350885\pi\)
0.451512 + 0.892265i \(0.350885\pi\)
\(702\) 0 0
\(703\) 1.93027e7 1.47309
\(704\) 0 0
\(705\) −1.86634e6 −0.141422
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.67948e7 1.25475 0.627377 0.778716i \(-0.284129\pi\)
0.627377 + 0.778716i \(0.284129\pi\)
\(710\) 0 0
\(711\) 8.61326e6 0.638990
\(712\) 0 0
\(713\) 2.53322e6 0.186616
\(714\) 0 0
\(715\) 1.90683e6 0.139491
\(716\) 0 0
\(717\) 1.77809e6 0.129168
\(718\) 0 0
\(719\) 1.65130e7 1.19126 0.595628 0.803261i \(-0.296903\pi\)
0.595628 + 0.803261i \(0.296903\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 809961. 0.0576260
\(724\) 0 0
\(725\) −1.00674e6 −0.0711331
\(726\) 0 0
\(727\) 1.25756e6 0.0882453 0.0441227 0.999026i \(-0.485951\pi\)
0.0441227 + 0.999026i \(0.485951\pi\)
\(728\) 0 0
\(729\) −1.28348e7 −0.894479
\(730\) 0 0
\(731\) −2.86810e7 −1.98518
\(732\) 0 0
\(733\) −1.98332e6 −0.136343 −0.0681716 0.997674i \(-0.521717\pi\)
−0.0681716 + 0.997674i \(0.521717\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 1.12225e6 0.0761063
\(738\) 0 0
\(739\) 2.38807e7 1.60856 0.804278 0.594253i \(-0.202552\pi\)
0.804278 + 0.594253i \(0.202552\pi\)
\(740\) 0 0
\(741\) 2.45604e6 0.164320
\(742\) 0 0
\(743\) 1.90819e7 1.26809 0.634043 0.773298i \(-0.281394\pi\)
0.634043 + 0.773298i \(0.281394\pi\)
\(744\) 0 0
\(745\) 5.78356e6 0.381773
\(746\) 0 0
\(747\) −5.86455e6 −0.384532
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 3.75805e6 0.243144 0.121572 0.992583i \(-0.461206\pi\)
0.121572 + 0.992583i \(0.461206\pi\)
\(752\) 0 0
\(753\) −1.74812e6 −0.112353
\(754\) 0 0
\(755\) −4.64994e6 −0.296880
\(756\) 0 0
\(757\) 1.69904e7 1.07761 0.538807 0.842429i \(-0.318875\pi\)
0.538807 + 0.842429i \(0.318875\pi\)
\(758\) 0 0
\(759\) −62122.7 −0.00391423
\(760\) 0 0
\(761\) 2.23998e7 1.40211 0.701056 0.713106i \(-0.252712\pi\)
0.701056 + 0.713106i \(0.252712\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 1.97250e7 1.21861
\(766\) 0 0
\(767\) −2.28481e7 −1.40237
\(768\) 0 0
\(769\) −1.87866e7 −1.14560 −0.572799 0.819696i \(-0.694142\pi\)
−0.572799 + 0.819696i \(0.694142\pi\)
\(770\) 0 0
\(771\) −608138. −0.0368439
\(772\) 0 0
\(773\) 9.30837e6 0.560306 0.280153 0.959955i \(-0.409615\pi\)
0.280153 + 0.959955i \(0.409615\pi\)
\(774\) 0 0
\(775\) 8.42212e6 0.503694
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −6.58288e6 −0.388662
\(780\) 0 0
\(781\) 878189. 0.0515182
\(782\) 0 0
\(783\) 734267. 0.0428006
\(784\) 0 0
\(785\) −1.59566e6 −0.0924201
\(786\) 0 0
\(787\) −1.73427e7 −0.998111 −0.499056 0.866570i \(-0.666320\pi\)
−0.499056 + 0.866570i \(0.666320\pi\)
\(788\) 0 0
\(789\) −600867. −0.0343626
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.54495e6 −0.143713
\(794\) 0 0
\(795\) −1.09589e6 −0.0614960
\(796\) 0 0
\(797\) 3.10445e7 1.73117 0.865584 0.500764i \(-0.166948\pi\)
0.865584 + 0.500764i \(0.166948\pi\)
\(798\) 0 0
\(799\) −4.23309e7 −2.34580
\(800\) 0 0
\(801\) 1.67644e7 0.923224
\(802\) 0 0
\(803\) −1.41231e6 −0.0772930
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 540206. 0.0291995
\(808\) 0 0
\(809\) −2.47038e7 −1.32707 −0.663533 0.748147i \(-0.730944\pi\)
−0.663533 + 0.748147i \(0.730944\pi\)
\(810\) 0 0
\(811\) −8.42005e6 −0.449534 −0.224767 0.974413i \(-0.572162\pi\)
−0.224767 + 0.974413i \(0.572162\pi\)
\(812\) 0 0
\(813\) −4.57273e6 −0.242633
\(814\) 0 0
\(815\) 8.90529e6 0.469628
\(816\) 0 0
\(817\) 2.70698e7 1.41883
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −2.58827e7 −1.34014 −0.670071 0.742297i \(-0.733736\pi\)
−0.670071 + 0.742297i \(0.733736\pi\)
\(822\) 0 0
\(823\) −1.72004e7 −0.885195 −0.442597 0.896720i \(-0.645943\pi\)
−0.442597 + 0.896720i \(0.645943\pi\)
\(824\) 0 0
\(825\) −206537. −0.0105649
\(826\) 0 0
\(827\) 2.40337e7 1.22196 0.610979 0.791647i \(-0.290776\pi\)
0.610979 + 0.791647i \(0.290776\pi\)
\(828\) 0 0
\(829\) −3.24736e7 −1.64113 −0.820567 0.571550i \(-0.806342\pi\)
−0.820567 + 0.571550i \(0.806342\pi\)
\(830\) 0 0
\(831\) −264491. −0.0132865
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 5.03587e6 0.249953
\(836\) 0 0
\(837\) −6.14269e6 −0.303072
\(838\) 0 0
\(839\) 1.24404e7 0.610139 0.305069 0.952330i \(-0.401320\pi\)
0.305069 + 0.952330i \(0.401320\pi\)
\(840\) 0 0
\(841\) −1.99754e7 −0.973881
\(842\) 0 0
\(843\) 4.63954e6 0.224857
\(844\) 0 0
\(845\) 1.19344e6 0.0574986
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 2.47629e6 0.117905
\(850\) 0 0
\(851\) −4.28206e6 −0.202689
\(852\) 0 0
\(853\) −999355. −0.0470270 −0.0235135 0.999724i \(-0.507485\pi\)
−0.0235135 + 0.999724i \(0.507485\pi\)
\(854\) 0 0
\(855\) −1.86169e7 −0.870949
\(856\) 0 0
\(857\) −2.64465e7 −1.23003 −0.615016 0.788514i \(-0.710851\pi\)
−0.615016 + 0.788514i \(0.710851\pi\)
\(858\) 0 0
\(859\) 2.86716e7 1.32577 0.662887 0.748719i \(-0.269331\pi\)
0.662887 + 0.748719i \(0.269331\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −4.08173e6 −0.186560 −0.0932798 0.995640i \(-0.529735\pi\)
−0.0932798 + 0.995640i \(0.529735\pi\)
\(864\) 0 0
\(865\) 2.98195e7 1.35506
\(866\) 0 0
\(867\) −5.17446e6 −0.233785
\(868\) 0 0
\(869\) 2.60195e6 0.116882
\(870\) 0 0
\(871\) 9.84261e6 0.439608
\(872\) 0 0
\(873\) −2.52405e7 −1.12089
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −2.82405e7 −1.23986 −0.619931 0.784657i \(-0.712839\pi\)
−0.619931 + 0.784657i \(0.712839\pi\)
\(878\) 0 0
\(879\) −3.81610e6 −0.166590
\(880\) 0 0
\(881\) 1.61480e7 0.700936 0.350468 0.936575i \(-0.386022\pi\)
0.350468 + 0.936575i \(0.386022\pi\)
\(882\) 0 0
\(883\) 3.86021e7 1.66613 0.833065 0.553174i \(-0.186584\pi\)
0.833065 + 0.553174i \(0.186584\pi\)
\(884\) 0 0
\(885\) −3.14788e6 −0.135102
\(886\) 0 0
\(887\) −7.29088e6 −0.311151 −0.155575 0.987824i \(-0.549723\pi\)
−0.155575 + 0.987824i \(0.549723\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.03059e6 −0.170088
\(892\) 0 0
\(893\) 3.99529e7 1.67656
\(894\) 0 0
\(895\) 3.13598e7 1.30862
\(896\) 0 0
\(897\) −544843. −0.0226095
\(898\) 0 0
\(899\) −4.48176e6 −0.184948
\(900\) 0 0
\(901\) −2.48561e7 −1.02005
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 2.60886e7 1.05884
\(906\) 0 0
\(907\) 3.73335e7 1.50689 0.753443 0.657514i \(-0.228392\pi\)
0.753443 + 0.657514i \(0.228392\pi\)
\(908\) 0 0
\(909\) −8.70205e6 −0.349311
\(910\) 0 0
\(911\) 2475.17 9.88120e−5 0 4.94060e−5 1.00000i \(-0.499984\pi\)
4.94060e−5 1.00000i \(0.499984\pi\)
\(912\) 0 0
\(913\) −1.77160e6 −0.0703377
\(914\) 0 0
\(915\) −350628. −0.0138450
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 4.48238e6 0.175073 0.0875366 0.996161i \(-0.472101\pi\)
0.0875366 + 0.996161i \(0.472101\pi\)
\(920\) 0 0
\(921\) −1.49467e6 −0.0580625
\(922\) 0 0
\(923\) 7.70210e6 0.297581
\(924\) 0 0
\(925\) −1.42364e7 −0.547075
\(926\) 0 0
\(927\) 1.53985e7 0.588544
\(928\) 0 0
\(929\) 2.12859e7 0.809193 0.404596 0.914495i \(-0.367412\pi\)
0.404596 + 0.914495i \(0.367412\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.78470e6 −0.0671215
\(934\) 0 0
\(935\) 5.95865e6 0.222904
\(936\) 0 0
\(937\) 6.79757e6 0.252932 0.126466 0.991971i \(-0.459636\pi\)
0.126466 + 0.991971i \(0.459636\pi\)
\(938\) 0 0
\(939\) −3.36781e6 −0.124647
\(940\) 0 0
\(941\) 4.90883e7 1.80719 0.903595 0.428388i \(-0.140918\pi\)
0.903595 + 0.428388i \(0.140918\pi\)
\(942\) 0 0
\(943\) 1.46033e6 0.0534776
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −2.45484e7 −0.889505 −0.444753 0.895653i \(-0.646708\pi\)
−0.444753 + 0.895653i \(0.646708\pi\)
\(948\) 0 0
\(949\) −1.23865e7 −0.446462
\(950\) 0 0
\(951\) 4.71869e6 0.169188
\(952\) 0 0
\(953\) −513120. −0.0183015 −0.00915075 0.999958i \(-0.502913\pi\)
−0.00915075 + 0.999958i \(0.502913\pi\)
\(954\) 0 0
\(955\) −1.74725e7 −0.619935
\(956\) 0 0
\(957\) 109907. 0.00387923
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 8.86412e6 0.309619
\(962\) 0 0
\(963\) 1.57626e7 0.547724
\(964\) 0 0
\(965\) 3.22366e7 1.11437
\(966\) 0 0
\(967\) −3.34818e7 −1.15144 −0.575722 0.817645i \(-0.695279\pi\)
−0.575722 + 0.817645i \(0.695279\pi\)
\(968\) 0 0
\(969\) 7.67488e6 0.262580
\(970\) 0 0
\(971\) −4.76036e6 −0.162029 −0.0810143 0.996713i \(-0.525816\pi\)
−0.0810143 + 0.996713i \(0.525816\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −1.81142e6 −0.0610250
\(976\) 0 0
\(977\) 2.87338e7 0.963067 0.481534 0.876428i \(-0.340080\pi\)
0.481534 + 0.876428i \(0.340080\pi\)
\(978\) 0 0
\(979\) 5.06430e6 0.168874
\(980\) 0 0
\(981\) 9.05437e6 0.300390
\(982\) 0 0
\(983\) 4.97072e7 1.64072 0.820362 0.571845i \(-0.193772\pi\)
0.820362 + 0.571845i \(0.193772\pi\)
\(984\) 0 0
\(985\) −2.00435e7 −0.658239
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −6.00511e6 −0.195223
\(990\) 0 0
\(991\) 2.91066e6 0.0941471 0.0470736 0.998891i \(-0.485010\pi\)
0.0470736 + 0.998891i \(0.485010\pi\)
\(992\) 0 0
\(993\) 1.47803e6 0.0475676
\(994\) 0 0
\(995\) 1.79309e7 0.574176
\(996\) 0 0
\(997\) 1.43353e7 0.456740 0.228370 0.973574i \(-0.426660\pi\)
0.228370 + 0.973574i \(0.426660\pi\)
\(998\) 0 0
\(999\) 1.03834e7 0.329174
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.ba.1.1 2
4.3 odd 2 49.6.a.d.1.1 2
7.2 even 3 112.6.i.c.81.2 4
7.4 even 3 112.6.i.c.65.2 4
7.6 odd 2 784.6.a.t.1.2 2
12.11 even 2 441.6.a.n.1.2 2
28.3 even 6 49.6.c.f.30.2 4
28.11 odd 6 7.6.c.a.2.2 4
28.19 even 6 49.6.c.f.18.2 4
28.23 odd 6 7.6.c.a.4.2 yes 4
28.27 even 2 49.6.a.e.1.1 2
84.11 even 6 63.6.e.d.37.1 4
84.23 even 6 63.6.e.d.46.1 4
84.83 odd 2 441.6.a.m.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7.6.c.a.2.2 4 28.11 odd 6
7.6.c.a.4.2 yes 4 28.23 odd 6
49.6.a.d.1.1 2 4.3 odd 2
49.6.a.e.1.1 2 28.27 even 2
49.6.c.f.18.2 4 28.19 even 6
49.6.c.f.30.2 4 28.3 even 6
63.6.e.d.37.1 4 84.11 even 6
63.6.e.d.46.1 4 84.23 even 6
112.6.i.c.65.2 4 7.4 even 3
112.6.i.c.81.2 4 7.2 even 3
441.6.a.m.1.2 2 84.83 odd 2
441.6.a.n.1.2 2 12.11 even 2
784.6.a.t.1.2 2 7.6 odd 2
784.6.a.ba.1.1 2 1.1 even 1 trivial