Properties

Label 784.6.a.b.1.1
Level $784$
Weight $6$
Character 784.1
Self dual yes
Analytic conductor $125.741$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,6,Mod(1,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(125.740914733\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 196)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 784.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-16.0000 q^{3} -16.0000 q^{5} +13.0000 q^{9} +O(q^{10})\) \(q-16.0000 q^{3} -16.0000 q^{5} +13.0000 q^{9} +76.0000 q^{11} -880.000 q^{13} +256.000 q^{15} +1056.00 q^{17} +1936.00 q^{19} -936.000 q^{23} -2869.00 q^{25} +3680.00 q^{27} -3982.00 q^{29} +1568.00 q^{31} -1216.00 q^{33} +4938.00 q^{37} +14080.0 q^{39} +15840.0 q^{41} +16412.0 q^{43} -208.000 q^{45} -20768.0 q^{47} -16896.0 q^{51} -37402.0 q^{53} -1216.00 q^{55} -30976.0 q^{57} +21136.0 q^{59} +2992.00 q^{61} +14080.0 q^{65} +45836.0 q^{67} +14976.0 q^{69} +49840.0 q^{71} +56320.0 q^{73} +45904.0 q^{75} -40744.0 q^{79} -62039.0 q^{81} +112464. q^{83} -16896.0 q^{85} +63712.0 q^{87} -64256.0 q^{89} -25088.0 q^{93} -30976.0 q^{95} +2272.00 q^{97} +988.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −16.0000 −1.02640 −0.513200 0.858269i \(-0.671540\pi\)
−0.513200 + 0.858269i \(0.671540\pi\)
\(4\) 0 0
\(5\) −16.0000 −0.286217 −0.143108 0.989707i \(-0.545710\pi\)
−0.143108 + 0.989707i \(0.545710\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 13.0000 0.0534979
\(10\) 0 0
\(11\) 76.0000 0.189379 0.0946895 0.995507i \(-0.469814\pi\)
0.0946895 + 0.995507i \(0.469814\pi\)
\(12\) 0 0
\(13\) −880.000 −1.44419 −0.722095 0.691794i \(-0.756821\pi\)
−0.722095 + 0.691794i \(0.756821\pi\)
\(14\) 0 0
\(15\) 256.000 0.293773
\(16\) 0 0
\(17\) 1056.00 0.886220 0.443110 0.896467i \(-0.353875\pi\)
0.443110 + 0.896467i \(0.353875\pi\)
\(18\) 0 0
\(19\) 1936.00 1.23033 0.615165 0.788399i \(-0.289090\pi\)
0.615165 + 0.788399i \(0.289090\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −936.000 −0.368940 −0.184470 0.982838i \(-0.559057\pi\)
−0.184470 + 0.982838i \(0.559057\pi\)
\(24\) 0 0
\(25\) −2869.00 −0.918080
\(26\) 0 0
\(27\) 3680.00 0.971490
\(28\) 0 0
\(29\) −3982.00 −0.879238 −0.439619 0.898184i \(-0.644886\pi\)
−0.439619 + 0.898184i \(0.644886\pi\)
\(30\) 0 0
\(31\) 1568.00 0.293050 0.146525 0.989207i \(-0.453191\pi\)
0.146525 + 0.989207i \(0.453191\pi\)
\(32\) 0 0
\(33\) −1216.00 −0.194379
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 4938.00 0.592989 0.296495 0.955035i \(-0.404182\pi\)
0.296495 + 0.955035i \(0.404182\pi\)
\(38\) 0 0
\(39\) 14080.0 1.48232
\(40\) 0 0
\(41\) 15840.0 1.47162 0.735810 0.677188i \(-0.236802\pi\)
0.735810 + 0.677188i \(0.236802\pi\)
\(42\) 0 0
\(43\) 16412.0 1.35360 0.676800 0.736167i \(-0.263366\pi\)
0.676800 + 0.736167i \(0.263366\pi\)
\(44\) 0 0
\(45\) −208.000 −0.0153120
\(46\) 0 0
\(47\) −20768.0 −1.37136 −0.685678 0.727905i \(-0.740494\pi\)
−0.685678 + 0.727905i \(0.740494\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −16896.0 −0.909617
\(52\) 0 0
\(53\) −37402.0 −1.82896 −0.914482 0.404627i \(-0.867401\pi\)
−0.914482 + 0.404627i \(0.867401\pi\)
\(54\) 0 0
\(55\) −1216.00 −0.0542034
\(56\) 0 0
\(57\) −30976.0 −1.26281
\(58\) 0 0
\(59\) 21136.0 0.790483 0.395242 0.918577i \(-0.370661\pi\)
0.395242 + 0.918577i \(0.370661\pi\)
\(60\) 0 0
\(61\) 2992.00 0.102953 0.0514763 0.998674i \(-0.483607\pi\)
0.0514763 + 0.998674i \(0.483607\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 14080.0 0.413351
\(66\) 0 0
\(67\) 45836.0 1.24744 0.623720 0.781648i \(-0.285621\pi\)
0.623720 + 0.781648i \(0.285621\pi\)
\(68\) 0 0
\(69\) 14976.0 0.378681
\(70\) 0 0
\(71\) 49840.0 1.17336 0.586681 0.809818i \(-0.300434\pi\)
0.586681 + 0.809818i \(0.300434\pi\)
\(72\) 0 0
\(73\) 56320.0 1.23696 0.618480 0.785801i \(-0.287749\pi\)
0.618480 + 0.785801i \(0.287749\pi\)
\(74\) 0 0
\(75\) 45904.0 0.942318
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −40744.0 −0.734507 −0.367253 0.930121i \(-0.619702\pi\)
−0.367253 + 0.930121i \(0.619702\pi\)
\(80\) 0 0
\(81\) −62039.0 −1.05064
\(82\) 0 0
\(83\) 112464. 1.79192 0.895959 0.444136i \(-0.146489\pi\)
0.895959 + 0.444136i \(0.146489\pi\)
\(84\) 0 0
\(85\) −16896.0 −0.253651
\(86\) 0 0
\(87\) 63712.0 0.902450
\(88\) 0 0
\(89\) −64256.0 −0.859882 −0.429941 0.902857i \(-0.641466\pi\)
−0.429941 + 0.902857i \(0.641466\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −25088.0 −0.300787
\(94\) 0 0
\(95\) −30976.0 −0.352141
\(96\) 0 0
\(97\) 2272.00 0.0245177 0.0122588 0.999925i \(-0.496098\pi\)
0.0122588 + 0.999925i \(0.496098\pi\)
\(98\) 0 0
\(99\) 988.000 0.0101314
\(100\) 0 0
\(101\) 110000. 1.07297 0.536487 0.843909i \(-0.319751\pi\)
0.536487 + 0.843909i \(0.319751\pi\)
\(102\) 0 0
\(103\) −84128.0 −0.781353 −0.390677 0.920528i \(-0.627759\pi\)
−0.390677 + 0.920528i \(0.627759\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −13948.0 −0.117775 −0.0588874 0.998265i \(-0.518755\pi\)
−0.0588874 + 0.998265i \(0.518755\pi\)
\(108\) 0 0
\(109\) 22594.0 0.182149 0.0910745 0.995844i \(-0.470970\pi\)
0.0910745 + 0.995844i \(0.470970\pi\)
\(110\) 0 0
\(111\) −79008.0 −0.608644
\(112\) 0 0
\(113\) 94786.0 0.698310 0.349155 0.937065i \(-0.386469\pi\)
0.349155 + 0.937065i \(0.386469\pi\)
\(114\) 0 0
\(115\) 14976.0 0.105597
\(116\) 0 0
\(117\) −11440.0 −0.0772612
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −155275. −0.964136
\(122\) 0 0
\(123\) −253440. −1.51047
\(124\) 0 0
\(125\) 95904.0 0.548987
\(126\) 0 0
\(127\) −140624. −0.773660 −0.386830 0.922151i \(-0.626430\pi\)
−0.386830 + 0.922151i \(0.626430\pi\)
\(128\) 0 0
\(129\) −262592. −1.38934
\(130\) 0 0
\(131\) −242352. −1.23387 −0.616934 0.787015i \(-0.711625\pi\)
−0.616934 + 0.787015i \(0.711625\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −58880.0 −0.278057
\(136\) 0 0
\(137\) 172886. 0.786970 0.393485 0.919331i \(-0.371269\pi\)
0.393485 + 0.919331i \(0.371269\pi\)
\(138\) 0 0
\(139\) −167376. −0.734778 −0.367389 0.930067i \(-0.619748\pi\)
−0.367389 + 0.930067i \(0.619748\pi\)
\(140\) 0 0
\(141\) 332288. 1.40756
\(142\) 0 0
\(143\) −66880.0 −0.273499
\(144\) 0 0
\(145\) 63712.0 0.251652
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −404602. −1.49301 −0.746504 0.665381i \(-0.768269\pi\)
−0.746504 + 0.665381i \(0.768269\pi\)
\(150\) 0 0
\(151\) −445192. −1.58893 −0.794465 0.607309i \(-0.792249\pi\)
−0.794465 + 0.607309i \(0.792249\pi\)
\(152\) 0 0
\(153\) 13728.0 0.0474110
\(154\) 0 0
\(155\) −25088.0 −0.0838758
\(156\) 0 0
\(157\) 172496. 0.558509 0.279254 0.960217i \(-0.409913\pi\)
0.279254 + 0.960217i \(0.409913\pi\)
\(158\) 0 0
\(159\) 598432. 1.87725
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −167484. −0.493747 −0.246873 0.969048i \(-0.579403\pi\)
−0.246873 + 0.969048i \(0.579403\pi\)
\(164\) 0 0
\(165\) 19456.0 0.0556344
\(166\) 0 0
\(167\) 206624. 0.573310 0.286655 0.958034i \(-0.407457\pi\)
0.286655 + 0.958034i \(0.407457\pi\)
\(168\) 0 0
\(169\) 403107. 1.08568
\(170\) 0 0
\(171\) 25168.0 0.0658201
\(172\) 0 0
\(173\) 339856. 0.863336 0.431668 0.902033i \(-0.357925\pi\)
0.431668 + 0.902033i \(0.357925\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −338176. −0.811353
\(178\) 0 0
\(179\) −519540. −1.21195 −0.605977 0.795482i \(-0.707218\pi\)
−0.605977 + 0.795482i \(0.707218\pi\)
\(180\) 0 0
\(181\) −830000. −1.88314 −0.941568 0.336823i \(-0.890648\pi\)
−0.941568 + 0.336823i \(0.890648\pi\)
\(182\) 0 0
\(183\) −47872.0 −0.105671
\(184\) 0 0
\(185\) −79008.0 −0.169723
\(186\) 0 0
\(187\) 80256.0 0.167832
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −301608. −0.598218 −0.299109 0.954219i \(-0.596689\pi\)
−0.299109 + 0.954219i \(0.596689\pi\)
\(192\) 0 0
\(193\) −484462. −0.936195 −0.468098 0.883677i \(-0.655060\pi\)
−0.468098 + 0.883677i \(0.655060\pi\)
\(194\) 0 0
\(195\) −225280. −0.424264
\(196\) 0 0
\(197\) −183018. −0.335991 −0.167996 0.985788i \(-0.553729\pi\)
−0.167996 + 0.985788i \(0.553729\pi\)
\(198\) 0 0
\(199\) −904288. −1.61873 −0.809364 0.587307i \(-0.800188\pi\)
−0.809364 + 0.587307i \(0.800188\pi\)
\(200\) 0 0
\(201\) −733376. −1.28037
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −253440. −0.421202
\(206\) 0 0
\(207\) −12168.0 −0.0197376
\(208\) 0 0
\(209\) 147136. 0.232999
\(210\) 0 0
\(211\) 494428. 0.764534 0.382267 0.924052i \(-0.375143\pi\)
0.382267 + 0.924052i \(0.375143\pi\)
\(212\) 0 0
\(213\) −797440. −1.20434
\(214\) 0 0
\(215\) −262592. −0.387423
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −901120. −1.26962
\(220\) 0 0
\(221\) −929280. −1.27987
\(222\) 0 0
\(223\) −389824. −0.524936 −0.262468 0.964941i \(-0.584536\pi\)
−0.262468 + 0.964941i \(0.584536\pi\)
\(224\) 0 0
\(225\) −37297.0 −0.0491154
\(226\) 0 0
\(227\) −79024.0 −0.101787 −0.0508937 0.998704i \(-0.516207\pi\)
−0.0508937 + 0.998704i \(0.516207\pi\)
\(228\) 0 0
\(229\) 1.25979e6 1.58749 0.793743 0.608253i \(-0.208129\pi\)
0.793743 + 0.608253i \(0.208129\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −772618. −0.932342 −0.466171 0.884695i \(-0.654367\pi\)
−0.466171 + 0.884695i \(0.654367\pi\)
\(234\) 0 0
\(235\) 332288. 0.392505
\(236\) 0 0
\(237\) 651904. 0.753898
\(238\) 0 0
\(239\) 1.42507e6 1.61377 0.806886 0.590707i \(-0.201151\pi\)
0.806886 + 0.590707i \(0.201151\pi\)
\(240\) 0 0
\(241\) −1.14858e6 −1.27385 −0.636923 0.770927i \(-0.719793\pi\)
−0.636923 + 0.770927i \(0.719793\pi\)
\(242\) 0 0
\(243\) 98384.0 0.106883
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −1.70368e6 −1.77683
\(248\) 0 0
\(249\) −1.79942e6 −1.83923
\(250\) 0 0
\(251\) −278096. −0.278619 −0.139309 0.990249i \(-0.544488\pi\)
−0.139309 + 0.990249i \(0.544488\pi\)
\(252\) 0 0
\(253\) −71136.0 −0.0698696
\(254\) 0 0
\(255\) 270336. 0.260348
\(256\) 0 0
\(257\) −357632. −0.337756 −0.168878 0.985637i \(-0.554014\pi\)
−0.168878 + 0.985637i \(0.554014\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −51766.0 −0.0470374
\(262\) 0 0
\(263\) 84832.0 0.0756259 0.0378129 0.999285i \(-0.487961\pi\)
0.0378129 + 0.999285i \(0.487961\pi\)
\(264\) 0 0
\(265\) 598432. 0.523480
\(266\) 0 0
\(267\) 1.02810e6 0.882583
\(268\) 0 0
\(269\) 2.19771e6 1.85178 0.925891 0.377790i \(-0.123316\pi\)
0.925891 + 0.377790i \(0.123316\pi\)
\(270\) 0 0
\(271\) −475904. −0.393637 −0.196819 0.980440i \(-0.563061\pi\)
−0.196819 + 0.980440i \(0.563061\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −218044. −0.173865
\(276\) 0 0
\(277\) −1.59401e6 −1.24822 −0.624111 0.781336i \(-0.714539\pi\)
−0.624111 + 0.781336i \(0.714539\pi\)
\(278\) 0 0
\(279\) 20384.0 0.0156776
\(280\) 0 0
\(281\) −1.31558e6 −0.993919 −0.496959 0.867774i \(-0.665550\pi\)
−0.496959 + 0.867774i \(0.665550\pi\)
\(282\) 0 0
\(283\) 1.00866e6 0.748647 0.374323 0.927298i \(-0.377875\pi\)
0.374323 + 0.927298i \(0.377875\pi\)
\(284\) 0 0
\(285\) 495616. 0.361437
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −304721. −0.214614
\(290\) 0 0
\(291\) −36352.0 −0.0251649
\(292\) 0 0
\(293\) −2.05762e6 −1.40022 −0.700108 0.714037i \(-0.746865\pi\)
−0.700108 + 0.714037i \(0.746865\pi\)
\(294\) 0 0
\(295\) −338176. −0.226250
\(296\) 0 0
\(297\) 279680. 0.183980
\(298\) 0 0
\(299\) 823680. 0.532820
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −1.76000e6 −1.10130
\(304\) 0 0
\(305\) −47872.0 −0.0294667
\(306\) 0 0
\(307\) 2.07099e6 1.25410 0.627050 0.778979i \(-0.284262\pi\)
0.627050 + 0.778979i \(0.284262\pi\)
\(308\) 0 0
\(309\) 1.34605e6 0.801981
\(310\) 0 0
\(311\) 953216. 0.558844 0.279422 0.960168i \(-0.409857\pi\)
0.279422 + 0.960168i \(0.409857\pi\)
\(312\) 0 0
\(313\) −2.85840e6 −1.64916 −0.824579 0.565747i \(-0.808588\pi\)
−0.824579 + 0.565747i \(0.808588\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −1.98760e6 −1.11092 −0.555458 0.831545i \(-0.687457\pi\)
−0.555458 + 0.831545i \(0.687457\pi\)
\(318\) 0 0
\(319\) −302632. −0.166509
\(320\) 0 0
\(321\) 223168. 0.120884
\(322\) 0 0
\(323\) 2.04442e6 1.09034
\(324\) 0 0
\(325\) 2.52472e6 1.32588
\(326\) 0 0
\(327\) −361504. −0.186958
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −394580. −0.197954 −0.0989772 0.995090i \(-0.531557\pi\)
−0.0989772 + 0.995090i \(0.531557\pi\)
\(332\) 0 0
\(333\) 64194.0 0.0317237
\(334\) 0 0
\(335\) −733376. −0.357038
\(336\) 0 0
\(337\) 2.19606e6 1.05334 0.526672 0.850069i \(-0.323440\pi\)
0.526672 + 0.850069i \(0.323440\pi\)
\(338\) 0 0
\(339\) −1.51658e6 −0.716745
\(340\) 0 0
\(341\) 119168. 0.0554975
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −239616. −0.108385
\(346\) 0 0
\(347\) −4.02719e6 −1.79547 −0.897735 0.440536i \(-0.854789\pi\)
−0.897735 + 0.440536i \(0.854789\pi\)
\(348\) 0 0
\(349\) 1.96469e6 0.863436 0.431718 0.902009i \(-0.357908\pi\)
0.431718 + 0.902009i \(0.357908\pi\)
\(350\) 0 0
\(351\) −3.23840e6 −1.40302
\(352\) 0 0
\(353\) −3.34522e6 −1.42885 −0.714426 0.699711i \(-0.753312\pi\)
−0.714426 + 0.699711i \(0.753312\pi\)
\(354\) 0 0
\(355\) −797440. −0.335836
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.29513e6 0.939876 0.469938 0.882699i \(-0.344276\pi\)
0.469938 + 0.882699i \(0.344276\pi\)
\(360\) 0 0
\(361\) 1.27200e6 0.513710
\(362\) 0 0
\(363\) 2.48440e6 0.989589
\(364\) 0 0
\(365\) −901120. −0.354038
\(366\) 0 0
\(367\) 2.93869e6 1.13891 0.569454 0.822023i \(-0.307155\pi\)
0.569454 + 0.822023i \(0.307155\pi\)
\(368\) 0 0
\(369\) 205920. 0.0787286
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −414458. −0.154244 −0.0771220 0.997022i \(-0.524573\pi\)
−0.0771220 + 0.997022i \(0.524573\pi\)
\(374\) 0 0
\(375\) −1.53446e6 −0.563480
\(376\) 0 0
\(377\) 3.50416e6 1.26979
\(378\) 0 0
\(379\) −2.57111e6 −0.919438 −0.459719 0.888065i \(-0.652050\pi\)
−0.459719 + 0.888065i \(0.652050\pi\)
\(380\) 0 0
\(381\) 2.24998e6 0.794085
\(382\) 0 0
\(383\) −2.56733e6 −0.894302 −0.447151 0.894458i \(-0.647561\pi\)
−0.447151 + 0.894458i \(0.647561\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 213356. 0.0724148
\(388\) 0 0
\(389\) 3.37809e6 1.13187 0.565936 0.824449i \(-0.308515\pi\)
0.565936 + 0.824449i \(0.308515\pi\)
\(390\) 0 0
\(391\) −988416. −0.326962
\(392\) 0 0
\(393\) 3.87763e6 1.26644
\(394\) 0 0
\(395\) 651904. 0.210228
\(396\) 0 0
\(397\) 2.19771e6 0.699833 0.349917 0.936781i \(-0.386210\pi\)
0.349917 + 0.936781i \(0.386210\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −3.47671e6 −1.07971 −0.539855 0.841758i \(-0.681521\pi\)
−0.539855 + 0.841758i \(0.681521\pi\)
\(402\) 0 0
\(403\) −1.37984e6 −0.423220
\(404\) 0 0
\(405\) 992624. 0.300710
\(406\) 0 0
\(407\) 375288. 0.112300
\(408\) 0 0
\(409\) 1.68432e6 0.497870 0.248935 0.968520i \(-0.419919\pi\)
0.248935 + 0.968520i \(0.419919\pi\)
\(410\) 0 0
\(411\) −2.76618e6 −0.807747
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −1.79942e6 −0.512877
\(416\) 0 0
\(417\) 2.67802e6 0.754177
\(418\) 0 0
\(419\) −4.40475e6 −1.22571 −0.612853 0.790197i \(-0.709978\pi\)
−0.612853 + 0.790197i \(0.709978\pi\)
\(420\) 0 0
\(421\) 3.06601e6 0.843078 0.421539 0.906810i \(-0.361490\pi\)
0.421539 + 0.906810i \(0.361490\pi\)
\(422\) 0 0
\(423\) −269984. −0.0733647
\(424\) 0 0
\(425\) −3.02966e6 −0.813621
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 1.07008e6 0.280720
\(430\) 0 0
\(431\) −1.32035e6 −0.342371 −0.171185 0.985239i \(-0.554760\pi\)
−0.171185 + 0.985239i \(0.554760\pi\)
\(432\) 0 0
\(433\) −2.91510e6 −0.747196 −0.373598 0.927591i \(-0.621876\pi\)
−0.373598 + 0.927591i \(0.621876\pi\)
\(434\) 0 0
\(435\) −1.01939e6 −0.258296
\(436\) 0 0
\(437\) −1.81210e6 −0.453918
\(438\) 0 0
\(439\) 7.06253e6 1.74904 0.874518 0.484993i \(-0.161178\pi\)
0.874518 + 0.484993i \(0.161178\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 7.73812e6 1.87338 0.936690 0.350160i \(-0.113873\pi\)
0.936690 + 0.350160i \(0.113873\pi\)
\(444\) 0 0
\(445\) 1.02810e6 0.246112
\(446\) 0 0
\(447\) 6.47363e6 1.53242
\(448\) 0 0
\(449\) −5.62457e6 −1.31666 −0.658330 0.752729i \(-0.728737\pi\)
−0.658330 + 0.752729i \(0.728737\pi\)
\(450\) 0 0
\(451\) 1.20384e6 0.278694
\(452\) 0 0
\(453\) 7.12307e6 1.63088
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 5.91516e6 1.32488 0.662439 0.749116i \(-0.269521\pi\)
0.662439 + 0.749116i \(0.269521\pi\)
\(458\) 0 0
\(459\) 3.88608e6 0.860954
\(460\) 0 0
\(461\) −7.21195e6 −1.58052 −0.790261 0.612770i \(-0.790055\pi\)
−0.790261 + 0.612770i \(0.790055\pi\)
\(462\) 0 0
\(463\) −5.22092e6 −1.13186 −0.565932 0.824452i \(-0.691484\pi\)
−0.565932 + 0.824452i \(0.691484\pi\)
\(464\) 0 0
\(465\) 401408. 0.0860902
\(466\) 0 0
\(467\) 5.81538e6 1.23392 0.616958 0.786996i \(-0.288365\pi\)
0.616958 + 0.786996i \(0.288365\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) −2.75994e6 −0.573254
\(472\) 0 0
\(473\) 1.24731e6 0.256343
\(474\) 0 0
\(475\) −5.55438e6 −1.12954
\(476\) 0 0
\(477\) −486226. −0.0978458
\(478\) 0 0
\(479\) −7.53878e6 −1.50128 −0.750641 0.660710i \(-0.770255\pi\)
−0.750641 + 0.660710i \(0.770255\pi\)
\(480\) 0 0
\(481\) −4.34544e6 −0.856389
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −36352.0 −0.00701736
\(486\) 0 0
\(487\) 6.59660e6 1.26037 0.630185 0.776445i \(-0.282979\pi\)
0.630185 + 0.776445i \(0.282979\pi\)
\(488\) 0 0
\(489\) 2.67974e6 0.506782
\(490\) 0 0
\(491\) 9.96666e6 1.86572 0.932859 0.360242i \(-0.117306\pi\)
0.932859 + 0.360242i \(0.117306\pi\)
\(492\) 0 0
\(493\) −4.20499e6 −0.779198
\(494\) 0 0
\(495\) −15808.0 −0.00289977
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 2.94270e6 0.529047 0.264524 0.964379i \(-0.414785\pi\)
0.264524 + 0.964379i \(0.414785\pi\)
\(500\) 0 0
\(501\) −3.30598e6 −0.588446
\(502\) 0 0
\(503\) 4.35142e6 0.766852 0.383426 0.923572i \(-0.374744\pi\)
0.383426 + 0.923572i \(0.374744\pi\)
\(504\) 0 0
\(505\) −1.76000e6 −0.307103
\(506\) 0 0
\(507\) −6.44971e6 −1.11435
\(508\) 0 0
\(509\) −5.18494e6 −0.887053 −0.443527 0.896261i \(-0.646273\pi\)
−0.443527 + 0.896261i \(0.646273\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 7.12448e6 1.19525
\(514\) 0 0
\(515\) 1.34605e6 0.223636
\(516\) 0 0
\(517\) −1.57837e6 −0.259706
\(518\) 0 0
\(519\) −5.43770e6 −0.886128
\(520\) 0 0
\(521\) −7.41680e6 −1.19708 −0.598539 0.801094i \(-0.704252\pi\)
−0.598539 + 0.801094i \(0.704252\pi\)
\(522\) 0 0
\(523\) −6.47346e6 −1.03486 −0.517430 0.855725i \(-0.673111\pi\)
−0.517430 + 0.855725i \(0.673111\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 1.65581e6 0.259707
\(528\) 0 0
\(529\) −5.56025e6 −0.863883
\(530\) 0 0
\(531\) 274768. 0.0422892
\(532\) 0 0
\(533\) −1.39392e7 −2.12530
\(534\) 0 0
\(535\) 223168. 0.0337091
\(536\) 0 0
\(537\) 8.31264e6 1.24395
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 9.10987e6 1.33819 0.669097 0.743175i \(-0.266681\pi\)
0.669097 + 0.743175i \(0.266681\pi\)
\(542\) 0 0
\(543\) 1.32800e7 1.93285
\(544\) 0 0
\(545\) −361504. −0.0521341
\(546\) 0 0
\(547\) 5.63776e6 0.805635 0.402818 0.915280i \(-0.368031\pi\)
0.402818 + 0.915280i \(0.368031\pi\)
\(548\) 0 0
\(549\) 38896.0 0.00550775
\(550\) 0 0
\(551\) −7.70915e6 −1.08175
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 1.26413e6 0.174204
\(556\) 0 0
\(557\) 3.71072e6 0.506781 0.253390 0.967364i \(-0.418454\pi\)
0.253390 + 0.967364i \(0.418454\pi\)
\(558\) 0 0
\(559\) −1.44426e7 −1.95486
\(560\) 0 0
\(561\) −1.28410e6 −0.172262
\(562\) 0 0
\(563\) 5.26117e6 0.699538 0.349769 0.936836i \(-0.386260\pi\)
0.349769 + 0.936836i \(0.386260\pi\)
\(564\) 0 0
\(565\) −1.51658e6 −0.199868
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −2.80929e6 −0.363761 −0.181880 0.983321i \(-0.558218\pi\)
−0.181880 + 0.983321i \(0.558218\pi\)
\(570\) 0 0
\(571\) 8.19707e6 1.05213 0.526064 0.850445i \(-0.323667\pi\)
0.526064 + 0.850445i \(0.323667\pi\)
\(572\) 0 0
\(573\) 4.82573e6 0.614011
\(574\) 0 0
\(575\) 2.68538e6 0.338717
\(576\) 0 0
\(577\) 3.69722e6 0.462312 0.231156 0.972917i \(-0.425749\pi\)
0.231156 + 0.972917i \(0.425749\pi\)
\(578\) 0 0
\(579\) 7.75139e6 0.960911
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −2.84255e6 −0.346367
\(584\) 0 0
\(585\) 183040. 0.0221134
\(586\) 0 0
\(587\) −8.25282e6 −0.988569 −0.494284 0.869300i \(-0.664570\pi\)
−0.494284 + 0.869300i \(0.664570\pi\)
\(588\) 0 0
\(589\) 3.03565e6 0.360548
\(590\) 0 0
\(591\) 2.92829e6 0.344862
\(592\) 0 0
\(593\) 6.31277e6 0.737196 0.368598 0.929589i \(-0.379838\pi\)
0.368598 + 0.929589i \(0.379838\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.44686e7 1.66146
\(598\) 0 0
\(599\) 6.92976e6 0.789135 0.394567 0.918867i \(-0.370894\pi\)
0.394567 + 0.918867i \(0.370894\pi\)
\(600\) 0 0
\(601\) −1.10092e7 −1.24328 −0.621638 0.783305i \(-0.713533\pi\)
−0.621638 + 0.783305i \(0.713533\pi\)
\(602\) 0 0
\(603\) 595868. 0.0667355
\(604\) 0 0
\(605\) 2.48440e6 0.275952
\(606\) 0 0
\(607\) −333696. −0.0367603 −0.0183802 0.999831i \(-0.505851\pi\)
−0.0183802 + 0.999831i \(0.505851\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 1.82758e7 1.98050
\(612\) 0 0
\(613\) 1.75927e6 0.189096 0.0945480 0.995520i \(-0.469859\pi\)
0.0945480 + 0.995520i \(0.469859\pi\)
\(614\) 0 0
\(615\) 4.05504e6 0.432322
\(616\) 0 0
\(617\) −1.46142e7 −1.54548 −0.772738 0.634725i \(-0.781113\pi\)
−0.772738 + 0.634725i \(0.781113\pi\)
\(618\) 0 0
\(619\) −2.31544e6 −0.242888 −0.121444 0.992598i \(-0.538753\pi\)
−0.121444 + 0.992598i \(0.538753\pi\)
\(620\) 0 0
\(621\) −3.44448e6 −0.358422
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7.43116e6 0.760951
\(626\) 0 0
\(627\) −2.35418e6 −0.239150
\(628\) 0 0
\(629\) 5.21453e6 0.525519
\(630\) 0 0
\(631\) −1.47152e7 −1.47127 −0.735636 0.677377i \(-0.763117\pi\)
−0.735636 + 0.677377i \(0.763117\pi\)
\(632\) 0 0
\(633\) −7.91085e6 −0.784718
\(634\) 0 0
\(635\) 2.24998e6 0.221434
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 647920. 0.0627725
\(640\) 0 0
\(641\) 1.07555e7 1.03392 0.516958 0.856011i \(-0.327064\pi\)
0.516958 + 0.856011i \(0.327064\pi\)
\(642\) 0 0
\(643\) 1.81097e7 1.72736 0.863681 0.504039i \(-0.168153\pi\)
0.863681 + 0.504039i \(0.168153\pi\)
\(644\) 0 0
\(645\) 4.20147e6 0.397651
\(646\) 0 0
\(647\) 3.87677e6 0.364090 0.182045 0.983290i \(-0.441728\pi\)
0.182045 + 0.983290i \(0.441728\pi\)
\(648\) 0 0
\(649\) 1.60634e6 0.149701
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −5.82557e6 −0.534632 −0.267316 0.963609i \(-0.586137\pi\)
−0.267316 + 0.963609i \(0.586137\pi\)
\(654\) 0 0
\(655\) 3.87763e6 0.353153
\(656\) 0 0
\(657\) 732160. 0.0661748
\(658\) 0 0
\(659\) 6.46989e6 0.580341 0.290171 0.956975i \(-0.406288\pi\)
0.290171 + 0.956975i \(0.406288\pi\)
\(660\) 0 0
\(661\) 4.18002e6 0.372113 0.186056 0.982539i \(-0.440429\pi\)
0.186056 + 0.982539i \(0.440429\pi\)
\(662\) 0 0
\(663\) 1.48685e7 1.31366
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 3.72715e6 0.324386
\(668\) 0 0
\(669\) 6.23718e6 0.538795
\(670\) 0 0
\(671\) 227392. 0.0194970
\(672\) 0 0
\(673\) 1.27159e7 1.08221 0.541104 0.840956i \(-0.318007\pi\)
0.541104 + 0.840956i \(0.318007\pi\)
\(674\) 0 0
\(675\) −1.05579e7 −0.891906
\(676\) 0 0
\(677\) −1.18710e7 −0.995443 −0.497722 0.867337i \(-0.665830\pi\)
−0.497722 + 0.867337i \(0.665830\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 1.26438e6 0.104475
\(682\) 0 0
\(683\) −1.39978e7 −1.14817 −0.574087 0.818794i \(-0.694643\pi\)
−0.574087 + 0.818794i \(0.694643\pi\)
\(684\) 0 0
\(685\) −2.76618e6 −0.225244
\(686\) 0 0
\(687\) −2.01567e7 −1.62940
\(688\) 0 0
\(689\) 3.29138e7 2.64137
\(690\) 0 0
\(691\) −9.80037e6 −0.780813 −0.390407 0.920642i \(-0.627666\pi\)
−0.390407 + 0.920642i \(0.627666\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 2.67802e6 0.210306
\(696\) 0 0
\(697\) 1.67270e7 1.30418
\(698\) 0 0
\(699\) 1.23619e7 0.956956
\(700\) 0 0
\(701\) −1.80481e6 −0.138719 −0.0693597 0.997592i \(-0.522096\pi\)
−0.0693597 + 0.997592i \(0.522096\pi\)
\(702\) 0 0
\(703\) 9.55997e6 0.729572
\(704\) 0 0
\(705\) −5.31661e6 −0.402867
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −6.47404e6 −0.483682 −0.241841 0.970316i \(-0.577751\pi\)
−0.241841 + 0.970316i \(0.577751\pi\)
\(710\) 0 0
\(711\) −529672. −0.0392946
\(712\) 0 0
\(713\) −1.46765e6 −0.108118
\(714\) 0 0
\(715\) 1.07008e6 0.0782801
\(716\) 0 0
\(717\) −2.28012e7 −1.65638
\(718\) 0 0
\(719\) −2.34064e7 −1.68855 −0.844273 0.535913i \(-0.819967\pi\)
−0.844273 + 0.535913i \(0.819967\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 1.83772e7 1.30748
\(724\) 0 0
\(725\) 1.14244e7 0.807210
\(726\) 0 0
\(727\) −491936. −0.0345201 −0.0172601 0.999851i \(-0.505494\pi\)
−0.0172601 + 0.999851i \(0.505494\pi\)
\(728\) 0 0
\(729\) 1.35013e7 0.940931
\(730\) 0 0
\(731\) 1.73311e7 1.19959
\(732\) 0 0
\(733\) −7.86421e6 −0.540624 −0.270312 0.962773i \(-0.587127\pi\)
−0.270312 + 0.962773i \(0.587127\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.48354e6 0.236239
\(738\) 0 0
\(739\) −6.92547e6 −0.466485 −0.233243 0.972419i \(-0.574934\pi\)
−0.233243 + 0.972419i \(0.574934\pi\)
\(740\) 0 0
\(741\) 2.72589e7 1.82374
\(742\) 0 0
\(743\) −1.59306e7 −1.05867 −0.529333 0.848414i \(-0.677558\pi\)
−0.529333 + 0.848414i \(0.677558\pi\)
\(744\) 0 0
\(745\) 6.47363e6 0.427324
\(746\) 0 0
\(747\) 1.46203e6 0.0958640
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.00152e7 −0.647980 −0.323990 0.946060i \(-0.605024\pi\)
−0.323990 + 0.946060i \(0.605024\pi\)
\(752\) 0 0
\(753\) 4.44954e6 0.285974
\(754\) 0 0
\(755\) 7.12307e6 0.454779
\(756\) 0 0
\(757\) 3.79619e6 0.240773 0.120387 0.992727i \(-0.461587\pi\)
0.120387 + 0.992727i \(0.461587\pi\)
\(758\) 0 0
\(759\) 1.13818e6 0.0717142
\(760\) 0 0
\(761\) 1.03484e7 0.647759 0.323880 0.946098i \(-0.395013\pi\)
0.323880 + 0.946098i \(0.395013\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −219648. −0.0135698
\(766\) 0 0
\(767\) −1.85997e7 −1.14161
\(768\) 0 0
\(769\) 1.51131e7 0.921591 0.460796 0.887506i \(-0.347564\pi\)
0.460796 + 0.887506i \(0.347564\pi\)
\(770\) 0 0
\(771\) 5.72211e6 0.346673
\(772\) 0 0
\(773\) 5.66174e6 0.340801 0.170401 0.985375i \(-0.445494\pi\)
0.170401 + 0.985375i \(0.445494\pi\)
\(774\) 0 0
\(775\) −4.49859e6 −0.269043
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 3.06662e7 1.81058
\(780\) 0 0
\(781\) 3.78784e6 0.222210
\(782\) 0 0
\(783\) −1.46538e7 −0.854171
\(784\) 0 0
\(785\) −2.75994e6 −0.159855
\(786\) 0 0
\(787\) −1.73483e6 −0.0998437 −0.0499218 0.998753i \(-0.515897\pi\)
−0.0499218 + 0.998753i \(0.515897\pi\)
\(788\) 0 0
\(789\) −1.35731e6 −0.0776224
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −2.63296e6 −0.148683
\(794\) 0 0
\(795\) −9.57491e6 −0.537300
\(796\) 0 0
\(797\) −4.96709e6 −0.276985 −0.138492 0.990363i \(-0.544226\pi\)
−0.138492 + 0.990363i \(0.544226\pi\)
\(798\) 0 0
\(799\) −2.19310e7 −1.21532
\(800\) 0 0
\(801\) −835328. −0.0460019
\(802\) 0 0
\(803\) 4.28032e6 0.234254
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −3.51634e7 −1.90067
\(808\) 0 0
\(809\) −1.66238e7 −0.893013 −0.446506 0.894780i \(-0.647332\pi\)
−0.446506 + 0.894780i \(0.647332\pi\)
\(810\) 0 0
\(811\) −1.67695e7 −0.895296 −0.447648 0.894210i \(-0.647738\pi\)
−0.447648 + 0.894210i \(0.647738\pi\)
\(812\) 0 0
\(813\) 7.61446e6 0.404029
\(814\) 0 0
\(815\) 2.67974e6 0.141319
\(816\) 0 0
\(817\) 3.17736e7 1.66537
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.34150e6 −0.431903 −0.215951 0.976404i \(-0.569285\pi\)
−0.215951 + 0.976404i \(0.569285\pi\)
\(822\) 0 0
\(823\) 2.06990e7 1.06524 0.532622 0.846353i \(-0.321207\pi\)
0.532622 + 0.846353i \(0.321207\pi\)
\(824\) 0 0
\(825\) 3.48870e6 0.178455
\(826\) 0 0
\(827\) 3.25524e7 1.65508 0.827540 0.561407i \(-0.189740\pi\)
0.827540 + 0.561407i \(0.189740\pi\)
\(828\) 0 0
\(829\) −1.64645e7 −0.832073 −0.416036 0.909348i \(-0.636581\pi\)
−0.416036 + 0.909348i \(0.636581\pi\)
\(830\) 0 0
\(831\) 2.55042e7 1.28118
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −3.30598e6 −0.164091
\(836\) 0 0
\(837\) 5.77024e6 0.284695
\(838\) 0 0
\(839\) 2.16446e7 1.06156 0.530781 0.847509i \(-0.321899\pi\)
0.530781 + 0.847509i \(0.321899\pi\)
\(840\) 0 0
\(841\) −4.65482e6 −0.226941
\(842\) 0 0
\(843\) 2.10492e7 1.02016
\(844\) 0 0
\(845\) −6.44971e6 −0.310741
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −1.61385e7 −0.768411
\(850\) 0 0
\(851\) −4.62197e6 −0.218778
\(852\) 0 0
\(853\) −2.02592e7 −0.953343 −0.476672 0.879081i \(-0.658157\pi\)
−0.476672 + 0.879081i \(0.658157\pi\)
\(854\) 0 0
\(855\) −402688. −0.0188388
\(856\) 0 0
\(857\) 1.94758e7 0.905823 0.452912 0.891555i \(-0.350385\pi\)
0.452912 + 0.891555i \(0.350385\pi\)
\(858\) 0 0
\(859\) −8.66203e6 −0.400532 −0.200266 0.979742i \(-0.564181\pi\)
−0.200266 + 0.979742i \(0.564181\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −1.55956e7 −0.712810 −0.356405 0.934332i \(-0.615998\pi\)
−0.356405 + 0.934332i \(0.615998\pi\)
\(864\) 0 0
\(865\) −5.43770e6 −0.247101
\(866\) 0 0
\(867\) 4.87554e6 0.220280
\(868\) 0 0
\(869\) −3.09654e6 −0.139100
\(870\) 0 0
\(871\) −4.03357e7 −1.80154
\(872\) 0 0
\(873\) 29536.0 0.00131164
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 9.44599e6 0.414714 0.207357 0.978265i \(-0.433514\pi\)
0.207357 + 0.978265i \(0.433514\pi\)
\(878\) 0 0
\(879\) 3.29219e7 1.43718
\(880\) 0 0
\(881\) −2.57866e7 −1.11932 −0.559661 0.828722i \(-0.689068\pi\)
−0.559661 + 0.828722i \(0.689068\pi\)
\(882\) 0 0
\(883\) 3.33298e7 1.43857 0.719284 0.694716i \(-0.244470\pi\)
0.719284 + 0.694716i \(0.244470\pi\)
\(884\) 0 0
\(885\) 5.41082e6 0.232223
\(886\) 0 0
\(887\) 9.27907e6 0.396000 0.198000 0.980202i \(-0.436555\pi\)
0.198000 + 0.980202i \(0.436555\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −4.71496e6 −0.198968
\(892\) 0 0
\(893\) −4.02068e7 −1.68722
\(894\) 0 0
\(895\) 8.31264e6 0.346882
\(896\) 0 0
\(897\) −1.31789e7 −0.546887
\(898\) 0 0
\(899\) −6.24378e6 −0.257661
\(900\) 0 0
\(901\) −3.94965e7 −1.62086
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 1.32800e7 0.538985
\(906\) 0 0
\(907\) −2.02398e7 −0.816934 −0.408467 0.912773i \(-0.633937\pi\)
−0.408467 + 0.912773i \(0.633937\pi\)
\(908\) 0 0
\(909\) 1.43000e6 0.0574019
\(910\) 0 0
\(911\) −1.26979e7 −0.506917 −0.253459 0.967346i \(-0.581568\pi\)
−0.253459 + 0.967346i \(0.581568\pi\)
\(912\) 0 0
\(913\) 8.54726e6 0.339352
\(914\) 0 0
\(915\) 765952. 0.0302447
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −1.51393e7 −0.591314 −0.295657 0.955294i \(-0.595539\pi\)
−0.295657 + 0.955294i \(0.595539\pi\)
\(920\) 0 0
\(921\) −3.31359e7 −1.28721
\(922\) 0 0
\(923\) −4.38592e7 −1.69456
\(924\) 0 0
\(925\) −1.41671e7 −0.544412
\(926\) 0 0
\(927\) −1.09366e6 −0.0418008
\(928\) 0 0
\(929\) −8.15971e6 −0.310196 −0.155098 0.987899i \(-0.549569\pi\)
−0.155098 + 0.987899i \(0.549569\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −1.52515e7 −0.573597
\(934\) 0 0
\(935\) −1.28410e6 −0.0480362
\(936\) 0 0
\(937\) −2.65647e7 −0.988454 −0.494227 0.869333i \(-0.664549\pi\)
−0.494227 + 0.869333i \(0.664549\pi\)
\(938\) 0 0
\(939\) 4.57344e7 1.69270
\(940\) 0 0
\(941\) −3.90535e7 −1.43776 −0.718880 0.695135i \(-0.755345\pi\)
−0.718880 + 0.695135i \(0.755345\pi\)
\(942\) 0 0
\(943\) −1.48262e7 −0.542940
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.83971e7 −1.39131 −0.695655 0.718376i \(-0.744886\pi\)
−0.695655 + 0.718376i \(0.744886\pi\)
\(948\) 0 0
\(949\) −4.95616e7 −1.78640
\(950\) 0 0
\(951\) 3.18016e7 1.14024
\(952\) 0 0
\(953\) −2.78487e6 −0.0993282 −0.0496641 0.998766i \(-0.515815\pi\)
−0.0496641 + 0.998766i \(0.515815\pi\)
\(954\) 0 0
\(955\) 4.82573e6 0.171220
\(956\) 0 0
\(957\) 4.84211e6 0.170905
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −2.61705e7 −0.914122
\(962\) 0 0
\(963\) −181324. −0.00630071
\(964\) 0 0
\(965\) 7.75139e6 0.267955
\(966\) 0 0
\(967\) 7.71822e6 0.265430 0.132715 0.991154i \(-0.457630\pi\)
0.132715 + 0.991154i \(0.457630\pi\)
\(968\) 0 0
\(969\) −3.27107e7 −1.11913
\(970\) 0 0
\(971\) −2.19732e7 −0.747904 −0.373952 0.927448i \(-0.621998\pi\)
−0.373952 + 0.927448i \(0.621998\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −4.03955e7 −1.36089
\(976\) 0 0
\(977\) −1.08137e7 −0.362442 −0.181221 0.983442i \(-0.558005\pi\)
−0.181221 + 0.983442i \(0.558005\pi\)
\(978\) 0 0
\(979\) −4.88346e6 −0.162844
\(980\) 0 0
\(981\) 293722. 0.00974460
\(982\) 0 0
\(983\) −3.71136e7 −1.22504 −0.612519 0.790456i \(-0.709844\pi\)
−0.612519 + 0.790456i \(0.709844\pi\)
\(984\) 0 0
\(985\) 2.92829e6 0.0961664
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.53616e7 −0.499398
\(990\) 0 0
\(991\) 1.19036e7 0.385030 0.192515 0.981294i \(-0.438336\pi\)
0.192515 + 0.981294i \(0.438336\pi\)
\(992\) 0 0
\(993\) 6.31328e6 0.203180
\(994\) 0 0
\(995\) 1.44686e7 0.463307
\(996\) 0 0
\(997\) 164912. 0.00525429 0.00262715 0.999997i \(-0.499164\pi\)
0.00262715 + 0.999997i \(0.499164\pi\)
\(998\) 0 0
\(999\) 1.81718e7 0.576083
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.6.a.b.1.1 1
4.3 odd 2 196.6.a.f.1.1 yes 1
7.6 odd 2 784.6.a.j.1.1 1
28.3 even 6 196.6.e.h.177.1 2
28.11 odd 6 196.6.e.c.177.1 2
28.19 even 6 196.6.e.h.165.1 2
28.23 odd 6 196.6.e.c.165.1 2
28.27 even 2 196.6.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
196.6.a.c.1.1 1 28.27 even 2
196.6.a.f.1.1 yes 1 4.3 odd 2
196.6.e.c.165.1 2 28.23 odd 6
196.6.e.c.177.1 2 28.11 odd 6
196.6.e.h.165.1 2 28.19 even 6
196.6.e.h.177.1 2 28.3 even 6
784.6.a.b.1.1 1 1.1 even 1 trivial
784.6.a.j.1.1 1 7.6 odd 2