Properties

Label 784.4.f.e.783.3
Level $784$
Weight $4$
Character 784.783
Analytic conductor $46.257$
Analytic rank $0$
Dimension $4$
CM discriminant -4
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [784,4,Mod(783,784)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(784, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("784.783");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 784.f (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(46.2574974445\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.0.2048.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 4x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 7^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

Embedding invariants

Embedding label 783.3
Root \(1.84776i\) of defining polynomial
Character \(\chi\) \(=\) 784.783
Dual form 784.4.f.e.783.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.72352i q^{5} -27.0000 q^{9} +O(q^{10})\) \(q+4.72352i q^{5} -27.0000 q^{9} -18.5770i q^{13} -47.0456i q^{17} +102.688 q^{25} +108.894 q^{29} +128.693 q^{37} +348.054i q^{41} -127.535i q^{45} +572.000 q^{53} +945.916i q^{61} +87.7490 q^{65} -967.123i q^{73} +729.000 q^{81} +222.221 q^{85} +1475.53i q^{89} +1450.45i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 108 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 108 q^{9} - 500 q^{25} + 2288 q^{53} + 4192 q^{65} + 2916 q^{81} - 5328 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 4.72352i 0.422484i 0.977434 + 0.211242i \(0.0677509\pi\)
−0.977434 + 0.211242i \(0.932249\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −27.0000 −1.00000
\(10\) 0 0
\(11\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(12\) 0 0
\(13\) − 18.5770i − 0.396334i −0.980168 0.198167i \(-0.936501\pi\)
0.980168 0.198167i \(-0.0634989\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 47.0456i − 0.671190i −0.942006 0.335595i \(-0.891063\pi\)
0.942006 0.335595i \(-0.108937\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(24\) 0 0
\(25\) 102.688 0.821507
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 108.894 0.697282 0.348641 0.937256i \(-0.386643\pi\)
0.348641 + 0.937256i \(0.386643\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 128.693 0.571813 0.285906 0.958258i \(-0.407705\pi\)
0.285906 + 0.958258i \(0.407705\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 348.054i 1.32578i 0.748718 + 0.662889i \(0.230670\pi\)
−0.748718 + 0.662889i \(0.769330\pi\)
\(42\) 0 0
\(43\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(44\) 0 0
\(45\) − 127.535i − 0.422484i
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 572.000 1.48246 0.741229 0.671253i \(-0.234243\pi\)
0.741229 + 0.671253i \(0.234243\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 945.916i 1.98544i 0.120426 + 0.992722i \(0.461574\pi\)
−0.120426 + 0.992722i \(0.538426\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 87.7490 0.167445
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(72\) 0 0
\(73\) − 967.123i − 1.55059i −0.631598 0.775296i \(-0.717601\pi\)
0.631598 0.775296i \(-0.282399\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 222.221 0.283567
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 1475.53i 1.75737i 0.477406 + 0.878683i \(0.341577\pi\)
−0.477406 + 0.878683i \(0.658423\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1450.45i 1.51826i 0.650940 + 0.759129i \(0.274375\pi\)
−0.650940 + 0.759129i \(0.725625\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 1294.89i − 1.27570i −0.770160 0.637851i \(-0.779823\pi\)
0.770160 0.637851i \(-0.220177\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(108\) 0 0
\(109\) 2266.98 1.99209 0.996045 0.0888549i \(-0.0283207\pi\)
0.996045 + 0.0888549i \(0.0283207\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 1328.00 1.10556 0.552778 0.833329i \(-0.313568\pi\)
0.552778 + 0.833329i \(0.313568\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 501.580i 0.396334i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 1331.00 1.00000
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 1075.49i 0.769558i
\(126\) 0 0
\(127\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3098.54 1.93231 0.966154 0.257965i \(-0.0830518\pi\)
0.966154 + 0.257965i \(0.0830518\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 514.365i 0.294591i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −940.000 −0.516831 −0.258415 0.966034i \(-0.583200\pi\)
−0.258415 + 0.966034i \(0.583200\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(152\) 0 0
\(153\) 1270.23i 0.671190i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3734.75i − 1.89851i −0.314512 0.949253i \(-0.601841\pi\)
0.314512 0.949253i \(-0.398159\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) 1851.89 0.842919
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 3420.96i 1.50341i 0.659497 + 0.751707i \(0.270769\pi\)
−0.659497 + 0.751707i \(0.729231\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(180\) 0 0
\(181\) − 1133.76i − 0.465589i −0.972526 0.232794i \(-0.925213\pi\)
0.972526 0.232794i \(-0.0747869\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 607.886i 0.241582i
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(192\) 0 0
\(193\) −72.0000 −0.0268532 −0.0134266 0.999910i \(-0.504274\pi\)
−0.0134266 + 0.999910i \(0.504274\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −1174.00 −0.424589 −0.212295 0.977206i \(-0.568094\pi\)
−0.212295 + 0.977206i \(0.568094\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −1644.04 −0.560120
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −873.968 −0.266016
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) −2772.59 −0.821507
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 34.3455i 0.00991099i 0.999988 + 0.00495549i \(0.00157739\pi\)
−0.999988 + 0.00495549i \(0.998423\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 5434.82 1.52810 0.764050 0.645158i \(-0.223208\pi\)
0.764050 + 0.645158i \(0.223208\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(240\) 0 0
\(241\) 2888.29i 0.771997i 0.922499 + 0.385999i \(0.126143\pi\)
−0.922499 + 0.385999i \(0.873857\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) − 6892.69i − 1.67297i −0.547987 0.836487i \(-0.684606\pi\)
0.547987 0.836487i \(-0.315394\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −2940.15 −0.697282
\(262\) 0 0
\(263\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(264\) 0 0
\(265\) 2701.85i 0.626315i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6261.78i 1.41928i 0.704563 + 0.709642i \(0.251143\pi\)
−0.704563 + 0.709642i \(0.748857\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −9126.00 −1.97952 −0.989762 0.142727i \(-0.954413\pi\)
−0.989762 + 0.142727i \(0.954413\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 1158.24 0.245889 0.122945 0.992414i \(-0.460766\pi\)
0.122945 + 0.992414i \(0.460766\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 2699.71 0.549504
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 10022.1i − 1.99829i −0.0413610 0.999144i \(-0.513169\pi\)
0.0413610 0.999144i \(-0.486831\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −4468.05 −0.838819
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) − 10665.6i − 1.92606i −0.269393 0.963030i \(-0.586823\pi\)
0.269393 0.963030i \(-0.413177\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −10274.0 −1.82033 −0.910166 0.414243i \(-0.864046\pi\)
−0.910166 + 0.414243i \(0.864046\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) − 1907.65i − 0.325591i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(332\) 0 0
\(333\) −3474.72 −0.571813
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −9038.24 −1.46096 −0.730481 0.682933i \(-0.760704\pi\)
−0.730481 + 0.682933i \(0.760704\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(348\) 0 0
\(349\) − 11905.7i − 1.82606i −0.407890 0.913031i \(-0.633735\pi\)
0.407890 0.913031i \(-0.366265\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 13132.1i 1.98003i 0.140959 + 0.990015i \(0.454981\pi\)
−0.140959 + 0.990015i \(0.545019\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 4568.22 0.655101
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) − 9397.46i − 1.32578i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −6372.00 −0.884530 −0.442265 0.896884i \(-0.645825\pi\)
−0.442265 + 0.896884i \(0.645825\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 2022.94i − 0.276357i
\(378\) 0 0
\(379\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −10582.6 −1.37932 −0.689662 0.724131i \(-0.742241\pi\)
−0.689662 + 0.724131i \(0.742241\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 4074.14i − 0.515051i −0.966271 0.257526i \(-0.917093\pi\)
0.966271 0.257526i \(-0.0829072\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9533.21 1.18720 0.593598 0.804761i \(-0.297707\pi\)
0.593598 + 0.804761i \(0.297707\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 3443.44i 0.422484i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 11049.6i 1.33587i 0.744222 + 0.667933i \(0.232821\pi\)
−0.744222 + 0.667933i \(0.767179\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −10890.0 −1.26068 −0.630340 0.776319i \(-0.717084\pi\)
−0.630340 + 0.776319i \(0.717084\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) − 4831.04i − 0.551388i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(432\) 0 0
\(433\) 11132.2i 1.23552i 0.786366 + 0.617761i \(0.211960\pi\)
−0.786366 + 0.617761i \(0.788040\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) −6969.68 −0.742459
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10120.0 1.06368 0.531840 0.846845i \(-0.321501\pi\)
0.531840 + 0.846845i \(0.321501\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 10456.0 1.07026 0.535132 0.844768i \(-0.320262\pi\)
0.535132 + 0.844768i \(0.320262\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) − 17276.4i − 1.74543i −0.488231 0.872714i \(-0.662358\pi\)
0.488231 0.872714i \(-0.337642\pi\)
\(462\) 0 0
\(463\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15444.0 −1.48246
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) − 2390.74i − 0.226629i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −6851.23 −0.641440
\(486\) 0 0
\(487\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(492\) 0 0
\(493\) − 5123.00i − 0.468009i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 6116.42 0.538964
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 20070.5i 1.74776i 0.486140 + 0.873881i \(0.338404\pi\)
−0.486140 + 0.873881i \(0.661596\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 10451.5i 0.878863i 0.898276 + 0.439432i \(0.144820\pi\)
−0.898276 + 0.439432i \(0.855180\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) 12167.0 1.00000
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 6465.81 0.525451
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −24460.0 −1.94384 −0.971920 0.235311i \(-0.924389\pi\)
−0.971920 + 0.235311i \(0.924389\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 10708.1i 0.841626i
\(546\) 0 0
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 0 0
\(549\) − 25539.7i − 1.98544i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8626.00 0.656186 0.328093 0.944646i \(-0.393594\pi\)
0.328093 + 0.944646i \(0.393594\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 6272.83i 0.467080i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 15928.3 1.17355 0.586774 0.809751i \(-0.300398\pi\)
0.586774 + 0.809751i \(0.300398\pi\)
\(570\) 0 0
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 13716.4i − 0.989638i −0.868996 0.494819i \(-0.835234\pi\)
0.868996 0.494819i \(-0.164766\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −2369.22 −0.167445
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 4996.75i 0.346024i 0.984920 + 0.173012i \(0.0553499\pi\)
−0.984920 + 0.173012i \(0.944650\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(600\) 0 0
\(601\) 15700.4i 1.06561i 0.846238 + 0.532804i \(0.178862\pi\)
−0.846238 + 0.532804i \(0.821138\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 6287.00i 0.422484i
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 30243.0 1.99266 0.996331 0.0855861i \(-0.0272763\pi\)
0.996331 + 0.0855861i \(0.0272763\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29649.0 1.93456 0.967280 0.253712i \(-0.0816515\pi\)
0.967280 + 0.253712i \(0.0816515\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 7755.95 0.496381
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) − 6054.46i − 0.383795i
\(630\) 0 0
\(631\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 30916.1 1.90501 0.952507 0.304518i \(-0.0984954\pi\)
0.952507 + 0.304518i \(0.0984954\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 24303.3 1.45645 0.728224 0.685340i \(-0.240346\pi\)
0.728224 + 0.685340i \(0.240346\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 26112.3i 1.55059i
\(658\) 0 0
\(659\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(660\) 0 0
\(661\) − 30280.5i − 1.78181i −0.454190 0.890905i \(-0.650071\pi\)
0.454190 0.890905i \(-0.349929\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −21333.4 −1.22191 −0.610953 0.791667i \(-0.709214\pi\)
−0.610953 + 0.791667i \(0.709214\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 33883.5i 1.92356i 0.273828 + 0.961779i \(0.411710\pi\)
−0.273828 + 0.961779i \(0.588290\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(684\) 0 0
\(685\) 14636.0i 0.816370i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) − 10626.1i − 0.587549i
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 16374.4 0.889849
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 36261.8 1.95377 0.976884 0.213771i \(-0.0685745\pi\)
0.976884 + 0.213771i \(0.0685745\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −20086.1 −1.06396 −0.531981 0.846757i \(-0.678552\pi\)
−0.531981 + 0.846757i \(0.678552\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 11182.2 0.572822
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 22884.1i 1.15313i 0.817052 + 0.576563i \(0.195607\pi\)
−0.817052 + 0.576563i \(0.804393\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(744\) 0 0
\(745\) − 4440.11i − 0.218353i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −8860.05 −0.425395 −0.212697 0.977118i \(-0.568225\pi\)
−0.212697 + 0.977118i \(0.568225\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 39910.0i 1.90110i 0.310570 + 0.950550i \(0.399480\pi\)
−0.310570 + 0.950550i \(0.600520\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) −5999.96 −0.283567
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 24813.6i 1.16359i 0.813335 + 0.581796i \(0.197650\pi\)
−0.813335 + 0.581796i \(0.802350\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 437.150i 0.0203405i 0.999948 + 0.0101702i \(0.00323734\pi\)
−0.999948 + 0.0101702i \(0.996763\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 17641.2 0.802089
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 17572.3 0.786900
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 44989.0i − 1.99949i −0.0226228 0.999744i \(-0.507202\pi\)
0.0226228 0.999744i \(-0.492798\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) − 39839.2i − 1.75737i
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 23270.0 1.01129 0.505643 0.862743i \(-0.331255\pi\)
0.505643 + 0.862743i \(0.331255\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1850.00 0.0786424 0.0393212 0.999227i \(-0.487480\pi\)
0.0393212 + 0.999227i \(0.487480\pi\)
\(822\) 0 0
\(823\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(828\) 0 0
\(829\) − 5429.39i − 0.227467i −0.993511 0.113734i \(-0.963719\pi\)
0.993511 0.113734i \(-0.0362811\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) −12531.0 −0.513797
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 8747.45i 0.356120i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) 49805.3i 1.99918i 0.0286392 + 0.999590i \(0.490883\pi\)
−0.0286392 + 0.999590i \(0.509117\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 34817.8i 1.38781i 0.720066 + 0.693905i \(0.244111\pi\)
−0.720066 + 0.693905i \(0.755889\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(864\) 0 0
\(865\) −16159.0 −0.635169
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) − 39162.2i − 1.51826i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 8959.04 0.344955 0.172477 0.985013i \(-0.444823\pi\)
0.172477 + 0.985013i \(0.444823\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) − 26431.8i − 1.01079i −0.862887 0.505397i \(-0.831346\pi\)
0.862887 0.505397i \(-0.168654\pi\)
\(882\) 0 0
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) − 26910.1i − 0.995011i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5355.32 0.196704
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 34961.9i 1.27570i
\(910\) 0 0
\(911\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 13215.3 0.469748
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) − 10346.7i − 0.365407i −0.983168 0.182703i \(-0.941515\pi\)
0.983168 0.182703i \(-0.0584848\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 42362.4i − 1.47697i −0.674271 0.738484i \(-0.735542\pi\)
0.674271 0.738484i \(-0.264458\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 47534.3i 1.64673i 0.567511 + 0.823366i \(0.307907\pi\)
−0.567511 + 0.823366i \(0.692093\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(948\) 0 0
\(949\) −17966.3 −0.614553
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 56758.0 1.92925 0.964623 0.263632i \(-0.0849205\pi\)
0.964623 + 0.263632i \(0.0849205\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) − 340.093i − 0.0113451i
\(966\) 0 0
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −23808.3 −0.779626 −0.389813 0.920894i \(-0.627460\pi\)
−0.389813 + 0.920894i \(0.627460\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) −61208.6 −1.99209
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) − 5545.41i − 0.179382i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0 0
\(990\) 0 0
\(991\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 11324.8i − 0.359740i −0.983690 0.179870i \(-0.942432\pi\)
0.983690 0.179870i \(-0.0575677\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.4.f.e.783.3 yes 4
4.3 odd 2 CM 784.4.f.e.783.3 yes 4
7.6 odd 2 inner 784.4.f.e.783.2 4
28.27 even 2 inner 784.4.f.e.783.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
784.4.f.e.783.2 4 7.6 odd 2 inner
784.4.f.e.783.2 4 28.27 even 2 inner
784.4.f.e.783.3 yes 4 1.1 even 1 trivial
784.4.f.e.783.3 yes 4 4.3 odd 2 CM