Defining parameters
Level: | \( N \) | \(=\) | \( 784 = 2^{4} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 784.f (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 28 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 10 \) | ||
Sturm bound: | \(448\) | ||
Trace bound: | \(9\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(784, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 360 | 60 | 300 |
Cusp forms | 312 | 60 | 252 |
Eisenstein series | 48 | 0 | 48 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(784, [\chi])\) into newform subspaces
Decomposition of \(S_{4}^{\mathrm{old}}(784, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(784, [\chi]) \cong \) \(S_{4}^{\mathrm{new}}(28, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(196, [\chi])\)\(^{\oplus 3}\)