Properties

Label 784.4.a.p
Level $784$
Weight $4$
Character orbit 784.a
Self dual yes
Analytic conductor $46.257$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(46.2574974445\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 14)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 5 q^{3} - 9 q^{5} - 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + 5 q^{3} - 9 q^{5} - 2 q^{9} + 57 q^{11} - 70 q^{13} - 45 q^{15} + 51 q^{17} - 5 q^{19} - 69 q^{23} - 44 q^{25} - 145 q^{27} + 114 q^{29} - 23 q^{31} + 285 q^{33} - 253 q^{37} - 350 q^{39} - 42 q^{41} + 124 q^{43} + 18 q^{45} - 201 q^{47} + 255 q^{51} - 393 q^{53} - 513 q^{55} - 25 q^{57} - 219 q^{59} - 709 q^{61} + 630 q^{65} - 419 q^{67} - 345 q^{69} + 96 q^{71} - 313 q^{73} - 220 q^{75} - 461 q^{79} - 671 q^{81} + 588 q^{83} - 459 q^{85} + 570 q^{87} - 1017 q^{89} - 115 q^{93} + 45 q^{95} - 1834 q^{97} - 114 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 5.00000 0 −9.00000 0 0 0 −2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 784.4.a.p 1
4.b odd 2 1 98.4.a.d 1
7.b odd 2 1 784.4.a.c 1
7.c even 3 2 112.4.i.a 2
12.b even 2 1 882.4.a.f 1
20.d odd 2 1 2450.4.a.q 1
28.d even 2 1 98.4.a.f 1
28.f even 6 2 98.4.c.a 2
28.g odd 6 2 14.4.c.a 2
56.k odd 6 2 448.4.i.b 2
56.p even 6 2 448.4.i.e 2
84.h odd 2 1 882.4.a.c 1
84.j odd 6 2 882.4.g.u 2
84.n even 6 2 126.4.g.d 2
140.c even 2 1 2450.4.a.d 1
140.p odd 6 2 350.4.e.e 2
140.w even 12 4 350.4.j.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
14.4.c.a 2 28.g odd 6 2
98.4.a.d 1 4.b odd 2 1
98.4.a.f 1 28.d even 2 1
98.4.c.a 2 28.f even 6 2
112.4.i.a 2 7.c even 3 2
126.4.g.d 2 84.n even 6 2
350.4.e.e 2 140.p odd 6 2
350.4.j.b 4 140.w even 12 4
448.4.i.b 2 56.k odd 6 2
448.4.i.e 2 56.p even 6 2
784.4.a.c 1 7.b odd 2 1
784.4.a.p 1 1.a even 1 1 trivial
882.4.a.c 1 84.h odd 2 1
882.4.a.f 1 12.b even 2 1
882.4.g.u 2 84.j odd 6 2
2450.4.a.d 1 140.c even 2 1
2450.4.a.q 1 20.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(784))\):

\( T_{3} - 5 \) Copy content Toggle raw display
\( T_{5} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 5 \) Copy content Toggle raw display
$5$ \( T + 9 \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T - 57 \) Copy content Toggle raw display
$13$ \( T + 70 \) Copy content Toggle raw display
$17$ \( T - 51 \) Copy content Toggle raw display
$19$ \( T + 5 \) Copy content Toggle raw display
$23$ \( T + 69 \) Copy content Toggle raw display
$29$ \( T - 114 \) Copy content Toggle raw display
$31$ \( T + 23 \) Copy content Toggle raw display
$37$ \( T + 253 \) Copy content Toggle raw display
$41$ \( T + 42 \) Copy content Toggle raw display
$43$ \( T - 124 \) Copy content Toggle raw display
$47$ \( T + 201 \) Copy content Toggle raw display
$53$ \( T + 393 \) Copy content Toggle raw display
$59$ \( T + 219 \) Copy content Toggle raw display
$61$ \( T + 709 \) Copy content Toggle raw display
$67$ \( T + 419 \) Copy content Toggle raw display
$71$ \( T - 96 \) Copy content Toggle raw display
$73$ \( T + 313 \) Copy content Toggle raw display
$79$ \( T + 461 \) Copy content Toggle raw display
$83$ \( T - 588 \) Copy content Toggle raw display
$89$ \( T + 1017 \) Copy content Toggle raw display
$97$ \( T + 1834 \) Copy content Toggle raw display
show more
show less