Properties

Label 784.4.a.m
Level $784$
Weight $4$
Character orbit 784.a
Self dual yes
Analytic conductor $46.257$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(46.2574974445\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 196)
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 4q^{3} - 20q^{5} - 11q^{9} + O(q^{10}) \) \( q + 4q^{3} - 20q^{5} - 11q^{9} - 44q^{11} - 44q^{13} - 80q^{15} + 72q^{17} - 100q^{19} + 120q^{23} + 275q^{25} - 152q^{27} + 218q^{29} + 280q^{31} - 176q^{33} - 30q^{37} - 176q^{39} + 120q^{41} - 220q^{43} + 220q^{45} - 88q^{47} + 288q^{51} + 110q^{53} + 880q^{55} - 400q^{57} - 580q^{59} + 380q^{61} + 880q^{65} + 980q^{67} + 480q^{69} + 112q^{71} - 640q^{73} + 1100q^{75} + 488q^{79} - 311q^{81} - 660q^{83} - 1440q^{85} + 872q^{87} + 320q^{89} + 1120q^{93} + 2000q^{95} + 248q^{97} + 484q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 4.00000 0 −20.0000 0 0 0 −11.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 784.4.a.m 1
4.b odd 2 1 196.4.a.a 1
7.b odd 2 1 784.4.a.f 1
12.b even 2 1 1764.4.a.m 1
28.d even 2 1 196.4.a.c yes 1
28.f even 6 2 196.4.e.b 2
28.g odd 6 2 196.4.e.e 2
84.h odd 2 1 1764.4.a.a 1
84.j odd 6 2 1764.4.k.p 2
84.n even 6 2 1764.4.k.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
196.4.a.a 1 4.b odd 2 1
196.4.a.c yes 1 28.d even 2 1
196.4.e.b 2 28.f even 6 2
196.4.e.e 2 28.g odd 6 2
784.4.a.f 1 7.b odd 2 1
784.4.a.m 1 1.a even 1 1 trivial
1764.4.a.a 1 84.h odd 2 1
1764.4.a.m 1 12.b even 2 1
1764.4.k.a 2 84.n even 6 2
1764.4.k.p 2 84.j odd 6 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(784))\):

\( T_{3} - 4 \)
\( T_{5} + 20 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( -4 + T \)
$5$ \( 20 + T \)
$7$ \( T \)
$11$ \( 44 + T \)
$13$ \( 44 + T \)
$17$ \( -72 + T \)
$19$ \( 100 + T \)
$23$ \( -120 + T \)
$29$ \( -218 + T \)
$31$ \( -280 + T \)
$37$ \( 30 + T \)
$41$ \( -120 + T \)
$43$ \( 220 + T \)
$47$ \( 88 + T \)
$53$ \( -110 + T \)
$59$ \( 580 + T \)
$61$ \( -380 + T \)
$67$ \( -980 + T \)
$71$ \( -112 + T \)
$73$ \( 640 + T \)
$79$ \( -488 + T \)
$83$ \( 660 + T \)
$89$ \( -320 + T \)
$97$ \( -248 + T \)
show more
show less