Properties

Label 784.4.a.k.1.1
Level $784$
Weight $4$
Character 784.1
Self dual yes
Analytic conductor $46.257$
Analytic rank $0$
Dimension $1$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(46.2574974445\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 49)
Fricke sign: \(1\)
Sato-Tate group: $N(\mathrm{U}(1))$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 784.1

$q$-expansion

\(f(q)\) \(=\) \(q-27.0000 q^{9} +O(q^{10})\) \(q-27.0000 q^{9} +68.0000 q^{11} +40.0000 q^{23} -125.000 q^{25} -166.000 q^{29} +450.000 q^{37} +180.000 q^{43} +590.000 q^{53} +740.000 q^{67} -688.000 q^{71} +1384.00 q^{79} +729.000 q^{81} -1836.00 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −27.0000 −1.00000
\(10\) 0 0
\(11\) 68.0000 1.86389 0.931944 0.362602i \(-0.118111\pi\)
0.931944 + 0.362602i \(0.118111\pi\)
\(12\) 0 0
\(13\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(18\) 0 0
\(19\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 40.0000 0.362634 0.181317 0.983425i \(-0.441964\pi\)
0.181317 + 0.983425i \(0.441964\pi\)
\(24\) 0 0
\(25\) −125.000 −1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −166.000 −1.06295 −0.531473 0.847075i \(-0.678361\pi\)
−0.531473 + 0.847075i \(0.678361\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 450.000 1.99945 0.999724 0.0235113i \(-0.00748457\pi\)
0.999724 + 0.0235113i \(0.00748457\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) 180.000 0.638366 0.319183 0.947693i \(-0.396592\pi\)
0.319183 + 0.947693i \(0.396592\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 590.000 1.52911 0.764554 0.644560i \(-0.222959\pi\)
0.764554 + 0.644560i \(0.222959\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 740.000 1.34933 0.674667 0.738122i \(-0.264287\pi\)
0.674667 + 0.738122i \(0.264287\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −688.000 −1.15001 −0.575004 0.818151i \(-0.695000\pi\)
−0.575004 + 0.818151i \(0.695000\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 1384.00 1.97104 0.985520 0.169559i \(-0.0542343\pi\)
0.985520 + 0.169559i \(0.0542343\pi\)
\(80\) 0 0
\(81\) 729.000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(98\) 0 0
\(99\) −1836.00 −1.86389
\(100\) 0 0
\(101\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1580.00 1.42752 0.713759 0.700392i \(-0.246991\pi\)
0.713759 + 0.700392i \(0.246991\pi\)
\(108\) 0 0
\(109\) −54.0000 −0.0474519 −0.0237260 0.999718i \(-0.507553\pi\)
−0.0237260 + 0.999718i \(0.507553\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −670.000 −0.557773 −0.278886 0.960324i \(-0.589965\pi\)
−0.278886 + 0.960324i \(0.589965\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 3293.00 2.47408
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 2000.00 1.39741 0.698706 0.715409i \(-0.253760\pi\)
0.698706 + 0.715409i \(0.253760\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 3110.00 1.93945 0.969727 0.244191i \(-0.0785224\pi\)
0.969727 + 0.244191i \(0.0785224\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 814.000 0.447554 0.223777 0.974640i \(-0.428161\pi\)
0.223777 + 0.974640i \(0.428161\pi\)
\(150\) 0 0
\(151\) 2952.00 1.59093 0.795465 0.606000i \(-0.207227\pi\)
0.795465 + 0.606000i \(0.207227\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −1780.00 −0.855340 −0.427670 0.903935i \(-0.640665\pi\)
−0.427670 + 0.903935i \(0.640665\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(168\) 0 0
\(169\) −2197.00 −1.00000
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 2084.00 0.870198 0.435099 0.900383i \(-0.356713\pi\)
0.435099 + 0.900383i \(0.356713\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4072.00 1.54262 0.771308 0.636462i \(-0.219603\pi\)
0.771308 + 0.636462i \(0.219603\pi\)
\(192\) 0 0
\(193\) −4590.00 −1.71189 −0.855947 0.517064i \(-0.827025\pi\)
−0.855947 + 0.517064i \(0.827025\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2210.00 −0.799269 −0.399634 0.916675i \(-0.630863\pi\)
−0.399634 + 0.916675i \(0.630863\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1080.00 −0.362634
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5868.00 −1.91455 −0.957274 0.289181i \(-0.906617\pi\)
−0.957274 + 0.289181i \(0.906617\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(224\) 0 0
\(225\) 3375.00 1.00000
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −4730.00 −1.32993 −0.664963 0.746877i \(-0.731553\pi\)
−0.664963 + 0.746877i \(0.731553\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 7376.00 1.99629 0.998146 0.0608655i \(-0.0193861\pi\)
0.998146 + 0.0608655i \(0.0193861\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(252\) 0 0
\(253\) 2720.00 0.675909
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 4482.00 1.06295
\(262\) 0 0
\(263\) −7520.00 −1.76313 −0.881565 0.472063i \(-0.843509\pi\)
−0.881565 + 0.472063i \(0.843509\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −8500.00 −1.86389
\(276\) 0 0
\(277\) 7310.00 1.58561 0.792807 0.609472i \(-0.208619\pi\)
0.792807 + 0.609472i \(0.208619\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 4342.00 0.921786 0.460893 0.887456i \(-0.347529\pi\)
0.460893 + 0.887456i \(0.347529\pi\)
\(282\) 0 0
\(283\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −4913.00 −1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −6970.00 −1.23493 −0.617467 0.786597i \(-0.711841\pi\)
−0.617467 + 0.786597i \(0.711841\pi\)
\(318\) 0 0
\(319\) −11288.0 −1.98121
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −10908.0 −1.81135 −0.905677 0.423969i \(-0.860636\pi\)
−0.905677 + 0.423969i \(0.860636\pi\)
\(332\) 0 0
\(333\) −12150.0 −1.99945
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −3330.00 −0.538269 −0.269135 0.963103i \(-0.586738\pi\)
−0.269135 + 0.963103i \(0.586738\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 4100.00 0.634293 0.317146 0.948377i \(-0.397275\pi\)
0.317146 + 0.948377i \(0.397275\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8104.00 1.19140 0.595700 0.803207i \(-0.296875\pi\)
0.595700 + 0.803207i \(0.296875\pi\)
\(360\) 0 0
\(361\) −6859.00 −1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −13970.0 −1.93925 −0.969624 0.244602i \(-0.921343\pi\)
−0.969624 + 0.244602i \(0.921343\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −11916.0 −1.61500 −0.807498 0.589870i \(-0.799179\pi\)
−0.807498 + 0.589870i \(0.799179\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4860.00 −0.638366
\(388\) 0 0
\(389\) −10526.0 −1.37195 −0.685976 0.727624i \(-0.740625\pi\)
−0.685976 + 0.727624i \(0.740625\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 1598.00 0.199003 0.0995016 0.995037i \(-0.468275\pi\)
0.0995016 + 0.995037i \(0.468275\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 30600.0 3.72675
\(408\) 0 0
\(409\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) 15262.0 1.76680 0.883402 0.468616i \(-0.155247\pi\)
0.883402 + 0.468616i \(0.155247\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 8608.00 0.962025 0.481012 0.876714i \(-0.340269\pi\)
0.481012 + 0.876714i \(0.340269\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −18580.0 −1.99269 −0.996346 0.0854102i \(-0.972780\pi\)
−0.996346 + 0.0854102i \(0.972780\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −2686.00 −0.282317 −0.141158 0.989987i \(-0.545083\pi\)
−0.141158 + 0.989987i \(0.545083\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8010.00 0.819895 0.409947 0.912109i \(-0.365547\pi\)
0.409947 + 0.912109i \(0.365547\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(462\) 0 0
\(463\) 8440.00 0.847171 0.423585 0.905856i \(-0.360771\pi\)
0.423585 + 0.905856i \(0.360771\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 12240.0 1.18984
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −15930.0 −1.52911
\(478\) 0 0
\(479\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −21240.0 −1.97634 −0.988169 0.153371i \(-0.950987\pi\)
−0.988169 + 0.153371i \(0.950987\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −20372.0 −1.87246 −0.936228 0.351394i \(-0.885708\pi\)
−0.936228 + 0.351394i \(0.885708\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 7236.00 0.649154 0.324577 0.945859i \(-0.394778\pi\)
0.324577 + 0.945859i \(0.394778\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(522\) 0 0
\(523\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −10567.0 −0.868497
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 15878.0 1.26183 0.630914 0.775853i \(-0.282680\pi\)
0.630914 + 0.775853i \(0.282680\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −12980.0 −1.01460 −0.507299 0.861770i \(-0.669356\pi\)
−0.507299 + 0.861770i \(0.669356\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 20470.0 1.55717 0.778583 0.627541i \(-0.215939\pi\)
0.778583 + 0.627541i \(0.215939\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −26906.0 −1.98235 −0.991176 0.132553i \(-0.957683\pi\)
−0.991176 + 0.132553i \(0.957683\pi\)
\(570\) 0 0
\(571\) 6788.00 0.497494 0.248747 0.968569i \(-0.419981\pi\)
0.248747 + 0.968569i \(0.419981\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −5000.00 −0.362634
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 40120.0 2.85009
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 24736.0 1.68729 0.843644 0.536903i \(-0.180406\pi\)
0.843644 + 0.536903i \(0.180406\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(602\) 0 0
\(603\) −19980.0 −1.34933
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 15010.0 0.988986 0.494493 0.869182i \(-0.335354\pi\)
0.494493 + 0.869182i \(0.335354\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 30550.0 1.99335 0.996675 0.0814823i \(-0.0259654\pi\)
0.996675 + 0.0814823i \(0.0259654\pi\)
\(618\) 0 0
\(619\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 15625.0 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 26192.0 1.65244 0.826218 0.563351i \(-0.190488\pi\)
0.826218 + 0.563351i \(0.190488\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 18576.0 1.15001
\(640\) 0 0
\(641\) 8878.00 0.547051 0.273526 0.961865i \(-0.411810\pi\)
0.273526 + 0.961865i \(0.411810\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 27050.0 1.62105 0.810527 0.585701i \(-0.199181\pi\)
0.810527 + 0.585701i \(0.199181\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1804.00 0.106637 0.0533186 0.998578i \(-0.483020\pi\)
0.0533186 + 0.998578i \(0.483020\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −6640.00 −0.385460
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) −33570.0 −1.92278 −0.961388 0.275196i \(-0.911257\pi\)
−0.961388 + 0.275196i \(0.911257\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 34060.0 1.90815 0.954077 0.299560i \(-0.0968400\pi\)
0.954077 + 0.299560i \(0.0968400\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −4198.00 −0.226186 −0.113093 0.993584i \(-0.536076\pi\)
−0.113093 + 0.993584i \(0.536076\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 12546.0 0.664563 0.332281 0.943180i \(-0.392182\pi\)
0.332281 + 0.943180i \(0.392182\pi\)
\(710\) 0 0
\(711\) −37368.0 −1.97104
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 20750.0 1.06295
\(726\) 0 0
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 0 0
\(729\) −19683.0 −1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 50320.0 2.51501
\(738\) 0 0
\(739\) 25324.0 1.26057 0.630283 0.776365i \(-0.282939\pi\)
0.630283 + 0.776365i \(0.282939\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −25160.0 −1.24230 −0.621151 0.783691i \(-0.713335\pi\)
−0.621151 + 0.783691i \(0.713335\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 2448.00 0.118946 0.0594732 0.998230i \(-0.481058\pi\)
0.0594732 + 0.998230i \(0.481058\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −34830.0 −1.67228 −0.836141 0.548514i \(-0.815194\pi\)
−0.836141 + 0.548514i \(0.815194\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −46784.0 −2.14349
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37354.0 1.62336 0.811679 0.584104i \(-0.198554\pi\)
0.811679 + 0.584104i \(0.198554\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −43538.0 −1.85078 −0.925388 0.379022i \(-0.876261\pi\)
−0.925388 + 0.379022i \(0.876261\pi\)
\(822\) 0 0
\(823\) 46240.0 1.95848 0.979238 0.202716i \(-0.0649768\pi\)
0.979238 + 0.202716i \(0.0649768\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 23980.0 1.00830 0.504151 0.863615i \(-0.331805\pi\)
0.504151 + 0.863615i \(0.331805\pi\)
\(828\) 0 0
\(829\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(840\) 0 0
\(841\) 3167.00 0.129854
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 18000.0 0.725067
\(852\) 0 0
\(853\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 20200.0 0.796774 0.398387 0.917217i \(-0.369570\pi\)
0.398387 + 0.917217i \(0.369570\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 94112.0 3.67380
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −6550.00 −0.252198 −0.126099 0.992018i \(-0.540246\pi\)
−0.126099 + 0.992018i \(0.540246\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(882\) 0 0
\(883\) −30060.0 −1.14564 −0.572820 0.819681i \(-0.694150\pi\)
−0.572820 + 0.819681i \(0.694150\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 49572.0 1.86389
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −52740.0 −1.93076 −0.965382 0.260840i \(-0.916000\pi\)
−0.965382 + 0.260840i \(0.916000\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 39632.0 1.44135 0.720673 0.693275i \(-0.243833\pi\)
0.720673 + 0.693275i \(0.243833\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −21744.0 −0.780488 −0.390244 0.920711i \(-0.627609\pi\)
−0.390244 + 0.920711i \(0.627609\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −56250.0 −1.99945
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −48820.0 −1.67522 −0.837612 0.546266i \(-0.816049\pi\)
−0.837612 + 0.546266i \(0.816049\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 29290.0 0.995589 0.497794 0.867295i \(-0.334143\pi\)
0.497794 + 0.867295i \(0.334143\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −29791.0 −1.00000
\(962\) 0 0
\(963\) −42660.0 −1.42752
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −52040.0 −1.73060 −0.865302 0.501251i \(-0.832873\pi\)
−0.865302 + 0.501251i \(0.832873\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −37490.0 −1.22765 −0.613824 0.789443i \(-0.710369\pi\)
−0.613824 + 0.789443i \(0.710369\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1458.00 0.0474519
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 7200.00 0.231493
\(990\) 0 0
\(991\) −57528.0 −1.84403 −0.922017 0.387150i \(-0.873460\pi\)
−0.922017 + 0.387150i \(0.873460\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.4.a.k.1.1 1
4.3 odd 2 49.4.a.a.1.1 1
7.6 odd 2 CM 784.4.a.k.1.1 1
12.11 even 2 441.4.a.m.1.1 1
20.19 odd 2 1225.4.a.l.1.1 1
28.3 even 6 49.4.c.d.30.1 2
28.11 odd 6 49.4.c.d.30.1 2
28.19 even 6 49.4.c.d.18.1 2
28.23 odd 6 49.4.c.d.18.1 2
28.27 even 2 49.4.a.a.1.1 1
84.11 even 6 441.4.e.a.226.1 2
84.23 even 6 441.4.e.a.361.1 2
84.47 odd 6 441.4.e.a.361.1 2
84.59 odd 6 441.4.e.a.226.1 2
84.83 odd 2 441.4.a.m.1.1 1
140.139 even 2 1225.4.a.l.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
49.4.a.a.1.1 1 4.3 odd 2
49.4.a.a.1.1 1 28.27 even 2
49.4.c.d.18.1 2 28.19 even 6
49.4.c.d.18.1 2 28.23 odd 6
49.4.c.d.30.1 2 28.3 even 6
49.4.c.d.30.1 2 28.11 odd 6
441.4.a.m.1.1 1 12.11 even 2
441.4.a.m.1.1 1 84.83 odd 2
441.4.e.a.226.1 2 84.11 even 6
441.4.e.a.226.1 2 84.59 odd 6
441.4.e.a.361.1 2 84.23 even 6
441.4.e.a.361.1 2 84.47 odd 6
784.4.a.k.1.1 1 1.1 even 1 trivial
784.4.a.k.1.1 1 7.6 odd 2 CM
1225.4.a.l.1.1 1 20.19 odd 2
1225.4.a.l.1.1 1 140.139 even 2