Properties

Label 784.4.a.e
Level $784$
Weight $4$
Character orbit 784.a
Self dual yes
Analytic conductor $46.257$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 784.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(46.2574974445\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 8)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q - 4q^{3} + 2q^{5} - 11q^{9} + O(q^{10}) \) \( q - 4q^{3} + 2q^{5} - 11q^{9} + 44q^{11} - 22q^{13} - 8q^{15} - 50q^{17} + 44q^{19} + 56q^{23} - 121q^{25} + 152q^{27} + 198q^{29} - 160q^{31} - 176q^{33} - 162q^{37} + 88q^{39} + 198q^{41} - 52q^{43} - 22q^{45} + 528q^{47} + 200q^{51} - 242q^{53} + 88q^{55} - 176q^{57} - 668q^{59} - 550q^{61} - 44q^{65} - 188q^{67} - 224q^{69} - 728q^{71} - 154q^{73} + 484q^{75} + 656q^{79} - 311q^{81} + 236q^{83} - 100q^{85} - 792q^{87} - 714q^{89} + 640q^{93} + 88q^{95} + 478q^{97} - 484q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 −4.00000 0 2.00000 0 0 0 −11.0000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(7\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 784.4.a.e 1
4.b odd 2 1 392.4.a.e 1
7.b odd 2 1 16.4.a.a 1
21.c even 2 1 144.4.a.e 1
28.d even 2 1 8.4.a.a 1
28.f even 6 2 392.4.i.g 2
28.g odd 6 2 392.4.i.b 2
35.c odd 2 1 400.4.a.g 1
35.f even 4 2 400.4.c.i 2
56.e even 2 1 64.4.a.d 1
56.h odd 2 1 64.4.a.b 1
77.b even 2 1 1936.4.a.l 1
84.h odd 2 1 72.4.a.c 1
112.j even 4 2 256.4.b.a 2
112.l odd 4 2 256.4.b.g 2
140.c even 2 1 200.4.a.g 1
140.j odd 4 2 200.4.c.e 2
168.e odd 2 1 576.4.a.k 1
168.i even 2 1 576.4.a.j 1
252.s odd 6 2 648.4.i.e 2
252.bi even 6 2 648.4.i.h 2
280.c odd 2 1 1600.4.a.bm 1
280.n even 2 1 1600.4.a.o 1
308.g odd 2 1 968.4.a.a 1
364.h even 2 1 1352.4.a.a 1
420.o odd 2 1 1800.4.a.d 1
420.w even 4 2 1800.4.f.u 2
476.e even 2 1 2312.4.a.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.4.a.a 1 28.d even 2 1
16.4.a.a 1 7.b odd 2 1
64.4.a.b 1 56.h odd 2 1
64.4.a.d 1 56.e even 2 1
72.4.a.c 1 84.h odd 2 1
144.4.a.e 1 21.c even 2 1
200.4.a.g 1 140.c even 2 1
200.4.c.e 2 140.j odd 4 2
256.4.b.a 2 112.j even 4 2
256.4.b.g 2 112.l odd 4 2
392.4.a.e 1 4.b odd 2 1
392.4.i.b 2 28.g odd 6 2
392.4.i.g 2 28.f even 6 2
400.4.a.g 1 35.c odd 2 1
400.4.c.i 2 35.f even 4 2
576.4.a.j 1 168.i even 2 1
576.4.a.k 1 168.e odd 2 1
648.4.i.e 2 252.s odd 6 2
648.4.i.h 2 252.bi even 6 2
784.4.a.e 1 1.a even 1 1 trivial
968.4.a.a 1 308.g odd 2 1
1352.4.a.a 1 364.h even 2 1
1600.4.a.o 1 280.n even 2 1
1600.4.a.bm 1 280.c odd 2 1
1800.4.a.d 1 420.o odd 2 1
1800.4.f.u 2 420.w even 4 2
1936.4.a.l 1 77.b even 2 1
2312.4.a.a 1 476.e even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(784))\):

\( T_{3} + 4 \)
\( T_{5} - 2 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \)
$3$ \( 4 + T \)
$5$ \( -2 + T \)
$7$ \( T \)
$11$ \( -44 + T \)
$13$ \( 22 + T \)
$17$ \( 50 + T \)
$19$ \( -44 + T \)
$23$ \( -56 + T \)
$29$ \( -198 + T \)
$31$ \( 160 + T \)
$37$ \( 162 + T \)
$41$ \( -198 + T \)
$43$ \( 52 + T \)
$47$ \( -528 + T \)
$53$ \( 242 + T \)
$59$ \( 668 + T \)
$61$ \( 550 + T \)
$67$ \( 188 + T \)
$71$ \( 728 + T \)
$73$ \( 154 + T \)
$79$ \( -656 + T \)
$83$ \( -236 + T \)
$89$ \( 714 + T \)
$97$ \( -478 + T \)
show more
show less