Properties

Label 784.4
Level 784
Weight 4
Dimension 30251
Nonzero newspaces 16
Sturm bound 150528
Trace bound 3

Downloads

Learn more about

Defining parameters

Level: \( N \) = \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 16 \)
Sturm bound: \(150528\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(784))\).

Total New Old
Modular forms 57288 30688 26600
Cusp forms 55608 30251 25357
Eisenstein series 1680 437 1243

Trace form

\( 30251q - 62q^{2} - 43q^{3} - 52q^{4} - 79q^{5} - 92q^{6} - 54q^{7} - 152q^{8} - 26q^{9} + O(q^{10}) \) \( 30251q - 62q^{2} - 43q^{3} - 52q^{4} - 79q^{5} - 92q^{6} - 54q^{7} - 152q^{8} - 26q^{9} - 128q^{10} + 17q^{11} + 40q^{12} - 49q^{13} - 72q^{14} - 213q^{15} + 220q^{16} - 89q^{17} + 114q^{18} + 425q^{19} - 256q^{20} + 90q^{21} - 696q^{22} - 241q^{23} - 908q^{24} - 1144q^{25} - 324q^{26} - 1315q^{27} - 72q^{28} - 739q^{29} + 1176q^{30} - 237q^{31} + 908q^{32} + 181q^{33} + 376q^{34} + 468q^{35} - 704q^{36} + 1265q^{37} - 1292q^{38} + 1141q^{39} - 1396q^{40} - 207q^{41} - 2664q^{42} - 2183q^{43} - 6584q^{44} - 4977q^{45} - 3128q^{46} - 2129q^{47} + 1468q^{48} + 462q^{49} + 4734q^{50} + 755q^{51} + 8992q^{52} + 4009q^{53} + 16372q^{54} + 2477q^{55} + 4548q^{56} + 9973q^{57} + 8180q^{58} + 4393q^{59} + 11508q^{60} + 3785q^{61} + 2668q^{62} - 84q^{63} - 2452q^{64} - 3281q^{65} - 13688q^{66} + 1205q^{67} - 13060q^{68} - 5361q^{69} - 7512q^{70} + 2227q^{71} - 11256q^{72} + 1435q^{73} - 512q^{74} - 5421q^{75} - 1288q^{76} - 2058q^{77} - 880q^{78} - 9097q^{79} - 2708q^{80} - 7194q^{81} - 764q^{82} - 11813q^{83} - 72q^{84} - 8023q^{85} + 3704q^{86} - 7083q^{87} + 1468q^{88} - 4389q^{89} + 7020q^{90} - 6333q^{91} + 6980q^{92} - 6499q^{93} + 24772q^{94} - 16745q^{95} + 26468q^{96} + 4120q^{97} + 5892q^{98} + 2134q^{99} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(784))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list the newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
784.4.a \(\chi_{784}(1, \cdot)\) 784.4.a.a 1 1
784.4.a.b 1
784.4.a.c 1
784.4.a.d 1
784.4.a.e 1
784.4.a.f 1
784.4.a.g 1
784.4.a.h 1
784.4.a.i 1
784.4.a.j 1
784.4.a.k 1
784.4.a.l 1
784.4.a.m 1
784.4.a.n 1
784.4.a.o 1
784.4.a.p 1
784.4.a.q 1
784.4.a.r 1
784.4.a.s 1
784.4.a.t 2
784.4.a.u 2
784.4.a.v 2
784.4.a.w 2
784.4.a.x 2
784.4.a.y 2
784.4.a.z 2
784.4.a.ba 2
784.4.a.bb 3
784.4.a.bc 3
784.4.a.bd 3
784.4.a.be 3
784.4.a.bf 4
784.4.a.bg 4
784.4.a.bh 4
784.4.b \(\chi_{784}(393, \cdot)\) None 0 1
784.4.e \(\chi_{784}(391, \cdot)\) None 0 1
784.4.f \(\chi_{784}(783, \cdot)\) 784.4.f.a 2 1
784.4.f.b 2
784.4.f.c 2
784.4.f.d 2
784.4.f.e 4
784.4.f.f 4
784.4.f.g 6
784.4.f.h 6
784.4.f.i 8
784.4.f.j 24
784.4.i \(\chi_{784}(177, \cdot)\) n/a 116 2
784.4.j \(\chi_{784}(195, \cdot)\) n/a 472 2
784.4.m \(\chi_{784}(197, \cdot)\) n/a 482 2
784.4.p \(\chi_{784}(31, \cdot)\) n/a 120 2
784.4.q \(\chi_{784}(215, \cdot)\) None 0 2
784.4.t \(\chi_{784}(361, \cdot)\) None 0 2
784.4.u \(\chi_{784}(113, \cdot)\) n/a 498 6
784.4.w \(\chi_{784}(19, \cdot)\) n/a 944 4
784.4.x \(\chi_{784}(165, \cdot)\) n/a 944 4
784.4.bb \(\chi_{784}(111, \cdot)\) n/a 504 6
784.4.bc \(\chi_{784}(55, \cdot)\) None 0 6
784.4.bf \(\chi_{784}(57, \cdot)\) None 0 6
784.4.bg \(\chi_{784}(65, \cdot)\) n/a 996 12
784.4.bh \(\chi_{784}(29, \cdot)\) n/a 4008 12
784.4.bk \(\chi_{784}(27, \cdot)\) n/a 4008 12
784.4.bl \(\chi_{784}(9, \cdot)\) None 0 12
784.4.bo \(\chi_{784}(87, \cdot)\) None 0 12
784.4.bp \(\chi_{784}(47, \cdot)\) n/a 1008 12
784.4.bt \(\chi_{784}(37, \cdot)\) n/a 8016 24
784.4.bu \(\chi_{784}(3, \cdot)\) n/a 8016 24

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(784))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(784)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(7))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(14))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(28))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(49))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(56))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(98))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(112))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(196))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(392))\)\(^{\oplus 2}\)