Properties

Label 784.2.m
Level $784$
Weight $2$
Character orbit 784.m
Rep. character $\chi_{784}(197,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $154$
Newform subspaces $12$
Sturm bound $224$
Trace bound $5$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.m (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 16 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 12 \)
Sturm bound: \(224\)
Trace bound: \(5\)
Distinguishing \(T_p\): \(3\), \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(784, [\chi])\).

Total New Old
Modular forms 240 174 66
Cusp forms 208 154 54
Eisenstein series 32 20 12

Trace form

\( 154 q + 2 q^{2} + 2 q^{3} + 2 q^{5} + 8 q^{6} - 16 q^{8} - 8 q^{10} - 2 q^{11} + 2 q^{13} - 12 q^{15} + 16 q^{16} + 4 q^{17} + 22 q^{18} + 10 q^{19} + 24 q^{20} - 28 q^{22} + 24 q^{24} + 8 q^{26} - 16 q^{27}+ \cdots - 74 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(784, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
784.2.m.a 784.m 16.e $2$ $6.260$ \(\Q(\sqrt{-1}) \) None 112.2.m.b \(-2\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{2}-2 i q^{4}+(-2 i-2)q^{5}+\cdots\)
784.2.m.b 784.m 16.e $2$ $6.260$ \(\Q(\sqrt{-1}) \) None 16.2.e.a \(-2\) \(2\) \(2\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(-i-1)q^{2}+(-i+1)q^{3}+2 i q^{4}+\cdots\)
784.2.m.c 784.m 16.e $2$ $6.260$ \(\Q(\sqrt{-1}) \) None 112.2.m.a \(-2\) \(4\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(i-1)q^{2}+(-2 i+2)q^{3}-2 i q^{4}+\cdots\)
784.2.m.d 784.m 16.e $4$ $6.260$ \(\Q(\zeta_{12})\) None 112.2.w.a \(-2\) \(-2\) \(-6\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_{3}-\beta_{2})q^{2}+\beta_{3} q^{3}+(-\beta_{3}-\beta_1)q^{4}+\cdots\)
784.2.m.e 784.m 16.e $4$ $6.260$ \(\Q(\zeta_{12})\) None 112.2.w.a \(-2\) \(2\) \(6\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+(\beta_1-1)q^{2}+(\beta_{2}-\beta_1+1)q^{3}+\cdots\)
784.2.m.f 784.m 16.e $4$ $6.260$ \(\Q(i, \sqrt{7})\) \(\Q(\sqrt{-7}) \) 784.2.m.f \(0\) \(0\) \(0\) \(0\) $\mathrm{U}(1)[D_{4}]$ \(q-\beta _{1}q^{2}+(1+\beta _{2})q^{4}+(-\beta _{1}-2\beta _{3})q^{8}+\cdots\)
784.2.m.g 784.m 16.e $8$ $6.260$ 8.0.214798336.3 None 112.2.m.c \(2\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta _{3}q^{2}+(\beta _{1}+\beta _{4})q^{3}+(1+\beta _{4}-\beta _{6}+\cdots)q^{4}+\cdots\)
784.2.m.h 784.m 16.e $12$ $6.260$ 12.0.\(\cdots\).1 None 112.2.m.d \(2\) \(-4\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{2}q^{2}+(\beta _{2}-\beta _{10})q^{3}+\beta _{1}q^{4}+(-1+\cdots)q^{5}+\cdots\)
784.2.m.i 784.m 16.e $20$ $6.260$ \(\mathbb{Q}[x]/(x^{20} + \cdots)\) None 784.2.m.i \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q+\beta _{4}q^{2}+\beta _{9}q^{3}-\beta _{17}q^{4}+\beta _{2}q^{5}+\cdots\)
784.2.m.j 784.m 16.e $24$ $6.260$ None 112.2.w.c \(4\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{4}]$
784.2.m.k 784.m 16.e $24$ $6.260$ None 112.2.w.c \(4\) \(0\) \(4\) \(0\) $\mathrm{SU}(2)[C_{4}]$
784.2.m.l 784.m 16.e $48$ $6.260$ None 784.2.m.l \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$

Decomposition of \(S_{2}^{\mathrm{old}}(784, [\chi])\) into lower level spaces

\( S_{2}^{\mathrm{old}}(784, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)