Defining parameters
| Level: | \( N \) | \(=\) | \( 784 = 2^{4} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 784.m (of order \(4\) and degree \(2\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 16 \) |
| Character field: | \(\Q(i)\) | ||
| Newform subspaces: | \( 12 \) | ||
| Sturm bound: | \(224\) | ||
| Trace bound: | \(5\) | ||
| Distinguishing \(T_p\): | \(3\), \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(784, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 240 | 174 | 66 |
| Cusp forms | 208 | 154 | 54 |
| Eisenstein series | 32 | 20 | 12 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(784, [\chi])\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(784, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(784, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(16, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(112, [\chi])\)\(^{\oplus 2}\)