Properties

Label 784.2.j.a.587.14
Level $784$
Weight $2$
Character 784.587
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 587.14
Character \(\chi\) \(=\) 784.587
Dual form 784.2.j.a.195.14

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0617395 + 1.41287i) q^{2} +(0.771824 - 0.771824i) q^{3} +(-1.99238 + 0.174459i) q^{4} +(-1.02430 + 1.02430i) q^{5} +(1.13814 + 1.04283i) q^{6} +(-0.369496 - 2.80419i) q^{8} +1.80857i q^{9} +(-1.51044 - 1.38396i) q^{10} +(3.88550 - 3.88550i) q^{11} +(-1.40311 + 1.67242i) q^{12} +(1.84531 + 1.84531i) q^{13} +1.58116i q^{15} +(3.93913 - 0.695177i) q^{16} +6.57514i q^{17} +(-2.55527 + 0.111660i) q^{18} +(-2.37516 + 2.37516i) q^{19} +(1.86209 - 2.21949i) q^{20} +(5.72958 + 5.24981i) q^{22} +0.512345 q^{23} +(-2.44953 - 1.87916i) q^{24} +2.90162i q^{25} +(-2.49325 + 2.72111i) q^{26} +(3.71137 + 3.71137i) q^{27} +(-2.30263 + 2.30263i) q^{29} +(-2.23396 + 0.0976199i) q^{30} -7.59274 q^{31} +(1.22539 + 5.52254i) q^{32} -5.99785i q^{33} +(-9.28979 + 0.405946i) q^{34} +(-0.315522 - 3.60336i) q^{36} +(2.93978 + 2.93978i) q^{37} +(-3.50243 - 3.20914i) q^{38} +2.84852 q^{39} +(3.25080 + 2.49385i) q^{40} +0.453189 q^{41} +(3.40842 - 3.40842i) q^{43} +(-7.06353 + 8.41925i) q^{44} +(-1.85252 - 1.85252i) q^{45} +(0.0316320 + 0.723875i) q^{46} -3.42936 q^{47} +(2.50376 - 3.57687i) q^{48} +(-4.09960 + 0.179145i) q^{50} +(5.07485 + 5.07485i) q^{51} +(-3.99849 - 3.35463i) q^{52} +(1.00457 + 1.00457i) q^{53} +(-5.01453 + 5.47281i) q^{54} +7.95984i q^{55} +3.66642i q^{57} +(-3.39546 - 3.11114i) q^{58} +(4.81367 + 4.81367i) q^{59} +(-0.275847 - 3.15026i) q^{60} +(-3.57478 - 3.57478i) q^{61} +(-0.468772 - 10.7275i) q^{62} +(-7.72695 + 2.07227i) q^{64} -3.78031 q^{65} +(8.47416 - 0.370305i) q^{66} +(4.53739 + 4.53739i) q^{67} +(-1.14709 - 13.1002i) q^{68} +(0.395441 - 0.395441i) q^{69} +6.44865 q^{71} +(5.07158 - 0.668260i) q^{72} +14.8799 q^{73} +(-3.97201 + 4.33502i) q^{74} +(2.23954 + 2.23954i) q^{75} +(4.31785 - 5.14659i) q^{76} +(0.175866 + 4.02457i) q^{78} -3.85416i q^{79} +(-3.32278 + 4.74691i) q^{80} +0.303337 q^{81} +(0.0279796 + 0.640295i) q^{82} +(-2.44051 + 2.44051i) q^{83} +(-6.73491 - 6.73491i) q^{85} +(5.02607 + 4.60520i) q^{86} +3.55445i q^{87} +(-12.3314 - 9.46001i) q^{88} +7.62687 q^{89} +(2.50299 - 2.73174i) q^{90} +(-1.02079 + 0.0893834i) q^{92} +(-5.86026 + 5.86026i) q^{93} +(-0.211727 - 4.84523i) q^{94} -4.86575i q^{95} +(5.20822 + 3.31664i) q^{96} -11.2152i q^{97} +(7.02722 + 7.02722i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0617395 + 1.41287i 0.0436564 + 0.999047i
\(3\) 0.771824 0.771824i 0.445613 0.445613i −0.448280 0.893893i \(-0.647963\pi\)
0.893893 + 0.448280i \(0.147963\pi\)
\(4\) −1.99238 + 0.174459i −0.996188 + 0.0872296i
\(5\) −1.02430 + 1.02430i −0.458080 + 0.458080i −0.898025 0.439945i \(-0.854998\pi\)
0.439945 + 0.898025i \(0.354998\pi\)
\(6\) 1.13814 + 1.04283i 0.464642 + 0.425734i
\(7\) 0 0
\(8\) −0.369496 2.80419i −0.130636 0.991430i
\(9\) 1.80857i 0.602858i
\(10\) −1.51044 1.38396i −0.477642 0.437646i
\(11\) 3.88550 3.88550i 1.17152 1.17152i 0.189677 0.981847i \(-0.439256\pi\)
0.981847 0.189677i \(-0.0607442\pi\)
\(12\) −1.40311 + 1.67242i −0.405044 + 0.482785i
\(13\) 1.84531 + 1.84531i 0.511798 + 0.511798i 0.915077 0.403279i \(-0.132130\pi\)
−0.403279 + 0.915077i \(0.632130\pi\)
\(14\) 0 0
\(15\) 1.58116i 0.408253i
\(16\) 3.93913 0.695177i 0.984782 0.173794i
\(17\) 6.57514i 1.59471i 0.603513 + 0.797353i \(0.293767\pi\)
−0.603513 + 0.797353i \(0.706233\pi\)
\(18\) −2.55527 + 0.111660i −0.602283 + 0.0263186i
\(19\) −2.37516 + 2.37516i −0.544900 + 0.544900i −0.924961 0.380061i \(-0.875903\pi\)
0.380061 + 0.924961i \(0.375903\pi\)
\(20\) 1.86209 2.21949i 0.416376 0.496292i
\(21\) 0 0
\(22\) 5.72958 + 5.24981i 1.22155 + 1.11926i
\(23\) 0.512345 0.106831 0.0534157 0.998572i \(-0.482989\pi\)
0.0534157 + 0.998572i \(0.482989\pi\)
\(24\) −2.44953 1.87916i −0.500008 0.383581i
\(25\) 2.90162i 0.580325i
\(26\) −2.49325 + 2.72111i −0.488967 + 0.533653i
\(27\) 3.71137 + 3.71137i 0.714254 + 0.714254i
\(28\) 0 0
\(29\) −2.30263 + 2.30263i −0.427587 + 0.427587i −0.887806 0.460219i \(-0.847771\pi\)
0.460219 + 0.887806i \(0.347771\pi\)
\(30\) −2.23396 + 0.0976199i −0.407864 + 0.0178229i
\(31\) −7.59274 −1.36370 −0.681848 0.731494i \(-0.738824\pi\)
−0.681848 + 0.731494i \(0.738824\pi\)
\(32\) 1.22539 + 5.52254i 0.216621 + 0.976256i
\(33\) 5.99785i 1.04409i
\(34\) −9.28979 + 0.405946i −1.59319 + 0.0696191i
\(35\) 0 0
\(36\) −0.315522 3.60336i −0.0525871 0.600560i
\(37\) 2.93978 + 2.93978i 0.483297 + 0.483297i 0.906183 0.422886i \(-0.138983\pi\)
−0.422886 + 0.906183i \(0.638983\pi\)
\(38\) −3.50243 3.20914i −0.568169 0.520592i
\(39\) 2.84852 0.456128
\(40\) 3.25080 + 2.49385i 0.513997 + 0.394313i
\(41\) 0.453189 0.0707762 0.0353881 0.999374i \(-0.488733\pi\)
0.0353881 + 0.999374i \(0.488733\pi\)
\(42\) 0 0
\(43\) 3.40842 3.40842i 0.519779 0.519779i −0.397726 0.917504i \(-0.630200\pi\)
0.917504 + 0.397726i \(0.130200\pi\)
\(44\) −7.06353 + 8.41925i −1.06487 + 1.26925i
\(45\) −1.85252 1.85252i −0.276157 0.276157i
\(46\) 0.0316320 + 0.723875i 0.00466388 + 0.106730i
\(47\) −3.42936 −0.500224 −0.250112 0.968217i \(-0.580467\pi\)
−0.250112 + 0.968217i \(0.580467\pi\)
\(48\) 2.50376 3.57687i 0.361387 0.516277i
\(49\) 0 0
\(50\) −4.09960 + 0.179145i −0.579771 + 0.0253349i
\(51\) 5.07485 + 5.07485i 0.710622 + 0.710622i
\(52\) −3.99849 3.35463i −0.554491 0.465203i
\(53\) 1.00457 + 1.00457i 0.137988 + 0.137988i 0.772727 0.634739i \(-0.218892\pi\)
−0.634739 + 0.772727i \(0.718892\pi\)
\(54\) −5.01453 + 5.47281i −0.682392 + 0.744755i
\(55\) 7.95984i 1.07330i
\(56\) 0 0
\(57\) 3.66642i 0.485629i
\(58\) −3.39546 3.11114i −0.445846 0.408512i
\(59\) 4.81367 + 4.81367i 0.626687 + 0.626687i 0.947233 0.320546i \(-0.103866\pi\)
−0.320546 + 0.947233i \(0.603866\pi\)
\(60\) −0.275847 3.15026i −0.0356118 0.406697i
\(61\) −3.57478 3.57478i −0.457704 0.457704i 0.440197 0.897901i \(-0.354908\pi\)
−0.897901 + 0.440197i \(0.854908\pi\)
\(62\) −0.468772 10.7275i −0.0595341 1.36240i
\(63\) 0 0
\(64\) −7.72695 + 2.07227i −0.965868 + 0.259034i
\(65\) −3.78031 −0.468889
\(66\) 8.47416 0.370305i 1.04310 0.0455813i
\(67\) 4.53739 + 4.53739i 0.554330 + 0.554330i 0.927687 0.373358i \(-0.121794\pi\)
−0.373358 + 0.927687i \(0.621794\pi\)
\(68\) −1.14709 13.1002i −0.139106 1.58863i
\(69\) 0.395441 0.395441i 0.0476055 0.0476055i
\(70\) 0 0
\(71\) 6.44865 0.765314 0.382657 0.923890i \(-0.375009\pi\)
0.382657 + 0.923890i \(0.375009\pi\)
\(72\) 5.07158 0.668260i 0.597692 0.0787552i
\(73\) 14.8799 1.74156 0.870780 0.491673i \(-0.163615\pi\)
0.870780 + 0.491673i \(0.163615\pi\)
\(74\) −3.97201 + 4.33502i −0.461737 + 0.503935i
\(75\) 2.23954 + 2.23954i 0.258600 + 0.258600i
\(76\) 4.31785 5.14659i 0.495291 0.590354i
\(77\) 0 0
\(78\) 0.175866 + 4.02457i 0.0199129 + 0.455693i
\(79\) 3.85416i 0.433627i −0.976213 0.216813i \(-0.930434\pi\)
0.976213 0.216813i \(-0.0695663\pi\)
\(80\) −3.32278 + 4.74691i −0.371498 + 0.530721i
\(81\) 0.303337 0.0337041
\(82\) 0.0279796 + 0.640295i 0.00308983 + 0.0707087i
\(83\) −2.44051 + 2.44051i −0.267881 + 0.267881i −0.828246 0.560365i \(-0.810661\pi\)
0.560365 + 0.828246i \(0.310661\pi\)
\(84\) 0 0
\(85\) −6.73491 6.73491i −0.730503 0.730503i
\(86\) 5.02607 + 4.60520i 0.541975 + 0.496592i
\(87\) 3.55445i 0.381077i
\(88\) −12.3314 9.46001i −1.31453 1.00844i
\(89\) 7.62687 0.808447 0.404223 0.914660i \(-0.367542\pi\)
0.404223 + 0.914660i \(0.367542\pi\)
\(90\) 2.50299 2.73174i 0.263838 0.287950i
\(91\) 0 0
\(92\) −1.02079 + 0.0893834i −0.106424 + 0.00931886i
\(93\) −5.86026 + 5.86026i −0.607681 + 0.607681i
\(94\) −0.211727 4.84523i −0.0218380 0.499747i
\(95\) 4.86575i 0.499216i
\(96\) 5.20822 + 3.31664i 0.531561 + 0.338503i
\(97\) 11.2152i 1.13873i −0.822085 0.569365i \(-0.807189\pi\)
0.822085 0.569365i \(-0.192811\pi\)
\(98\) 0 0
\(99\) 7.02722 + 7.02722i 0.706263 + 0.706263i
\(100\) −0.506215 5.78113i −0.0506215 0.578113i
\(101\) −13.7547 + 13.7547i −1.36865 + 1.36865i −0.506270 + 0.862375i \(0.668976\pi\)
−0.862375 + 0.506270i \(0.831024\pi\)
\(102\) −6.85677 + 7.48340i −0.678921 + 0.740967i
\(103\) 7.10181i 0.699762i −0.936794 0.349881i \(-0.886222\pi\)
0.936794 0.349881i \(-0.113778\pi\)
\(104\) 4.49277 5.85644i 0.440553 0.574271i
\(105\) 0 0
\(106\) −1.35729 + 1.48134i −0.131832 + 0.143880i
\(107\) 8.47936 8.47936i 0.819730 0.819730i −0.166338 0.986069i \(-0.553194\pi\)
0.986069 + 0.166338i \(0.0531944\pi\)
\(108\) −8.04194 6.74697i −0.773836 0.649228i
\(109\) 7.33805 7.33805i 0.702858 0.702858i −0.262165 0.965023i \(-0.584436\pi\)
0.965023 + 0.262165i \(0.0844365\pi\)
\(110\) −11.2462 + 0.491436i −1.07228 + 0.0468566i
\(111\) 4.53799 0.430727
\(112\) 0 0
\(113\) −13.4601 −1.26622 −0.633109 0.774062i \(-0.718222\pi\)
−0.633109 + 0.774062i \(0.718222\pi\)
\(114\) −5.18015 + 0.226363i −0.485166 + 0.0212008i
\(115\) −0.524795 + 0.524795i −0.0489374 + 0.0489374i
\(116\) 4.18598 4.98941i 0.388659 0.463255i
\(117\) −3.33739 + 3.33739i −0.308542 + 0.308542i
\(118\) −6.50388 + 7.09826i −0.598730 + 0.653448i
\(119\) 0 0
\(120\) 4.43386 0.584231i 0.404755 0.0533327i
\(121\) 19.1943i 1.74494i
\(122\) 4.82998 5.27139i 0.437286 0.477249i
\(123\) 0.349782 0.349782i 0.0315388 0.0315388i
\(124\) 15.1276 1.32462i 1.35850 0.118955i
\(125\) −8.09362 8.09362i −0.723916 0.723916i
\(126\) 0 0
\(127\) 13.7356i 1.21884i −0.792849 0.609418i \(-0.791403\pi\)
0.792849 0.609418i \(-0.208597\pi\)
\(128\) −3.40490 10.7892i −0.300953 0.953639i
\(129\) 5.26140i 0.463240i
\(130\) −0.233394 5.34106i −0.0204700 0.468442i
\(131\) 2.06043 2.06043i 0.180020 0.180020i −0.611344 0.791365i \(-0.709371\pi\)
0.791365 + 0.611344i \(0.209371\pi\)
\(132\) 1.04638 + 11.9500i 0.0910758 + 1.04011i
\(133\) 0 0
\(134\) −6.13058 + 6.69085i −0.529601 + 0.578001i
\(135\) −7.60311 −0.654372
\(136\) 18.4379 2.42949i 1.58104 0.208327i
\(137\) 7.22491i 0.617266i −0.951181 0.308633i \(-0.900129\pi\)
0.951181 0.308633i \(-0.0998714\pi\)
\(138\) 0.583119 + 0.534290i 0.0496384 + 0.0454818i
\(139\) −0.708981 0.708981i −0.0601350 0.0601350i 0.676400 0.736535i \(-0.263539\pi\)
−0.736535 + 0.676400i \(0.763539\pi\)
\(140\) 0 0
\(141\) −2.64687 + 2.64687i −0.222906 + 0.222906i
\(142\) 0.398137 + 9.11108i 0.0334109 + 0.764585i
\(143\) 14.3399 1.19917
\(144\) 1.25728 + 7.12421i 0.104773 + 0.593684i
\(145\) 4.71715i 0.391738i
\(146\) 0.918677 + 21.0233i 0.0760303 + 1.73990i
\(147\) 0 0
\(148\) −6.37002 5.34428i −0.523613 0.439297i
\(149\) 6.73169 + 6.73169i 0.551482 + 0.551482i 0.926868 0.375387i \(-0.122490\pi\)
−0.375387 + 0.926868i \(0.622490\pi\)
\(150\) −3.02591 + 3.30244i −0.247064 + 0.269643i
\(151\) −7.10145 −0.577908 −0.288954 0.957343i \(-0.593307\pi\)
−0.288954 + 0.957343i \(0.593307\pi\)
\(152\) 7.53802 + 5.78279i 0.611414 + 0.469046i
\(153\) −11.8916 −0.961381
\(154\) 0 0
\(155\) 7.77723 7.77723i 0.624683 0.624683i
\(156\) −5.67532 + 0.496950i −0.454389 + 0.0397878i
\(157\) 6.20590 + 6.20590i 0.495285 + 0.495285i 0.909966 0.414682i \(-0.136107\pi\)
−0.414682 + 0.909966i \(0.636107\pi\)
\(158\) 5.44541 0.237954i 0.433214 0.0189306i
\(159\) 1.55070 0.122978
\(160\) −6.91190 4.40156i −0.546433 0.347974i
\(161\) 0 0
\(162\) 0.0187278 + 0.428574i 0.00147140 + 0.0336719i
\(163\) −8.97988 8.97988i −0.703358 0.703358i 0.261772 0.965130i \(-0.415693\pi\)
−0.965130 + 0.261772i \(0.915693\pi\)
\(164\) −0.902922 + 0.0790629i −0.0705064 + 0.00617378i
\(165\) 6.14360 + 6.14360i 0.478278 + 0.478278i
\(166\) −3.59879 3.29744i −0.279320 0.255931i
\(167\) 21.5280i 1.66588i 0.553361 + 0.832942i \(0.313345\pi\)
−0.553361 + 0.832942i \(0.686655\pi\)
\(168\) 0 0
\(169\) 6.18963i 0.476126i
\(170\) 9.09971 9.93133i 0.697916 0.761698i
\(171\) −4.29566 4.29566i −0.328497 0.328497i
\(172\) −6.19622 + 7.38548i −0.472458 + 0.563138i
\(173\) −14.1638 14.1638i −1.07685 1.07685i −0.996790 0.0800649i \(-0.974487\pi\)
−0.0800649 0.996790i \(-0.525513\pi\)
\(174\) −5.02195 + 0.219450i −0.380713 + 0.0166364i
\(175\) 0 0
\(176\) 12.6044 18.0066i 0.950091 1.35730i
\(177\) 7.43062 0.558520
\(178\) 0.470879 + 10.7757i 0.0352939 + 0.807676i
\(179\) 4.81665 + 4.81665i 0.360013 + 0.360013i 0.863818 0.503804i \(-0.168067\pi\)
−0.503804 + 0.863818i \(0.668067\pi\)
\(180\) 4.01411 + 3.36773i 0.299194 + 0.251016i
\(181\) 6.32019 6.32019i 0.469776 0.469776i −0.432066 0.901842i \(-0.642215\pi\)
0.901842 + 0.432066i \(0.142215\pi\)
\(182\) 0 0
\(183\) −5.51821 −0.407917
\(184\) −0.189309 1.43671i −0.0139561 0.105916i
\(185\) −6.02243 −0.442778
\(186\) −8.64157 7.91795i −0.633631 0.580572i
\(187\) 25.5477 + 25.5477i 1.86824 + 1.86824i
\(188\) 6.83259 0.598284i 0.498318 0.0436344i
\(189\) 0 0
\(190\) 6.87465 0.300409i 0.498740 0.0217940i
\(191\) 13.3222i 0.963964i 0.876181 + 0.481982i \(0.160083\pi\)
−0.876181 + 0.481982i \(0.839917\pi\)
\(192\) −4.36442 + 7.56327i −0.314975 + 0.545832i
\(193\) −10.5154 −0.756918 −0.378459 0.925618i \(-0.623546\pi\)
−0.378459 + 0.925618i \(0.623546\pi\)
\(194\) 15.8456 0.692421i 1.13765 0.0497129i
\(195\) −2.91773 + 2.91773i −0.208943 + 0.208943i
\(196\) 0 0
\(197\) 14.0642 + 14.0642i 1.00203 + 1.00203i 0.999998 + 0.00203129i \(0.000646580\pi\)
0.00203129 + 0.999998i \(0.499353\pi\)
\(198\) −9.49466 + 10.3624i −0.674756 + 0.736422i
\(199\) 24.1913i 1.71488i −0.514585 0.857439i \(-0.672054\pi\)
0.514585 0.857439i \(-0.327946\pi\)
\(200\) 8.13670 1.07214i 0.575352 0.0758116i
\(201\) 7.00413 0.494033
\(202\) −20.2828 18.5843i −1.42709 1.30759i
\(203\) 0 0
\(204\) −10.9964 9.22566i −0.769900 0.645926i
\(205\) −0.464201 + 0.464201i −0.0324212 + 0.0324212i
\(206\) 10.0339 0.438462i 0.699095 0.0305491i
\(207\) 0.926615i 0.0644042i
\(208\) 8.55175 + 5.98611i 0.592957 + 0.415062i
\(209\) 18.4574i 1.27673i
\(210\) 0 0
\(211\) 8.81296 + 8.81296i 0.606709 + 0.606709i 0.942085 0.335375i \(-0.108863\pi\)
−0.335375 + 0.942085i \(0.608863\pi\)
\(212\) −2.17673 1.82622i −0.149498 0.125425i
\(213\) 4.97723 4.97723i 0.341034 0.341034i
\(214\) 12.5037 + 11.4567i 0.854735 + 0.783162i
\(215\) 6.98248i 0.476201i
\(216\) 9.03606 11.7787i 0.614826 0.801441i
\(217\) 0 0
\(218\) 10.8207 + 9.91463i 0.732872 + 0.671504i
\(219\) 11.4847 11.4847i 0.776062 0.776062i
\(220\) −1.38867 15.8590i −0.0936239 1.06921i
\(221\) −12.1332 + 12.1332i −0.816167 + 0.816167i
\(222\) 0.280173 + 6.41157i 0.0188040 + 0.430316i
\(223\) 5.44902 0.364893 0.182447 0.983216i \(-0.441598\pi\)
0.182447 + 0.983216i \(0.441598\pi\)
\(224\) 0 0
\(225\) −5.24780 −0.349853
\(226\) −0.831019 19.0173i −0.0552786 1.26501i
\(227\) −1.06414 + 1.06414i −0.0706293 + 0.0706293i −0.741539 0.670910i \(-0.765904\pi\)
0.670910 + 0.741539i \(0.265904\pi\)
\(228\) −0.639640 7.30488i −0.0423612 0.483778i
\(229\) 3.49849 3.49849i 0.231187 0.231187i −0.582001 0.813188i \(-0.697730\pi\)
0.813188 + 0.582001i \(0.197730\pi\)
\(230\) −0.773865 0.709064i −0.0510271 0.0467543i
\(231\) 0 0
\(232\) 7.30781 + 5.60619i 0.479781 + 0.368064i
\(233\) 12.4306i 0.814354i −0.913349 0.407177i \(-0.866513\pi\)
0.913349 0.407177i \(-0.133487\pi\)
\(234\) −4.92133 4.50923i −0.321717 0.294778i
\(235\) 3.51269 3.51269i 0.229143 0.229143i
\(236\) −10.4304 8.75086i −0.678964 0.569632i
\(237\) −2.97474 2.97474i −0.193230 0.193230i
\(238\) 0 0
\(239\) 7.34038i 0.474810i 0.971411 + 0.237405i \(0.0762968\pi\)
−0.971411 + 0.237405i \(0.923703\pi\)
\(240\) 1.09918 + 6.22838i 0.0709520 + 0.402040i
\(241\) 10.3739i 0.668241i −0.942530 0.334120i \(-0.891561\pi\)
0.942530 0.334120i \(-0.108439\pi\)
\(242\) 27.1189 1.18505i 1.74327 0.0761776i
\(243\) −10.9000 + 10.9000i −0.699235 + 0.699235i
\(244\) 7.74596 + 6.49865i 0.495884 + 0.416034i
\(245\) 0 0
\(246\) 0.515790 + 0.472600i 0.0328856 + 0.0301318i
\(247\) −8.76584 −0.557757
\(248\) 2.80548 + 21.2915i 0.178148 + 1.35201i
\(249\) 3.76729i 0.238743i
\(250\) 10.9355 11.9349i 0.691622 0.754829i
\(251\) 0.401720 + 0.401720i 0.0253563 + 0.0253563i 0.719671 0.694315i \(-0.244293\pi\)
−0.694315 + 0.719671i \(0.744293\pi\)
\(252\) 0 0
\(253\) 1.99072 1.99072i 0.125156 0.125156i
\(254\) 19.4065 0.848029i 1.21767 0.0532100i
\(255\) −10.3963 −0.651044
\(256\) 15.0335 5.47678i 0.939591 0.342299i
\(257\) 9.14767i 0.570616i −0.958436 0.285308i \(-0.907904\pi\)
0.958436 0.285308i \(-0.0920958\pi\)
\(258\) 7.43365 0.324836i 0.462799 0.0202234i
\(259\) 0 0
\(260\) 7.53179 0.659509i 0.467102 0.0409010i
\(261\) −4.16447 4.16447i −0.257774 0.257774i
\(262\) 3.03832 + 2.78390i 0.187708 + 0.171990i
\(263\) 4.58232 0.282558 0.141279 0.989970i \(-0.454879\pi\)
0.141279 + 0.989970i \(0.454879\pi\)
\(264\) −16.8191 + 2.21618i −1.03514 + 0.136397i
\(265\) −2.05795 −0.126419
\(266\) 0 0
\(267\) 5.88661 5.88661i 0.360254 0.360254i
\(268\) −9.83177 8.24859i −0.600571 0.503863i
\(269\) −6.75155 6.75155i −0.411649 0.411649i 0.470664 0.882313i \(-0.344015\pi\)
−0.882313 + 0.470664i \(0.844015\pi\)
\(270\) −0.469412 10.7422i −0.0285675 0.653748i
\(271\) 7.28357 0.442445 0.221223 0.975223i \(-0.428995\pi\)
0.221223 + 0.975223i \(0.428995\pi\)
\(272\) 4.57088 + 25.9003i 0.277151 + 1.57044i
\(273\) 0 0
\(274\) 10.2078 0.446062i 0.616677 0.0269476i
\(275\) 11.2743 + 11.2743i 0.679864 + 0.679864i
\(276\) −0.718878 + 0.856855i −0.0432714 + 0.0515766i
\(277\) −22.8930 22.8930i −1.37551 1.37551i −0.852056 0.523450i \(-0.824645\pi\)
−0.523450 0.852056i \(-0.675355\pi\)
\(278\) 0.957922 1.04547i 0.0574523 0.0627029i
\(279\) 13.7320i 0.822115i
\(280\) 0 0
\(281\) 4.09880i 0.244514i 0.992498 + 0.122257i \(0.0390132\pi\)
−0.992498 + 0.122257i \(0.960987\pi\)
\(282\) −3.90308 3.57625i −0.232425 0.212963i
\(283\) 9.65973 + 9.65973i 0.574211 + 0.574211i 0.933302 0.359091i \(-0.116913\pi\)
−0.359091 + 0.933302i \(0.616913\pi\)
\(284\) −12.8481 + 1.12503i −0.762397 + 0.0667581i
\(285\) −3.75551 3.75551i −0.222457 0.222457i
\(286\) 0.885341 + 20.2604i 0.0523513 + 1.19802i
\(287\) 0 0
\(288\) −9.98792 + 2.21621i −0.588544 + 0.130591i
\(289\) −26.2325 −1.54309
\(290\) 6.66470 0.291235i 0.391365 0.0171019i
\(291\) −8.65616 8.65616i −0.507433 0.507433i
\(292\) −29.6463 + 2.59593i −1.73492 + 0.151916i
\(293\) 16.6941 16.6941i 0.975280 0.975280i −0.0244213 0.999702i \(-0.507774\pi\)
0.999702 + 0.0244213i \(0.00777432\pi\)
\(294\) 0 0
\(295\) −9.86128 −0.574146
\(296\) 7.15746 9.32994i 0.416019 0.542292i
\(297\) 28.8411 1.67353
\(298\) −9.09536 + 9.92658i −0.526880 + 0.575032i
\(299\) 0.945438 + 0.945438i 0.0546761 + 0.0546761i
\(300\) −4.85272 4.07131i −0.280172 0.235057i
\(301\) 0 0
\(302\) −0.438440 10.0334i −0.0252294 0.577357i
\(303\) 21.2324i 1.21977i
\(304\) −7.70491 + 11.0072i −0.441907 + 0.631308i
\(305\) 7.32329 0.419330
\(306\) −0.734183 16.8013i −0.0419705 0.960465i
\(307\) 16.7590 16.7590i 0.956484 0.956484i −0.0426074 0.999092i \(-0.513566\pi\)
0.999092 + 0.0426074i \(0.0135665\pi\)
\(308\) 0 0
\(309\) −5.48135 5.48135i −0.311823 0.311823i
\(310\) 11.4683 + 10.5080i 0.651358 + 0.596816i
\(311\) 21.4836i 1.21822i −0.793085 0.609111i \(-0.791526\pi\)
0.793085 0.609111i \(-0.208474\pi\)
\(312\) −1.05251 7.98778i −0.0595869 0.452219i
\(313\) 20.8499 1.17851 0.589253 0.807949i \(-0.299422\pi\)
0.589253 + 0.807949i \(0.299422\pi\)
\(314\) −8.38495 + 9.15125i −0.473190 + 0.516435i
\(315\) 0 0
\(316\) 0.672394 + 7.67894i 0.0378251 + 0.431974i
\(317\) −10.5401 + 10.5401i −0.591992 + 0.591992i −0.938169 0.346177i \(-0.887480\pi\)
0.346177 + 0.938169i \(0.387480\pi\)
\(318\) 0.0957392 + 2.19092i 0.00536879 + 0.122861i
\(319\) 17.8937i 1.00186i
\(320\) 5.79208 10.0373i 0.323787 0.561104i
\(321\) 13.0891i 0.730565i
\(322\) 0 0
\(323\) −15.6170 15.6170i −0.868955 0.868955i
\(324\) −0.604361 + 0.0529198i −0.0335756 + 0.00293999i
\(325\) −5.35441 + 5.35441i −0.297009 + 0.297009i
\(326\) 12.1329 13.2418i 0.671982 0.733394i
\(327\) 11.3274i 0.626405i
\(328\) −0.167451 1.27083i −0.00924595 0.0701697i
\(329\) 0 0
\(330\) −8.30077 + 9.05938i −0.456942 + 0.498702i
\(331\) −2.11564 + 2.11564i −0.116286 + 0.116286i −0.762855 0.646569i \(-0.776203\pi\)
0.646569 + 0.762855i \(0.276203\pi\)
\(332\) 4.43665 5.28819i 0.243493 0.290227i
\(333\) −5.31681 + 5.31681i −0.291360 + 0.291360i
\(334\) −30.4161 + 1.32913i −1.66430 + 0.0727265i
\(335\) −9.29528 −0.507855
\(336\) 0 0
\(337\) −20.5605 −1.12000 −0.560000 0.828493i \(-0.689199\pi\)
−0.560000 + 0.828493i \(0.689199\pi\)
\(338\) 8.74512 0.382145i 0.475672 0.0207859i
\(339\) −10.3888 + 10.3888i −0.564243 + 0.564243i
\(340\) 14.5934 + 12.2435i 0.791440 + 0.663997i
\(341\) −29.5016 + 29.5016i −1.59760 + 1.59760i
\(342\) 5.80397 6.33440i 0.313843 0.342525i
\(343\) 0 0
\(344\) −10.8172 8.29845i −0.583227 0.447422i
\(345\) 0.810099i 0.0436143i
\(346\) 19.1371 20.8860i 1.02882 1.12284i
\(347\) −4.23701 + 4.23701i −0.227455 + 0.227455i −0.811629 0.584174i \(-0.801419\pi\)
0.584174 + 0.811629i \(0.301419\pi\)
\(348\) −0.620106 7.08179i −0.0332412 0.379624i
\(349\) −3.15549 3.15549i −0.168909 0.168909i 0.617590 0.786500i \(-0.288109\pi\)
−0.786500 + 0.617590i \(0.788109\pi\)
\(350\) 0 0
\(351\) 13.6973i 0.731108i
\(352\) 26.2191 + 16.6966i 1.39748 + 0.889931i
\(353\) 6.96846i 0.370894i 0.982654 + 0.185447i \(0.0593732\pi\)
−0.982654 + 0.185447i \(0.940627\pi\)
\(354\) 0.458763 + 10.4985i 0.0243830 + 0.557987i
\(355\) −6.60535 + 6.60535i −0.350575 + 0.350575i
\(356\) −15.1956 + 1.33058i −0.805365 + 0.0705205i
\(357\) 0 0
\(358\) −6.50790 + 7.10265i −0.343953 + 0.375387i
\(359\) −37.2374 −1.96531 −0.982656 0.185437i \(-0.940630\pi\)
−0.982656 + 0.185437i \(0.940630\pi\)
\(360\) −4.51032 + 5.87932i −0.237715 + 0.309867i
\(361\) 7.71720i 0.406169i
\(362\) 9.31978 + 8.53937i 0.489837 + 0.448819i
\(363\) −14.8146 14.8146i −0.777566 0.777566i
\(364\) 0 0
\(365\) −15.2415 + 15.2415i −0.797774 + 0.797774i
\(366\) −0.340691 7.79648i −0.0178082 0.407529i
\(367\) −26.0782 −1.36127 −0.680637 0.732621i \(-0.738297\pi\)
−0.680637 + 0.732621i \(0.738297\pi\)
\(368\) 2.01819 0.356171i 0.105206 0.0185667i
\(369\) 0.819625i 0.0426680i
\(370\) −0.371822 8.50888i −0.0193301 0.442356i
\(371\) 0 0
\(372\) 10.6535 12.6982i 0.552357 0.658372i
\(373\) 25.8637 + 25.8637i 1.33917 + 1.33917i 0.896865 + 0.442305i \(0.145839\pi\)
0.442305 + 0.896865i \(0.354161\pi\)
\(374\) −34.5182 + 37.6728i −1.78489 + 1.94801i
\(375\) −12.4937 −0.645173
\(376\) 1.26714 + 9.61658i 0.0653475 + 0.495937i
\(377\) −8.49813 −0.437676
\(378\) 0 0
\(379\) −0.261074 + 0.261074i −0.0134105 + 0.0134105i −0.713780 0.700370i \(-0.753018\pi\)
0.700370 + 0.713780i \(0.253018\pi\)
\(380\) 0.848875 + 9.69441i 0.0435464 + 0.497313i
\(381\) −10.6015 10.6015i −0.543129 0.543129i
\(382\) −18.8225 + 0.822509i −0.963045 + 0.0420832i
\(383\) −17.5370 −0.896097 −0.448048 0.894009i \(-0.647881\pi\)
−0.448048 + 0.894009i \(0.647881\pi\)
\(384\) −10.9553 5.69938i −0.559063 0.290845i
\(385\) 0 0
\(386\) −0.649218 14.8569i −0.0330443 0.756197i
\(387\) 6.16438 + 6.16438i 0.313353 + 0.313353i
\(388\) 1.95659 + 22.3449i 0.0993310 + 1.13439i
\(389\) 15.7537 + 15.7537i 0.798744 + 0.798744i 0.982897 0.184154i \(-0.0589544\pi\)
−0.184154 + 0.982897i \(0.558954\pi\)
\(390\) −4.30250 3.94222i −0.217866 0.199622i
\(391\) 3.36874i 0.170365i
\(392\) 0 0
\(393\) 3.18058i 0.160439i
\(394\) −19.0024 + 20.7391i −0.957329 + 1.04482i
\(395\) 3.94781 + 3.94781i 0.198636 + 0.198636i
\(396\) −15.2268 12.7749i −0.765177 0.641963i
\(397\) 16.7346 + 16.7346i 0.839885 + 0.839885i 0.988843 0.148958i \(-0.0475921\pi\)
−0.148958 + 0.988843i \(0.547592\pi\)
\(398\) 34.1791 1.49356i 1.71324 0.0748655i
\(399\) 0 0
\(400\) 2.01714 + 11.4299i 0.100857 + 0.571493i
\(401\) 7.74461 0.386747 0.193374 0.981125i \(-0.438057\pi\)
0.193374 + 0.981125i \(0.438057\pi\)
\(402\) 0.432431 + 9.89589i 0.0215677 + 0.493562i
\(403\) −14.0110 14.0110i −0.697937 0.697937i
\(404\) 25.0049 29.8042i 1.24404 1.48281i
\(405\) −0.310707 + 0.310707i −0.0154392 + 0.0154392i
\(406\) 0 0
\(407\) 22.8451 1.13239
\(408\) 12.3557 16.1060i 0.611699 0.797365i
\(409\) −31.9303 −1.57885 −0.789425 0.613847i \(-0.789621\pi\)
−0.789425 + 0.613847i \(0.789621\pi\)
\(410\) −0.684512 0.627193i −0.0338057 0.0309749i
\(411\) −5.57636 5.57636i −0.275062 0.275062i
\(412\) 1.23898 + 14.1495i 0.0610400 + 0.697095i
\(413\) 0 0
\(414\) −1.30918 + 0.0572087i −0.0643428 + 0.00281166i
\(415\) 4.99963i 0.245422i
\(416\) −7.92958 + 12.4520i −0.388780 + 0.610512i
\(417\) −1.09442 −0.0535938
\(418\) −26.0778 + 1.13955i −1.27551 + 0.0557373i
\(419\) −6.96449 + 6.96449i −0.340238 + 0.340238i −0.856457 0.516219i \(-0.827339\pi\)
0.516219 + 0.856457i \(0.327339\pi\)
\(420\) 0 0
\(421\) 6.31935 + 6.31935i 0.307986 + 0.307986i 0.844128 0.536142i \(-0.180119\pi\)
−0.536142 + 0.844128i \(0.680119\pi\)
\(422\) −11.9074 + 12.9956i −0.579644 + 0.632617i
\(423\) 6.20226i 0.301564i
\(424\) 2.44581 3.18817i 0.118779 0.154831i
\(425\) −19.0786 −0.925447
\(426\) 7.33944 + 6.72486i 0.355597 + 0.325821i
\(427\) 0 0
\(428\) −15.4148 + 18.3734i −0.745101 + 0.888110i
\(429\) 11.0679 11.0679i 0.534364 0.534364i
\(430\) −9.86530 + 0.431095i −0.475747 + 0.0207892i
\(431\) 6.48444i 0.312344i −0.987730 0.156172i \(-0.950085\pi\)
0.987730 0.156172i \(-0.0499155\pi\)
\(432\) 17.1996 + 12.0395i 0.827518 + 0.579252i
\(433\) 17.1718i 0.825223i −0.910907 0.412612i \(-0.864617\pi\)
0.910907 0.412612i \(-0.135383\pi\)
\(434\) 0 0
\(435\) −3.64081 3.64081i −0.174564 0.174564i
\(436\) −13.3400 + 15.9004i −0.638869 + 0.761489i
\(437\) −1.21690 + 1.21690i −0.0582124 + 0.0582124i
\(438\) 16.9353 + 15.5172i 0.809202 + 0.741442i
\(439\) 31.2986i 1.49380i −0.664937 0.746900i \(-0.731542\pi\)
0.664937 0.746900i \(-0.268458\pi\)
\(440\) 22.3209 2.94112i 1.06411 0.140213i
\(441\) 0 0
\(442\) −17.8917 16.3935i −0.851020 0.779758i
\(443\) 8.57187 8.57187i 0.407262 0.407262i −0.473521 0.880783i \(-0.657017\pi\)
0.880783 + 0.473521i \(0.157017\pi\)
\(444\) −9.04138 + 0.791694i −0.429085 + 0.0375721i
\(445\) −7.81220 + 7.81220i −0.370334 + 0.370334i
\(446\) 0.336420 + 7.69873i 0.0159299 + 0.364545i
\(447\) 10.3914 0.491495
\(448\) 0 0
\(449\) 33.4968 1.58081 0.790406 0.612583i \(-0.209869\pi\)
0.790406 + 0.612583i \(0.209869\pi\)
\(450\) −0.323997 7.41444i −0.0152733 0.349520i
\(451\) 1.76087 1.76087i 0.0829160 0.0829160i
\(452\) 26.8176 2.34824i 1.26139 0.110452i
\(453\) −5.48108 + 5.48108i −0.257523 + 0.257523i
\(454\) −1.56918 1.43778i −0.0736454 0.0674786i
\(455\) 0 0
\(456\) 10.2813 1.35473i 0.481467 0.0634408i
\(457\) 3.01270i 0.140928i −0.997514 0.0704641i \(-0.977552\pi\)
0.997514 0.0704641i \(-0.0224480\pi\)
\(458\) 5.15889 + 4.72690i 0.241059 + 0.220873i
\(459\) −24.4028 + 24.4028i −1.13903 + 1.13903i
\(460\) 0.954034 1.13714i 0.0444820 0.0530196i
\(461\) 20.6763 + 20.6763i 0.962993 + 0.962993i 0.999339 0.0363467i \(-0.0115721\pi\)
−0.0363467 + 0.999339i \(0.511572\pi\)
\(462\) 0 0
\(463\) 11.6775i 0.542697i 0.962481 + 0.271349i \(0.0874696\pi\)
−0.962481 + 0.271349i \(0.912530\pi\)
\(464\) −7.46961 + 10.6711i −0.346768 + 0.495392i
\(465\) 12.0053i 0.556733i
\(466\) 17.5627 0.767457i 0.813577 0.0355518i
\(467\) 7.17951 7.17951i 0.332228 0.332228i −0.521204 0.853432i \(-0.674517\pi\)
0.853432 + 0.521204i \(0.174517\pi\)
\(468\) 6.06709 7.23157i 0.280451 0.334279i
\(469\) 0 0
\(470\) 5.17984 + 4.74609i 0.238928 + 0.218921i
\(471\) 9.57973 0.441411
\(472\) 11.7198 15.2771i 0.539448 0.703184i
\(473\) 26.4868i 1.21787i
\(474\) 4.01924 4.38656i 0.184610 0.201481i
\(475\) −6.89183 6.89183i −0.316219 0.316219i
\(476\) 0 0
\(477\) −1.81683 + 1.81683i −0.0831870 + 0.0831870i
\(478\) −10.3710 + 0.453192i −0.474357 + 0.0207285i
\(479\) 11.4462 0.522992 0.261496 0.965205i \(-0.415784\pi\)
0.261496 + 0.965205i \(0.415784\pi\)
\(480\) −8.73200 + 1.93754i −0.398560 + 0.0884360i
\(481\) 10.8496i 0.494701i
\(482\) 14.6569 0.640478i 0.667604 0.0291730i
\(483\) 0 0
\(484\) 3.34862 + 38.2423i 0.152210 + 1.73828i
\(485\) 11.4877 + 11.4877i 0.521630 + 0.521630i
\(486\) −16.0732 14.7273i −0.729095 0.668043i
\(487\) −9.70073 −0.439582 −0.219791 0.975547i \(-0.570538\pi\)
−0.219791 + 0.975547i \(0.570538\pi\)
\(488\) −8.70349 + 11.3452i −0.393989 + 0.513574i
\(489\) −13.8618 −0.626851
\(490\) 0 0
\(491\) −11.4667 + 11.4667i −0.517483 + 0.517483i −0.916809 0.399326i \(-0.869244\pi\)
0.399326 + 0.916809i \(0.369244\pi\)
\(492\) −0.635875 + 0.757920i −0.0286675 + 0.0341697i
\(493\) −15.1401 15.1401i −0.681875 0.681875i
\(494\) −0.541199 12.3850i −0.0243497 0.557225i
\(495\) −14.3960 −0.647050
\(496\) −29.9088 + 5.27830i −1.34294 + 0.237002i
\(497\) 0 0
\(498\) −5.32268 + 0.232591i −0.238515 + 0.0104226i
\(499\) 13.4945 + 13.4945i 0.604095 + 0.604095i 0.941397 0.337302i \(-0.109514\pi\)
−0.337302 + 0.941397i \(0.609514\pi\)
\(500\) 17.5376 + 14.7135i 0.784303 + 0.658009i
\(501\) 16.6158 + 16.6158i 0.742339 + 0.742339i
\(502\) −0.542774 + 0.592378i −0.0242252 + 0.0264391i
\(503\) 22.4043i 0.998960i −0.866325 0.499480i \(-0.833524\pi\)
0.866325 0.499480i \(-0.166476\pi\)
\(504\) 0 0
\(505\) 28.1779i 1.25390i
\(506\) 2.93553 + 2.68971i 0.130500 + 0.119572i
\(507\) −4.77731 4.77731i −0.212168 0.212168i
\(508\) 2.39630 + 27.3665i 0.106319 + 1.21419i
\(509\) 10.6969 + 10.6969i 0.474132 + 0.474132i 0.903249 0.429117i \(-0.141175\pi\)
−0.429117 + 0.903249i \(0.641175\pi\)
\(510\) −0.641864 14.6886i −0.0284222 0.650423i
\(511\) 0 0
\(512\) 8.66611 + 20.9021i 0.382992 + 0.923752i
\(513\) −17.6302 −0.778394
\(514\) 12.9244 0.564772i 0.570072 0.0249110i
\(515\) 7.27438 + 7.27438i 0.320547 + 0.320547i
\(516\) 0.917900 + 10.4827i 0.0404083 + 0.461475i
\(517\) −13.3248 + 13.3248i −0.586025 + 0.586025i
\(518\) 0 0
\(519\) −21.8639 −0.959721
\(520\) 1.39681 + 10.6007i 0.0612540 + 0.464871i
\(521\) 7.27601 0.318768 0.159384 0.987217i \(-0.449049\pi\)
0.159384 + 0.987217i \(0.449049\pi\)
\(522\) 5.62672 6.14095i 0.246275 0.268782i
\(523\) −12.7559 12.7559i −0.557776 0.557776i 0.370898 0.928674i \(-0.379050\pi\)
−0.928674 + 0.370898i \(0.879050\pi\)
\(524\) −3.74569 + 4.46461i −0.163631 + 0.195037i
\(525\) 0 0
\(526\) 0.282910 + 6.47421i 0.0123355 + 0.282289i
\(527\) 49.9233i 2.17469i
\(528\) −4.16957 23.6263i −0.181457 1.02820i
\(529\) −22.7375 −0.988587
\(530\) −0.127057 2.90761i −0.00551900 0.126298i
\(531\) −8.70588 + 8.70588i −0.377803 + 0.377803i
\(532\) 0 0
\(533\) 0.836275 + 0.836275i 0.0362231 + 0.0362231i
\(534\) 8.68042 + 7.95354i 0.375638 + 0.344184i
\(535\) 17.3708i 0.751005i
\(536\) 11.0471 14.4002i 0.477164 0.621995i
\(537\) 7.43522 0.320853
\(538\) 9.12219 9.95586i 0.393286 0.429228i
\(539\) 0 0
\(540\) 15.1483 1.32643i 0.651878 0.0570806i
\(541\) 1.91584 1.91584i 0.0823686 0.0823686i −0.664722 0.747091i \(-0.731450\pi\)
0.747091 + 0.664722i \(0.231450\pi\)
\(542\) 0.449684 + 10.2907i 0.0193156 + 0.442023i
\(543\) 9.75615i 0.418677i
\(544\) −36.3115 + 8.05712i −1.55684 + 0.345446i
\(545\) 15.0327i 0.643931i
\(546\) 0 0
\(547\) −20.4366 20.4366i −0.873807 0.873807i 0.119078 0.992885i \(-0.462006\pi\)
−0.992885 + 0.119078i \(0.962006\pi\)
\(548\) 1.26045 + 14.3947i 0.0538438 + 0.614913i
\(549\) 6.46526 6.46526i 0.275930 0.275930i
\(550\) −15.2330 + 16.6251i −0.649536 + 0.708896i
\(551\) 10.9382i 0.465984i
\(552\) −1.25500 0.962777i −0.0534165 0.0409785i
\(553\) 0 0
\(554\) 30.9313 33.7581i 1.31415 1.43424i
\(555\) −4.64826 + 4.64826i −0.197308 + 0.197308i
\(556\) 1.53624 + 1.28887i 0.0651513 + 0.0546602i
\(557\) 3.33915 3.33915i 0.141484 0.141484i −0.632817 0.774301i \(-0.718101\pi\)
0.774301 + 0.632817i \(0.218101\pi\)
\(558\) 19.4015 0.847809i 0.821332 0.0358906i
\(559\) 12.5792 0.532044
\(560\) 0 0
\(561\) 39.4367 1.66502
\(562\) −5.79105 + 0.253058i −0.244281 + 0.0106746i
\(563\) 5.18939 5.18939i 0.218707 0.218707i −0.589247 0.807953i \(-0.700575\pi\)
0.807953 + 0.589247i \(0.200575\pi\)
\(564\) 4.81179 5.73533i 0.202613 0.241501i
\(565\) 13.7872 13.7872i 0.580030 0.580030i
\(566\) −13.0515 + 14.2443i −0.548596 + 0.598732i
\(567\) 0 0
\(568\) −2.38275 18.0832i −0.0999779 0.758756i
\(569\) 12.4715i 0.522833i 0.965226 + 0.261416i \(0.0841896\pi\)
−0.965226 + 0.261416i \(0.915810\pi\)
\(570\) 5.07416 5.53789i 0.212533 0.231957i
\(571\) 27.1588 27.1588i 1.13656 1.13656i 0.147497 0.989063i \(-0.452878\pi\)
0.989063 0.147497i \(-0.0471216\pi\)
\(572\) −28.5706 + 2.50174i −1.19460 + 0.104603i
\(573\) 10.2824 + 10.2824i 0.429555 + 0.429555i
\(574\) 0 0
\(575\) 1.48663i 0.0619969i
\(576\) −3.74786 13.9748i −0.156161 0.582281i
\(577\) 18.9417i 0.788552i −0.918992 0.394276i \(-0.870995\pi\)
0.918992 0.394276i \(-0.129005\pi\)
\(578\) −1.61958 37.0629i −0.0673656 1.54162i
\(579\) −8.11608 + 8.11608i −0.337293 + 0.337293i
\(580\) 0.822951 + 9.39835i 0.0341712 + 0.390245i
\(581\) 0 0
\(582\) 11.6956 12.7644i 0.484797 0.529102i
\(583\) 7.80649 0.323312
\(584\) −5.49806 41.7260i −0.227511 1.72663i
\(585\) 6.83696i 0.282674i
\(586\) 24.6172 + 22.5558i 1.01693 + 0.931773i
\(587\) −7.54134 7.54134i −0.311264 0.311264i 0.534135 0.845399i \(-0.320637\pi\)
−0.845399 + 0.534135i \(0.820637\pi\)
\(588\) 0 0
\(589\) 18.0340 18.0340i 0.743078 0.743078i
\(590\) −0.608830 13.9327i −0.0250651 0.573598i
\(591\) 21.7101 0.893035
\(592\) 13.6238 + 9.53651i 0.559936 + 0.391948i
\(593\) 11.8708i 0.487475i 0.969841 + 0.243737i \(0.0783735\pi\)
−0.969841 + 0.243737i \(0.921627\pi\)
\(594\) 1.78064 + 40.7486i 0.0730604 + 1.67194i
\(595\) 0 0
\(596\) −14.5865 12.2377i −0.597485 0.501274i
\(597\) −18.6715 18.6715i −0.764172 0.764172i
\(598\) −1.27741 + 1.39415i −0.0522370 + 0.0570109i
\(599\) 21.8341 0.892116 0.446058 0.895004i \(-0.352827\pi\)
0.446058 + 0.895004i \(0.352827\pi\)
\(600\) 5.45260 7.10760i 0.222602 0.290167i
\(601\) 37.4893 1.52922 0.764610 0.644493i \(-0.222932\pi\)
0.764610 + 0.644493i \(0.222932\pi\)
\(602\) 0 0
\(603\) −8.20620 + 8.20620i −0.334182 + 0.334182i
\(604\) 14.1488 1.23891i 0.575705 0.0504107i
\(605\) 19.6607 + 19.6607i 0.799321 + 0.799321i
\(606\) −29.9986 + 1.31088i −1.21861 + 0.0532509i
\(607\) −4.67915 −0.189921 −0.0949605 0.995481i \(-0.530272\pi\)
−0.0949605 + 0.995481i \(0.530272\pi\)
\(608\) −16.0274 10.2064i −0.649998 0.413925i
\(609\) 0 0
\(610\) 0.452136 + 10.3468i 0.0183065 + 0.418930i
\(611\) −6.32825 6.32825i −0.256014 0.256014i
\(612\) 23.6926 2.07460i 0.957717 0.0838609i
\(613\) 3.58488 + 3.58488i 0.144792 + 0.144792i 0.775787 0.630995i \(-0.217353\pi\)
−0.630995 + 0.775787i \(0.717353\pi\)
\(614\) 24.7128 + 22.6435i 0.997329 + 0.913816i
\(615\) 0.716563i 0.0288946i
\(616\) 0 0
\(617\) 16.4696i 0.663041i −0.943448 0.331520i \(-0.892438\pi\)
0.943448 0.331520i \(-0.107562\pi\)
\(618\) 7.40599 8.08283i 0.297913 0.325139i
\(619\) 10.7503 + 10.7503i 0.432093 + 0.432093i 0.889340 0.457247i \(-0.151165\pi\)
−0.457247 + 0.889340i \(0.651165\pi\)
\(620\) −14.1384 + 16.8520i −0.567811 + 0.676792i
\(621\) 1.90151 + 1.90151i 0.0763048 + 0.0763048i
\(622\) 30.3534 1.32638i 1.21706 0.0531832i
\(623\) 0 0
\(624\) 11.2207 1.98022i 0.449186 0.0792723i
\(625\) 2.07246 0.0828985
\(626\) 1.28726 + 29.4581i 0.0514493 + 1.17738i
\(627\) 14.2459 + 14.2459i 0.568926 + 0.568926i
\(628\) −13.4472 11.2818i −0.536600 0.450193i
\(629\) −19.3295 + 19.3295i −0.770717 + 0.770717i
\(630\) 0 0
\(631\) −6.82302 −0.271620 −0.135810 0.990735i \(-0.543364\pi\)
−0.135810 + 0.990735i \(0.543364\pi\)
\(632\) −10.8078 + 1.42410i −0.429911 + 0.0566475i
\(633\) 13.6041 0.540715
\(634\) −15.5425 14.2410i −0.617272 0.565584i
\(635\) 14.0694 + 14.0694i 0.558325 + 0.558325i
\(636\) −3.08957 + 0.270533i −0.122509 + 0.0107273i
\(637\) 0 0
\(638\) −25.2814 + 1.10475i −1.00090 + 0.0437375i
\(639\) 11.6629i 0.461376i
\(640\) 14.5390 + 7.56373i 0.574704 + 0.298982i
\(641\) 33.0759 1.30642 0.653210 0.757177i \(-0.273422\pi\)
0.653210 + 0.757177i \(0.273422\pi\)
\(642\) 18.4932 0.808117i 0.729868 0.0318939i
\(643\) 14.7445 14.7445i 0.581464 0.581464i −0.353841 0.935306i \(-0.615125\pi\)
0.935306 + 0.353841i \(0.115125\pi\)
\(644\) 0 0
\(645\) 5.38925 + 5.38925i 0.212201 + 0.212201i
\(646\) 21.1006 23.0289i 0.830191 0.906062i
\(647\) 11.1144i 0.436951i 0.975842 + 0.218476i \(0.0701084\pi\)
−0.975842 + 0.218476i \(0.929892\pi\)
\(648\) −0.112082 0.850613i −0.00440298 0.0334152i
\(649\) 37.4071 1.46836
\(650\) −7.89563 7.23448i −0.309692 0.283759i
\(651\) 0 0
\(652\) 19.4579 + 16.3247i 0.762031 + 0.639324i
\(653\) −11.8922 + 11.8922i −0.465378 + 0.465378i −0.900413 0.435035i \(-0.856736\pi\)
0.435035 + 0.900413i \(0.356736\pi\)
\(654\) 16.0041 0.699347i 0.625808 0.0273466i
\(655\) 4.22099i 0.164928i
\(656\) 1.78517 0.315046i 0.0696991 0.0123005i
\(657\) 26.9114i 1.04991i
\(658\) 0 0
\(659\) 32.5839 + 32.5839i 1.26929 + 1.26929i 0.946455 + 0.322834i \(0.104636\pi\)
0.322834 + 0.946455i \(0.395364\pi\)
\(660\) −13.3122 11.1685i −0.518175 0.434735i
\(661\) −12.3984 + 12.3984i −0.482241 + 0.482241i −0.905847 0.423606i \(-0.860764\pi\)
0.423606 + 0.905847i \(0.360764\pi\)
\(662\) −3.11973 2.85850i −0.121252 0.111099i
\(663\) 18.7294i 0.727389i
\(664\) 7.74542 + 5.94190i 0.300580 + 0.230590i
\(665\) 0 0
\(666\) −7.84020 7.18368i −0.303801 0.278362i
\(667\) −1.17974 + 1.17974i −0.0456797 + 0.0456797i
\(668\) −3.75575 42.8918i −0.145314 1.65953i
\(669\) 4.20569 4.20569i 0.162601 0.162601i
\(670\) −0.573886 13.1330i −0.0221711 0.507371i
\(671\) −27.7796 −1.07242
\(672\) 0 0
\(673\) 11.0728 0.426827 0.213413 0.976962i \(-0.431542\pi\)
0.213413 + 0.976962i \(0.431542\pi\)
\(674\) −1.26939 29.0492i −0.0488952 1.11893i
\(675\) −10.7690 + 10.7690i −0.414499 + 0.414499i
\(676\) 1.07984 + 12.3321i 0.0415323 + 0.474311i
\(677\) 4.17016 4.17016i 0.160272 0.160272i −0.622415 0.782687i \(-0.713848\pi\)
0.782687 + 0.622415i \(0.213848\pi\)
\(678\) −15.3194 14.0366i −0.588338 0.539073i
\(679\) 0 0
\(680\) −16.3974 + 21.3745i −0.628813 + 0.819674i
\(681\) 1.64266i 0.0629467i
\(682\) −43.5032 39.8604i −1.66582 1.52633i
\(683\) −2.25251 + 2.25251i −0.0861899 + 0.0861899i −0.748887 0.662697i \(-0.769412\pi\)
0.662697 + 0.748887i \(0.269412\pi\)
\(684\) 9.30799 + 7.80915i 0.355900 + 0.298590i
\(685\) 7.40047 + 7.40047i 0.282757 + 0.282757i
\(686\) 0 0
\(687\) 5.40044i 0.206040i
\(688\) 11.0567 15.7956i 0.421534 0.602203i
\(689\) 3.70748i 0.141244i
\(690\) −1.14456 + 0.0500151i −0.0435727 + 0.00190404i
\(691\) −14.9572 + 14.9572i −0.568997 + 0.568997i −0.931847 0.362850i \(-0.881804\pi\)
0.362850 + 0.931847i \(0.381804\pi\)
\(692\) 30.6906 + 25.7486i 1.16668 + 0.978816i
\(693\) 0 0
\(694\) −6.24792 5.72474i −0.237168 0.217308i
\(695\) 1.45242 0.0550933
\(696\) 9.96734 1.31335i 0.377811 0.0497825i
\(697\) 2.97978i 0.112867i
\(698\) 4.26346 4.65310i 0.161374 0.176122i
\(699\) −9.59422 9.59422i −0.362887 0.362887i
\(700\) 0 0
\(701\) 19.0687 19.0687i 0.720214 0.720214i −0.248435 0.968649i \(-0.579916\pi\)
0.968649 + 0.248435i \(0.0799162\pi\)
\(702\) −19.3524 + 0.845665i −0.730411 + 0.0319176i
\(703\) −13.9649 −0.526697
\(704\) −21.9713 + 38.0749i −0.828073 + 1.43500i
\(705\) 5.42237i 0.204218i
\(706\) −9.84549 + 0.430229i −0.370540 + 0.0161919i
\(707\) 0 0
\(708\) −14.8046 + 1.29634i −0.556391 + 0.0487194i
\(709\) −24.6933 24.6933i −0.927376 0.927376i 0.0701596 0.997536i \(-0.477649\pi\)
−0.997536 + 0.0701596i \(0.977649\pi\)
\(710\) −9.74028 8.92466i −0.365546 0.334936i
\(711\) 6.97054 0.261416
\(712\) −2.81810 21.3872i −0.105613 0.801519i
\(713\) −3.89011 −0.145686
\(714\) 0 0
\(715\) −14.6884 + 14.6884i −0.549315 + 0.549315i
\(716\) −10.4369 8.75627i −0.390045 0.327237i
\(717\) 5.66549 + 5.66549i 0.211582 + 0.211582i
\(718\) −2.29902 52.6114i −0.0857985 1.96344i
\(719\) 51.5103 1.92101 0.960505 0.278264i \(-0.0897591\pi\)
0.960505 + 0.278264i \(0.0897591\pi\)
\(720\) −8.58514 6.00949i −0.319949 0.223960i
\(721\) 0 0
\(722\) −10.9034 + 0.476456i −0.405781 + 0.0177319i
\(723\) −8.00682 8.00682i −0.297777 0.297777i
\(724\) −11.4896 + 13.6948i −0.427007 + 0.508964i
\(725\) −6.68135 6.68135i −0.248139 0.248139i
\(726\) 20.0164 21.8457i 0.742879 0.810770i
\(727\) 10.3415i 0.383546i −0.981439 0.191773i \(-0.938576\pi\)
0.981439 0.191773i \(-0.0614237\pi\)
\(728\) 0 0
\(729\) 17.7358i 0.656881i
\(730\) −22.4751 20.5931i −0.831842 0.762186i
\(731\) 22.4108 + 22.4108i 0.828894 + 0.828894i
\(732\) 10.9943 0.962702i 0.406363 0.0355825i
\(733\) −14.2382 14.2382i −0.525902 0.525902i 0.393446 0.919348i \(-0.371283\pi\)
−0.919348 + 0.393446i \(0.871283\pi\)
\(734\) −1.61006 36.8450i −0.0594283 1.35998i
\(735\) 0 0
\(736\) 0.627823 + 2.82945i 0.0231419 + 0.104295i
\(737\) 35.2601 1.29882
\(738\) −1.15802 + 0.0506033i −0.0426273 + 0.00186273i
\(739\) −21.6088 21.6088i −0.794893 0.794893i 0.187392 0.982285i \(-0.439997\pi\)
−0.982285 + 0.187392i \(0.939997\pi\)
\(740\) 11.9989 1.05067i 0.441090 0.0386233i
\(741\) −6.76569 + 6.76569i −0.248544 + 0.248544i
\(742\) 0 0
\(743\) −36.5659 −1.34147 −0.670735 0.741697i \(-0.734021\pi\)
−0.670735 + 0.741697i \(0.734021\pi\)
\(744\) 18.5986 + 14.2679i 0.681858 + 0.523088i
\(745\) −13.7905 −0.505246
\(746\) −34.9451 + 38.1387i −1.27943 + 1.39636i
\(747\) −4.41385 4.41385i −0.161494 0.161494i
\(748\) −55.3577 46.4437i −2.02408 1.69815i
\(749\) 0 0
\(750\) −0.771356 17.6519i −0.0281659 0.644557i
\(751\) 35.3286i 1.28916i 0.764537 + 0.644580i \(0.222968\pi\)
−0.764537 + 0.644580i \(0.777032\pi\)
\(752\) −13.5087 + 2.38401i −0.492612 + 0.0869361i
\(753\) 0.620114 0.0225982
\(754\) −0.524671 12.0067i −0.0191074 0.437259i
\(755\) 7.27401 7.27401i 0.264728 0.264728i
\(756\) 0 0
\(757\) −1.06021 1.06021i −0.0385339 0.0385339i 0.687577 0.726111i \(-0.258674\pi\)
−0.726111 + 0.687577i \(0.758674\pi\)
\(758\) −0.384981 0.352744i −0.0139831 0.0128122i
\(759\) 3.07297i 0.111542i
\(760\) −13.6445 + 1.79787i −0.494938 + 0.0652158i
\(761\) −30.4006 −1.10202 −0.551010 0.834498i \(-0.685757\pi\)
−0.551010 + 0.834498i \(0.685757\pi\)
\(762\) 14.3239 15.6330i 0.518901 0.566323i
\(763\) 0 0
\(764\) −2.32419 26.5429i −0.0840862 0.960289i
\(765\) 12.1806 12.1806i 0.440390 0.440390i
\(766\) −1.08272 24.7774i −0.0391204 0.895242i
\(767\) 17.7655i 0.641474i
\(768\) 7.37608 15.8303i 0.266161 0.571227i
\(769\) 38.0523i 1.37220i 0.727507 + 0.686101i \(0.240679\pi\)
−0.727507 + 0.686101i \(0.759321\pi\)
\(770\) 0 0
\(771\) −7.06039 7.06039i −0.254274 0.254274i
\(772\) 20.9507 1.83452i 0.754033 0.0660257i
\(773\) 11.0014 11.0014i 0.395694 0.395694i −0.481017 0.876711i \(-0.659733\pi\)
0.876711 + 0.481017i \(0.159733\pi\)
\(774\) −8.32885 + 9.09002i −0.299374 + 0.326734i
\(775\) 22.0313i 0.791387i
\(776\) −31.4495 + 4.14397i −1.12897 + 0.148760i
\(777\) 0 0
\(778\) −21.2852 + 23.2305i −0.763112 + 0.832853i
\(779\) −1.07640 + 1.07640i −0.0385659 + 0.0385659i
\(780\) 5.30420 6.32225i 0.189921 0.226373i
\(781\) 25.0563 25.0563i 0.896584 0.896584i
\(782\) −4.75958 + 0.207985i −0.170202 + 0.00743751i
\(783\) −17.0918 −0.610812
\(784\) 0 0
\(785\) −12.7134 −0.453760
\(786\) 4.49372 0.196367i 0.160286 0.00700418i
\(787\) −11.8166 + 11.8166i −0.421217 + 0.421217i −0.885623 0.464406i \(-0.846268\pi\)
0.464406 + 0.885623i \(0.346268\pi\)
\(788\) −30.4747 25.5675i −1.08562 0.910803i
\(789\) 3.53675 3.53675i 0.125912 0.125912i
\(790\) −5.33399 + 5.82146i −0.189775 + 0.207118i
\(791\) 0 0
\(792\) 17.1091 22.3022i 0.607946 0.792474i
\(793\) 13.1932i 0.468504i
\(794\) −22.6105 + 24.6769i −0.802418 + 0.875751i
\(795\) −1.58838 + 1.58838i −0.0563339 + 0.0563339i
\(796\) 4.22040 + 48.1983i 0.149588 + 1.70834i
\(797\) 6.46029 + 6.46029i 0.228835 + 0.228835i 0.812206 0.583371i \(-0.198267\pi\)
−0.583371 + 0.812206i \(0.698267\pi\)
\(798\) 0 0
\(799\) 22.5486i 0.797710i
\(800\) −16.0243 + 3.55562i −0.566545 + 0.125710i
\(801\) 13.7938i 0.487379i
\(802\) 0.478148 + 10.9421i 0.0168840 + 0.386379i
\(803\) 57.8159 57.8159i 2.04028 2.04028i
\(804\) −13.9549 + 1.22193i −0.492150 + 0.0430943i
\(805\) 0 0
\(806\) 18.9306 20.6607i 0.666802 0.727741i
\(807\) −10.4220 −0.366872
\(808\) 43.6531 + 33.4885i 1.53571 + 1.17812i
\(809\) 28.8161i 1.01312i 0.862205 + 0.506559i \(0.169083\pi\)
−0.862205 + 0.506559i \(0.830917\pi\)
\(810\) −0.458170 0.419805i −0.0160985 0.0147504i
\(811\) 32.3761 + 32.3761i 1.13688 + 1.13688i 0.989006 + 0.147873i \(0.0472427\pi\)
0.147873 + 0.989006i \(0.452757\pi\)
\(812\) 0 0
\(813\) 5.62163 5.62163i 0.197159 0.197159i
\(814\) 1.41044 + 32.2770i 0.0494360 + 1.13131i
\(815\) 18.3962 0.644389
\(816\) 23.5184 + 16.4626i 0.823309 + 0.576305i
\(817\) 16.1911i 0.566455i
\(818\) −1.97136 45.1132i −0.0689270 1.57735i
\(819\) 0 0
\(820\) 0.843878 1.00585i 0.0294695 0.0351257i
\(821\) 19.1269 + 19.1269i 0.667534 + 0.667534i 0.957145 0.289610i \(-0.0935257\pi\)
−0.289610 + 0.957145i \(0.593526\pi\)
\(822\) 7.53436 8.22293i 0.262791 0.286808i
\(823\) 24.3399 0.848435 0.424218 0.905560i \(-0.360549\pi\)
0.424218 + 0.905560i \(0.360549\pi\)
\(824\) −19.9148 + 2.62409i −0.693765 + 0.0914144i
\(825\) 17.4035 0.605913
\(826\) 0 0
\(827\) −31.7583 + 31.7583i −1.10435 + 1.10435i −0.110466 + 0.993880i \(0.535234\pi\)
−0.993880 + 0.110466i \(0.964766\pi\)
\(828\) −0.161656 1.84617i −0.00561795 0.0641587i
\(829\) 29.0558 + 29.0558i 1.00915 + 1.00915i 0.999958 + 0.00919347i \(0.00292641\pi\)
0.00919347 + 0.999958i \(0.497074\pi\)
\(830\) 7.06380 0.308675i 0.245188 0.0107143i
\(831\) −35.3387 −1.22589
\(832\) −18.0826 10.4346i −0.626902 0.361756i
\(833\) 0 0
\(834\) −0.0675688 1.54626i −0.00233971 0.0535427i
\(835\) −22.0511 22.0511i −0.763109 0.763109i
\(836\) −3.22007 36.7741i −0.111368 1.27186i
\(837\) −28.1795 28.1795i −0.974026 0.974026i
\(838\) −10.2699 9.40991i −0.354767 0.325060i
\(839\) 12.4384i 0.429423i −0.976678 0.214711i \(-0.931119\pi\)
0.976678 0.214711i \(-0.0688811\pi\)
\(840\) 0 0
\(841\) 18.3958i 0.634339i
\(842\) −8.53824 + 9.31855i −0.294247 + 0.321138i
\(843\) 3.16355 + 3.16355i 0.108959 + 0.108959i
\(844\) −19.0962 16.0212i −0.657319 0.551473i
\(845\) 6.34004 + 6.34004i 0.218104 + 0.218104i
\(846\) 8.76296 0.382924i 0.301277 0.0131652i
\(847\) 0 0
\(848\) 4.65546 + 3.25876i 0.159869 + 0.111906i
\(849\) 14.9112 0.511752
\(850\) −1.17790 26.9555i −0.0404017 0.924565i
\(851\) 1.50618 + 1.50618i 0.0516313 + 0.0516313i
\(852\) −9.04819 + 10.7848i −0.309986 + 0.369482i
\(853\) 11.8456 11.8456i 0.405585 0.405585i −0.474611 0.880196i \(-0.657411\pi\)
0.880196 + 0.474611i \(0.157411\pi\)
\(854\) 0 0
\(855\) 8.80008 0.300956
\(856\) −26.9108 20.6446i −0.919792 0.705619i
\(857\) 15.0931 0.515571 0.257786 0.966202i \(-0.417007\pi\)
0.257786 + 0.966202i \(0.417007\pi\)
\(858\) 16.3208 + 14.9542i 0.557183 + 0.510526i
\(859\) −32.2506 32.2506i −1.10037 1.10037i −0.994365 0.106010i \(-0.966193\pi\)
−0.106010 0.994365i \(-0.533807\pi\)
\(860\) −1.21816 13.9117i −0.0415388 0.474386i
\(861\) 0 0
\(862\) 9.16164 0.400346i 0.312047 0.0136358i
\(863\) 27.0774i 0.921724i −0.887472 0.460862i \(-0.847540\pi\)
0.887472 0.460862i \(-0.152460\pi\)
\(864\) −15.9483 + 25.0441i −0.542573 + 0.852017i
\(865\) 29.0159 0.986572
\(866\) 24.2614 1.06018i 0.824437 0.0360263i
\(867\) −20.2469 + 20.2469i −0.687619 + 0.687619i
\(868\) 0 0
\(869\) −14.9754 14.9754i −0.508004 0.508004i
\(870\) 4.91920 5.36876i 0.166776 0.182018i
\(871\) 16.7458i 0.567410i
\(872\) −23.2887 17.8659i −0.788654 0.605016i
\(873\) 20.2835 0.686493
\(874\) −1.79445 1.64419i −0.0606983 0.0556156i
\(875\) 0 0
\(876\) −20.8782 + 24.8854i −0.705408 + 0.840799i
\(877\) 6.44516 6.44516i 0.217638 0.217638i −0.589865 0.807502i \(-0.700819\pi\)
0.807502 + 0.589865i \(0.200819\pi\)
\(878\) 44.2207 1.93236i 1.49237 0.0652139i
\(879\) 25.7698i 0.869195i
\(880\) 5.53349 + 31.3548i 0.186534 + 1.05697i
\(881\) 0.723819i 0.0243861i −0.999926 0.0121930i \(-0.996119\pi\)
0.999926 0.0121930i \(-0.00388126\pi\)
\(882\) 0 0
\(883\) −21.2381 21.2381i −0.714718 0.714718i 0.252800 0.967518i \(-0.418648\pi\)
−0.967518 + 0.252800i \(0.918648\pi\)
\(884\) 22.0571 26.2906i 0.741862 0.884250i
\(885\) −7.61117 + 7.61117i −0.255847 + 0.255847i
\(886\) 12.6401 + 11.5817i 0.424653 + 0.389094i
\(887\) 20.2358i 0.679452i −0.940524 0.339726i \(-0.889666\pi\)
0.940524 0.339726i \(-0.110334\pi\)
\(888\) −1.67677 12.7254i −0.0562686 0.427036i
\(889\) 0 0
\(890\) −11.5199 10.5553i −0.386148 0.353813i
\(891\) 1.17862 1.17862i 0.0394851 0.0394851i
\(892\) −10.8565 + 0.950631i −0.363502 + 0.0318295i
\(893\) 8.14530 8.14530i 0.272572 0.272572i
\(894\) 0.641558 + 14.6816i 0.0214569 + 0.491026i
\(895\) −9.86738 −0.329830
\(896\) 0 0
\(897\) 1.45942 0.0487288
\(898\) 2.06808 + 47.3265i 0.0690126 + 1.57931i
\(899\) 17.4832 17.4832i 0.583099 0.583099i
\(900\) 10.4556 0.915527i 0.348520 0.0305176i
\(901\) −6.60516 + 6.60516i −0.220050 + 0.220050i
\(902\) 2.59658 + 2.37915i 0.0864567 + 0.0792171i
\(903\) 0 0
\(904\) 4.97344 + 37.7446i 0.165414 + 1.25537i
\(905\) 12.9475i 0.430390i
\(906\) −8.08242 7.40562i −0.268520 0.246035i
\(907\) 9.46697 9.46697i 0.314346 0.314346i −0.532245 0.846590i \(-0.678651\pi\)
0.846590 + 0.532245i \(0.178651\pi\)
\(908\) 1.93452 2.30581i 0.0641992 0.0765211i
\(909\) −24.8764 24.8764i −0.825099 0.825099i
\(910\) 0 0
\(911\) 34.5549i 1.14485i −0.819955 0.572427i \(-0.806002\pi\)
0.819955 0.572427i \(-0.193998\pi\)
\(912\) 2.54881 + 14.4425i 0.0843995 + 0.478239i
\(913\) 18.9652i 0.627658i
\(914\) 4.25654 0.186003i 0.140794 0.00615242i
\(915\) 5.65229 5.65229i 0.186859 0.186859i
\(916\) −6.35996 + 7.58065i −0.210139 + 0.250472i
\(917\) 0 0
\(918\) −35.9845 32.9713i −1.18767 1.08821i
\(919\) 53.5178 1.76539 0.882695 0.469946i \(-0.155727\pi\)
0.882695 + 0.469946i \(0.155727\pi\)
\(920\) 1.66553 + 1.27771i 0.0549110 + 0.0421250i
\(921\) 25.8700i 0.852444i
\(922\) −27.9363 + 30.4894i −0.920034 + 1.00412i
\(923\) 11.8998 + 11.8998i 0.391686 + 0.391686i
\(924\) 0 0
\(925\) −8.53014 + 8.53014i −0.280469 + 0.280469i
\(926\) −16.4987 + 0.720960i −0.542180 + 0.0236922i
\(927\) 12.8442 0.421857
\(928\) −15.5380 9.89472i −0.510058 0.324810i
\(929\) 0.0493449i 0.00161895i 1.00000 0.000809477i \(0.000257665\pi\)
−1.00000 0.000809477i \(0.999742\pi\)
\(930\) 16.9619 0.741202i 0.556203 0.0243050i
\(931\) 0 0
\(932\) 2.16863 + 24.7664i 0.0710357 + 0.811250i
\(933\) −16.5815 16.5815i −0.542855 0.542855i
\(934\) 10.5869 + 9.70042i 0.346415 + 0.317407i
\(935\) −52.3370 −1.71160
\(936\) 10.5918 + 8.12551i 0.346204 + 0.265591i
\(937\) 0.977039 0.0319185 0.0159592 0.999873i \(-0.494920\pi\)
0.0159592 + 0.999873i \(0.494920\pi\)
\(938\) 0 0
\(939\) 16.0925 16.0925i 0.525157 0.525157i
\(940\) −6.38579 + 7.61143i −0.208281 + 0.248258i
\(941\) −27.5503 27.5503i −0.898115 0.898115i 0.0971546 0.995269i \(-0.469026\pi\)
−0.995269 + 0.0971546i \(0.969026\pi\)
\(942\) 0.591448 + 13.5349i 0.0192704 + 0.440990i
\(943\) 0.232189 0.00756112
\(944\) 22.3080 + 15.6153i 0.726064 + 0.508235i
\(945\) 0 0
\(946\) 37.4223 1.63528i 1.21671 0.0531677i
\(947\) −16.2096 16.2096i −0.526741 0.526741i 0.392858 0.919599i \(-0.371486\pi\)
−0.919599 + 0.392858i \(0.871486\pi\)
\(948\) 6.44576 + 5.40782i 0.209349 + 0.175638i
\(949\) 27.4581 + 27.4581i 0.891327 + 0.891327i
\(950\) 9.31173 10.1627i 0.302112 0.329722i
\(951\) 16.2702i 0.527599i
\(952\) 0 0
\(953\) 34.2308i 1.10884i 0.832235 + 0.554422i \(0.187061\pi\)
−0.832235 + 0.554422i \(0.812939\pi\)
\(954\) −2.67911 2.45477i −0.0867393 0.0794760i
\(955\) −13.6460 13.6460i −0.441573 0.441573i
\(956\) −1.28060 14.6248i −0.0414175 0.473000i
\(957\) 13.8108 + 13.8108i 0.446440 + 0.446440i
\(958\) 0.706685 + 16.1720i 0.0228320 + 0.522493i
\(959\) 0 0
\(960\) −3.27659 12.2175i −0.105751 0.394319i
\(961\) 26.6497 0.859667
\(962\) −15.3291 + 0.669851i −0.494229 + 0.0215969i
\(963\) 15.3355 + 15.3355i 0.494181 + 0.494181i
\(964\) 1.80982 + 20.6687i 0.0582904 + 0.665693i
\(965\) 10.7710 10.7710i 0.346729 0.346729i
\(966\) 0 0
\(967\) 21.2761 0.684193 0.342096 0.939665i \(-0.388863\pi\)
0.342096 + 0.939665i \(0.388863\pi\)
\(968\) −53.8244 + 7.09221i −1.72998 + 0.227952i
\(969\) −24.1072 −0.774435
\(970\) −15.5213 + 16.9398i −0.498360 + 0.543905i
\(971\) −21.1629 21.1629i −0.679150 0.679150i 0.280658 0.959808i \(-0.409447\pi\)
−0.959808 + 0.280658i \(0.909447\pi\)
\(972\) 19.8153 23.6185i 0.635576 0.757564i
\(973\) 0 0
\(974\) −0.598918 13.7058i −0.0191906 0.439163i
\(975\) 8.26532i 0.264702i
\(976\) −16.5666 11.5964i −0.530285 0.371192i
\(977\) −3.01443 −0.0964403 −0.0482201 0.998837i \(-0.515355\pi\)
−0.0482201 + 0.998837i \(0.515355\pi\)
\(978\) −0.855819 19.5848i −0.0273661 0.626254i
\(979\) 29.6342 29.6342i 0.947115 0.947115i
\(980\) 0 0
\(981\) 13.2714 + 13.2714i 0.423724 + 0.423724i
\(982\) −16.9088 15.4929i −0.539581 0.494398i
\(983\) 40.7478i 1.29965i 0.760083 + 0.649826i \(0.225158\pi\)
−0.760083 + 0.649826i \(0.774842\pi\)
\(984\) −1.11010 0.851612i −0.0353886 0.0271484i
\(985\) −28.8118 −0.918020
\(986\) 20.4562 22.3256i 0.651457 0.710993i
\(987\) 0 0
\(988\) 17.4649 1.52928i 0.555631 0.0486529i
\(989\) 1.74629 1.74629i 0.0555287 0.0555287i
\(990\) −0.888799 20.3395i −0.0282479 0.646433i
\(991\) 24.4732i 0.777416i 0.921361 + 0.388708i \(0.127079\pi\)
−0.921361 + 0.388708i \(0.872921\pi\)
\(992\) −9.30407 41.9312i −0.295405 1.33132i
\(993\) 3.26581i 0.103637i
\(994\) 0 0
\(995\) 24.7792 + 24.7792i 0.785552 + 0.785552i
\(996\) −0.657239 7.50587i −0.0208254 0.237833i
\(997\) 30.4640 30.4640i 0.964805 0.964805i −0.0345959 0.999401i \(-0.511014\pi\)
0.999401 + 0.0345959i \(0.0110144\pi\)
\(998\) −18.2327 + 19.8990i −0.577146 + 0.629892i
\(999\) 21.8213i 0.690394i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.587.14 56
7.2 even 3 784.2.w.f.619.12 56
7.3 odd 6 784.2.w.f.411.3 56
7.4 even 3 112.2.v.a.75.3 yes 56
7.5 odd 6 112.2.v.a.59.12 yes 56
7.6 odd 2 inner 784.2.j.a.587.13 56
16.3 odd 4 inner 784.2.j.a.195.13 56
28.11 odd 6 448.2.z.a.271.10 56
28.19 even 6 448.2.z.a.143.10 56
56.5 odd 6 896.2.z.b.31.10 56
56.11 odd 6 896.2.z.a.159.5 56
56.19 even 6 896.2.z.a.31.5 56
56.53 even 6 896.2.z.b.159.10 56
112.3 even 12 784.2.w.f.19.12 56
112.5 odd 12 896.2.z.a.479.5 56
112.11 odd 12 896.2.z.b.607.10 56
112.19 even 12 112.2.v.a.3.3 56
112.51 odd 12 784.2.w.f.227.3 56
112.53 even 12 896.2.z.a.607.5 56
112.61 odd 12 448.2.z.a.367.10 56
112.67 odd 12 112.2.v.a.19.12 yes 56
112.75 even 12 896.2.z.b.479.10 56
112.83 even 4 inner 784.2.j.a.195.14 56
112.109 even 12 448.2.z.a.47.10 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.3 56 112.19 even 12
112.2.v.a.19.12 yes 56 112.67 odd 12
112.2.v.a.59.12 yes 56 7.5 odd 6
112.2.v.a.75.3 yes 56 7.4 even 3
448.2.z.a.47.10 56 112.109 even 12
448.2.z.a.143.10 56 28.19 even 6
448.2.z.a.271.10 56 28.11 odd 6
448.2.z.a.367.10 56 112.61 odd 12
784.2.j.a.195.13 56 16.3 odd 4 inner
784.2.j.a.195.14 56 112.83 even 4 inner
784.2.j.a.587.13 56 7.6 odd 2 inner
784.2.j.a.587.14 56 1.1 even 1 trivial
784.2.w.f.19.12 56 112.3 even 12
784.2.w.f.227.3 56 112.51 odd 12
784.2.w.f.411.3 56 7.3 odd 6
784.2.w.f.619.12 56 7.2 even 3
896.2.z.a.31.5 56 56.19 even 6
896.2.z.a.159.5 56 56.11 odd 6
896.2.z.a.479.5 56 112.5 odd 12
896.2.z.a.607.5 56 112.53 even 12
896.2.z.b.31.10 56 56.5 odd 6
896.2.z.b.159.10 56 56.53 even 6
896.2.z.b.479.10 56 112.75 even 12
896.2.z.b.607.10 56 112.11 odd 12