Properties

Label 784.2.j.a.195.26
Level $784$
Weight $2$
Character 784.195
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 195.26
Character \(\chi\) \(=\) 784.195
Dual form 784.2.j.a.587.26

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.39250 - 0.246844i) q^{2} +(1.22906 + 1.22906i) q^{3} +(1.87814 - 0.687462i) q^{4} +(-0.535151 - 0.535151i) q^{5} +(2.01486 + 1.40809i) q^{6} +(2.44562 - 1.42090i) q^{8} +0.0211916i q^{9} +(-0.877298 - 0.613101i) q^{10} +(3.23833 + 3.23833i) q^{11} +(3.15328 + 1.46341i) q^{12} +(-2.89529 + 2.89529i) q^{13} -1.31547i q^{15} +(3.05479 - 2.58230i) q^{16} -2.63765i q^{17} +(0.00523102 + 0.0295094i) q^{18} +(3.93855 + 3.93855i) q^{19} +(-1.37298 - 0.637190i) q^{20} +(5.30875 + 3.71003i) q^{22} -2.02285 q^{23} +(4.75219 + 1.25944i) q^{24} -4.42723i q^{25} +(-3.31702 + 4.74639i) q^{26} +(3.66114 - 3.66114i) q^{27} +(-0.209526 - 0.209526i) q^{29} +(-0.324715 - 1.83179i) q^{30} -6.66105 q^{31} +(3.61639 - 4.34991i) q^{32} +7.96022i q^{33} +(-0.651087 - 3.67293i) q^{34} +(0.0145684 + 0.0398007i) q^{36} +(2.79777 - 2.79777i) q^{37} +(6.45665 + 4.51224i) q^{38} -7.11699 q^{39} +(-2.06917 - 0.548378i) q^{40} -5.04472 q^{41} +(-3.79454 - 3.79454i) q^{43} +(8.30826 + 3.85580i) q^{44} +(0.0113407 - 0.0113407i) q^{45} +(-2.81683 + 0.499328i) q^{46} +5.07985 q^{47} +(6.92833 + 0.580727i) q^{48} +(-1.09283 - 6.16493i) q^{50} +(3.24183 - 3.24183i) q^{51} +(-3.44735 + 7.42816i) q^{52} +(-7.85735 + 7.85735i) q^{53} +(4.19443 - 6.00189i) q^{54} -3.46599i q^{55} +9.68145i q^{57} +(-0.343486 - 0.240046i) q^{58} +(3.83007 - 3.83007i) q^{59} +(-0.904334 - 2.47063i) q^{60} +(-4.28096 + 4.28096i) q^{61} +(-9.27554 + 1.64424i) q^{62} +(3.96208 - 6.94996i) q^{64} +3.09883 q^{65} +(1.96493 + 11.0846i) q^{66} +(-6.76419 + 6.76419i) q^{67} +(-1.81328 - 4.95386i) q^{68} +(-2.48621 - 2.48621i) q^{69} -7.25507 q^{71} +(0.0301112 + 0.0518266i) q^{72} -6.59265 q^{73} +(3.20530 - 4.58652i) q^{74} +(5.44134 - 5.44134i) q^{75} +(10.1047 + 4.68953i) q^{76} +(-9.91044 + 1.75679i) q^{78} +15.0822i q^{79} +(-3.01669 - 0.252857i) q^{80} +9.06313 q^{81} +(-7.02479 + 1.24526i) q^{82} +(-8.00548 - 8.00548i) q^{83} +(-1.41154 + 1.41154i) q^{85} +(-6.22057 - 4.34725i) q^{86} -0.515042i q^{87} +(12.5211 + 3.31837i) q^{88} -7.85072 q^{89} +(0.0129926 - 0.0185914i) q^{90} +(-3.79919 + 1.39063i) q^{92} +(-8.18685 - 8.18685i) q^{93} +(7.07372 - 1.25393i) q^{94} -4.21543i q^{95} +(9.79108 - 0.901551i) q^{96} -8.79532i q^{97} +(-0.0686254 + 0.0686254i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.39250 0.246844i 0.984649 0.174545i
\(3\) 1.22906 + 1.22906i 0.709600 + 0.709600i 0.966451 0.256851i \(-0.0826850\pi\)
−0.256851 + 0.966451i \(0.582685\pi\)
\(4\) 1.87814 0.687462i 0.939068 0.343731i
\(5\) −0.535151 0.535151i −0.239327 0.239327i 0.577245 0.816571i \(-0.304128\pi\)
−0.816571 + 0.577245i \(0.804128\pi\)
\(6\) 2.01486 + 1.40809i 0.822564 + 0.574850i
\(7\) 0 0
\(8\) 2.44562 1.42090i 0.864656 0.502364i
\(9\) 0.0211916i 0.00706387i
\(10\) −0.877298 0.613101i −0.277426 0.193880i
\(11\) 3.23833 + 3.23833i 0.976393 + 0.976393i 0.999728 0.0233344i \(-0.00742824\pi\)
−0.0233344 + 0.999728i \(0.507428\pi\)
\(12\) 3.15328 + 1.46341i 0.910274 + 0.422451i
\(13\) −2.89529 + 2.89529i −0.803010 + 0.803010i −0.983565 0.180555i \(-0.942211\pi\)
0.180555 + 0.983565i \(0.442211\pi\)
\(14\) 0 0
\(15\) 1.31547i 0.339652i
\(16\) 3.05479 2.58230i 0.763698 0.645574i
\(17\) 2.63765i 0.639723i −0.947464 0.319862i \(-0.896364\pi\)
0.947464 0.319862i \(-0.103636\pi\)
\(18\) 0.00523102 + 0.0295094i 0.00123296 + 0.00695543i
\(19\) 3.93855 + 3.93855i 0.903565 + 0.903565i 0.995743 0.0921778i \(-0.0293828\pi\)
−0.0921778 + 0.995743i \(0.529383\pi\)
\(20\) −1.37298 0.637190i −0.307008 0.142480i
\(21\) 0 0
\(22\) 5.30875 + 3.71003i 1.13183 + 0.790980i
\(23\) −2.02285 −0.421794 −0.210897 0.977508i \(-0.567638\pi\)
−0.210897 + 0.977508i \(0.567638\pi\)
\(24\) 4.75219 + 1.25944i 0.970037 + 0.257082i
\(25\) 4.42723i 0.885446i
\(26\) −3.31702 + 4.74639i −0.650522 + 0.930844i
\(27\) 3.66114 3.66114i 0.704587 0.704587i
\(28\) 0 0
\(29\) −0.209526 0.209526i −0.0389080 0.0389080i 0.687385 0.726293i \(-0.258758\pi\)
−0.726293 + 0.687385i \(0.758758\pi\)
\(30\) −0.324715 1.83179i −0.0592846 0.334438i
\(31\) −6.66105 −1.19636 −0.598180 0.801362i \(-0.704109\pi\)
−0.598180 + 0.801362i \(0.704109\pi\)
\(32\) 3.61639 4.34991i 0.639293 0.768963i
\(33\) 7.96022i 1.38570i
\(34\) −0.651087 3.67293i −0.111660 0.629903i
\(35\) 0 0
\(36\) 0.0145684 + 0.0398007i 0.00242807 + 0.00663346i
\(37\) 2.79777 2.79777i 0.459951 0.459951i −0.438688 0.898639i \(-0.644557\pi\)
0.898639 + 0.438688i \(0.144557\pi\)
\(38\) 6.45665 + 4.51224i 1.04741 + 0.731982i
\(39\) −7.11699 −1.13963
\(40\) −2.06917 0.548378i −0.327164 0.0867061i
\(41\) −5.04472 −0.787853 −0.393926 0.919142i \(-0.628883\pi\)
−0.393926 + 0.919142i \(0.628883\pi\)
\(42\) 0 0
\(43\) −3.79454 3.79454i −0.578662 0.578662i 0.355873 0.934534i \(-0.384184\pi\)
−0.934534 + 0.355873i \(0.884184\pi\)
\(44\) 8.30826 + 3.85580i 1.25252 + 0.581283i
\(45\) 0.0113407 0.0113407i 0.00169057 0.00169057i
\(46\) −2.81683 + 0.499328i −0.415319 + 0.0736220i
\(47\) 5.07985 0.740973 0.370486 0.928838i \(-0.379191\pi\)
0.370486 + 0.928838i \(0.379191\pi\)
\(48\) 6.92833 + 0.580727i 1.00002 + 0.0838208i
\(49\) 0 0
\(50\) −1.09283 6.16493i −0.154550 0.871853i
\(51\) 3.24183 3.24183i 0.453948 0.453948i
\(52\) −3.44735 + 7.42816i −0.478061 + 1.03010i
\(53\) −7.85735 + 7.85735i −1.07929 + 1.07929i −0.0827165 + 0.996573i \(0.526360\pi\)
−0.996573 + 0.0827165i \(0.973640\pi\)
\(54\) 4.19443 6.00189i 0.570789 0.816754i
\(55\) 3.46599i 0.467354i
\(56\) 0 0
\(57\) 9.68145i 1.28234i
\(58\) −0.343486 0.240046i −0.0451020 0.0315196i
\(59\) 3.83007 3.83007i 0.498633 0.498633i −0.412379 0.911012i \(-0.635302\pi\)
0.911012 + 0.412379i \(0.135302\pi\)
\(60\) −0.904334 2.47063i −0.116749 0.318957i
\(61\) −4.28096 + 4.28096i −0.548121 + 0.548121i −0.925897 0.377776i \(-0.876689\pi\)
0.377776 + 0.925897i \(0.376689\pi\)
\(62\) −9.27554 + 1.64424i −1.17799 + 0.208818i
\(63\) 0 0
\(64\) 3.96208 6.94996i 0.495261 0.868745i
\(65\) 3.09883 0.384363
\(66\) 1.96493 + 11.0846i 0.241866 + 1.36443i
\(67\) −6.76419 + 6.76419i −0.826377 + 0.826377i −0.987014 0.160636i \(-0.948645\pi\)
0.160636 + 0.987014i \(0.448645\pi\)
\(68\) −1.81328 4.95386i −0.219893 0.600744i
\(69\) −2.48621 2.48621i −0.299305 0.299305i
\(70\) 0 0
\(71\) −7.25507 −0.861018 −0.430509 0.902586i \(-0.641666\pi\)
−0.430509 + 0.902586i \(0.641666\pi\)
\(72\) 0.0301112 + 0.0518266i 0.00354864 + 0.00610782i
\(73\) −6.59265 −0.771612 −0.385806 0.922580i \(-0.626077\pi\)
−0.385806 + 0.922580i \(0.626077\pi\)
\(74\) 3.20530 4.58652i 0.372608 0.533173i
\(75\) 5.44134 5.44134i 0.628312 0.628312i
\(76\) 10.1047 + 4.68953i 1.15909 + 0.537926i
\(77\) 0 0
\(78\) −9.91044 + 1.75679i −1.12214 + 0.198917i
\(79\) 15.0822i 1.69687i 0.529296 + 0.848437i \(0.322456\pi\)
−0.529296 + 0.848437i \(0.677544\pi\)
\(80\) −3.01669 0.252857i −0.337276 0.0282702i
\(81\) 9.06313 1.00701
\(82\) −7.02479 + 1.24526i −0.775759 + 0.137516i
\(83\) −8.00548 8.00548i −0.878715 0.878715i 0.114687 0.993402i \(-0.463414\pi\)
−0.993402 + 0.114687i \(0.963414\pi\)
\(84\) 0 0
\(85\) −1.41154 + 1.41154i −0.153103 + 0.153103i
\(86\) −6.22057 4.34725i −0.670781 0.468776i
\(87\) 0.515042i 0.0552183i
\(88\) 12.5211 + 3.31837i 1.33475 + 0.353739i
\(89\) −7.85072 −0.832174 −0.416087 0.909325i \(-0.636599\pi\)
−0.416087 + 0.909325i \(0.636599\pi\)
\(90\) 0.0129926 0.0185914i 0.00136954 0.00195970i
\(91\) 0 0
\(92\) −3.79919 + 1.39063i −0.396093 + 0.144984i
\(93\) −8.18685 8.18685i −0.848936 0.848936i
\(94\) 7.07372 1.25393i 0.729598 0.129333i
\(95\) 4.21543i 0.432494i
\(96\) 9.79108 0.901551i 0.999298 0.0920142i
\(97\) 8.79532i 0.893029i −0.894776 0.446514i \(-0.852665\pi\)
0.894776 0.446514i \(-0.147335\pi\)
\(98\) 0 0
\(99\) −0.0686254 + 0.0686254i −0.00689712 + 0.00689712i
\(100\) −3.04355 8.31494i −0.304355 0.831494i
\(101\) 1.63115 + 1.63115i 0.162305 + 0.162305i 0.783587 0.621282i \(-0.213388\pi\)
−0.621282 + 0.783587i \(0.713388\pi\)
\(102\) 3.71404 5.31449i 0.367745 0.526213i
\(103\) 13.6263i 1.34264i −0.741168 0.671319i \(-0.765728\pi\)
0.741168 0.671319i \(-0.234272\pi\)
\(104\) −2.96685 + 11.1947i −0.290924 + 1.09773i
\(105\) 0 0
\(106\) −9.00185 + 12.8809i −0.874337 + 1.25111i
\(107\) −3.34081 3.34081i −0.322968 0.322968i 0.526937 0.849905i \(-0.323341\pi\)
−0.849905 + 0.526937i \(0.823341\pi\)
\(108\) 4.35923 9.39302i 0.419467 0.903844i
\(109\) −5.82662 5.82662i −0.558089 0.558089i 0.370674 0.928763i \(-0.379127\pi\)
−0.928763 + 0.370674i \(0.879127\pi\)
\(110\) −0.855558 4.82640i −0.0815743 0.460180i
\(111\) 6.87728 0.652763
\(112\) 0 0
\(113\) 18.4851 1.73893 0.869467 0.493990i \(-0.164462\pi\)
0.869467 + 0.493990i \(0.164462\pi\)
\(114\) 2.38981 + 13.4815i 0.223826 + 1.26265i
\(115\) 1.08253 + 1.08253i 0.100946 + 0.100946i
\(116\) −0.537560 0.249477i −0.0499112 0.0231634i
\(117\) −0.0613559 0.0613559i −0.00567236 0.00567236i
\(118\) 4.38796 6.27882i 0.403945 0.578012i
\(119\) 0 0
\(120\) −1.86915 3.21713i −0.170629 0.293682i
\(121\) 9.97357i 0.906688i
\(122\) −4.90453 + 7.01799i −0.444035 + 0.635379i
\(123\) −6.20028 6.20028i −0.559060 0.559060i
\(124\) −12.5104 + 4.57922i −1.12346 + 0.411226i
\(125\) −5.04499 + 5.04499i −0.451237 + 0.451237i
\(126\) 0 0
\(127\) 13.0667i 1.15948i −0.814802 0.579739i \(-0.803154\pi\)
0.814802 0.579739i \(-0.196846\pi\)
\(128\) 3.80166 10.6559i 0.336023 0.941854i
\(129\) 9.32745i 0.821236i
\(130\) 4.31514 0.764928i 0.378463 0.0670886i
\(131\) 6.07560 + 6.07560i 0.530828 + 0.530828i 0.920819 0.389991i \(-0.127522\pi\)
−0.389991 + 0.920819i \(0.627522\pi\)
\(132\) 5.47235 + 14.9504i 0.476307 + 1.30126i
\(133\) 0 0
\(134\) −7.74946 + 11.0889i −0.669452 + 0.957932i
\(135\) −3.91853 −0.337253
\(136\) −3.74783 6.45067i −0.321374 0.553141i
\(137\) 23.0868i 1.97244i 0.165434 + 0.986221i \(0.447098\pi\)
−0.165434 + 0.986221i \(0.552902\pi\)
\(138\) −4.07577 2.84835i −0.346952 0.242468i
\(139\) 6.09369 6.09369i 0.516860 0.516860i −0.399760 0.916620i \(-0.630907\pi\)
0.916620 + 0.399760i \(0.130907\pi\)
\(140\) 0 0
\(141\) 6.24346 + 6.24346i 0.525794 + 0.525794i
\(142\) −10.1027 + 1.79087i −0.847801 + 0.150286i
\(143\) −18.7518 −1.56811
\(144\) 0.0547230 + 0.0647360i 0.00456025 + 0.00539466i
\(145\) 0.224256i 0.0186235i
\(146\) −9.18030 + 1.62736i −0.759767 + 0.134681i
\(147\) 0 0
\(148\) 3.33124 7.17796i 0.273826 0.590025i
\(149\) −8.54257 + 8.54257i −0.699835 + 0.699835i −0.964375 0.264540i \(-0.914780\pi\)
0.264540 + 0.964375i \(0.414780\pi\)
\(150\) 6.23393 8.92025i 0.508998 0.728336i
\(151\) 1.62736 0.132433 0.0662165 0.997805i \(-0.478907\pi\)
0.0662165 + 0.997805i \(0.478907\pi\)
\(152\) 15.2285 + 4.03589i 1.23519 + 0.327354i
\(153\) 0.0558960 0.00451892
\(154\) 0 0
\(155\) 3.56466 + 3.56466i 0.286321 + 0.286321i
\(156\) −13.3667 + 4.89266i −1.07019 + 0.391727i
\(157\) 17.0092 17.0092i 1.35748 1.35748i 0.480468 0.877012i \(-0.340467\pi\)
0.877012 0.480468i \(-0.159533\pi\)
\(158\) 3.72294 + 21.0020i 0.296181 + 1.67083i
\(159\) −19.3143 −1.53173
\(160\) −4.26317 + 0.392548i −0.337033 + 0.0310336i
\(161\) 0 0
\(162\) 12.6204 2.23718i 0.991556 0.175769i
\(163\) 6.44786 6.44786i 0.505035 0.505035i −0.407963 0.912998i \(-0.633761\pi\)
0.912998 + 0.407963i \(0.133761\pi\)
\(164\) −9.47467 + 3.46805i −0.739847 + 0.270809i
\(165\) 4.25992 4.25992i 0.331634 0.331634i
\(166\) −13.1238 9.17156i −1.01860 0.711851i
\(167\) 3.18749i 0.246656i −0.992366 0.123328i \(-0.960643\pi\)
0.992366 0.123328i \(-0.0393566\pi\)
\(168\) 0 0
\(169\) 3.76544i 0.289649i
\(170\) −1.61714 + 2.31400i −0.124029 + 0.177476i
\(171\) −0.0834642 + 0.0834642i −0.00638266 + 0.00638266i
\(172\) −9.73526 4.51806i −0.742307 0.344499i
\(173\) 13.6245 13.6245i 1.03585 1.03585i 0.0365212 0.999333i \(-0.488372\pi\)
0.999333 0.0365212i \(-0.0116276\pi\)
\(174\) −0.127135 0.717198i −0.00963807 0.0543706i
\(175\) 0 0
\(176\) 18.2547 + 1.53010i 1.37600 + 0.115336i
\(177\) 9.41480 0.707660
\(178\) −10.9322 + 1.93790i −0.819400 + 0.145252i
\(179\) 5.14697 5.14697i 0.384703 0.384703i −0.488090 0.872793i \(-0.662306\pi\)
0.872793 + 0.488090i \(0.162306\pi\)
\(180\) 0.0135031 0.0290957i 0.00100646 0.00216866i
\(181\) 5.59617 + 5.59617i 0.415960 + 0.415960i 0.883809 0.467849i \(-0.154971\pi\)
−0.467849 + 0.883809i \(0.654971\pi\)
\(182\) 0 0
\(183\) −10.5231 −0.777894
\(184\) −4.94712 + 2.87427i −0.364706 + 0.211894i
\(185\) −2.99446 −0.220157
\(186\) −13.4211 9.37935i −0.984082 0.687727i
\(187\) 8.54157 8.54157i 0.624622 0.624622i
\(188\) 9.54065 3.49221i 0.695824 0.254695i
\(189\) 0 0
\(190\) −1.04055 5.87001i −0.0754897 0.425855i
\(191\) 4.76585i 0.344845i −0.985023 0.172422i \(-0.944841\pi\)
0.985023 0.172422i \(-0.0551594\pi\)
\(192\) 13.4116 3.67228i 0.967898 0.265024i
\(193\) −5.34099 −0.384453 −0.192226 0.981351i \(-0.561571\pi\)
−0.192226 + 0.981351i \(0.561571\pi\)
\(194\) −2.17107 12.2475i −0.155874 0.879320i
\(195\) 3.80866 + 3.80866i 0.272744 + 0.272744i
\(196\) 0 0
\(197\) −11.6754 + 11.6754i −0.831838 + 0.831838i −0.987768 0.155930i \(-0.950163\pi\)
0.155930 + 0.987768i \(0.450163\pi\)
\(198\) −0.0786215 + 0.112501i −0.00558738 + 0.00799510i
\(199\) 10.4260i 0.739080i −0.929215 0.369540i \(-0.879515\pi\)
0.929215 0.369540i \(-0.120485\pi\)
\(200\) −6.29065 10.8273i −0.444816 0.765606i
\(201\) −16.6272 −1.17279
\(202\) 2.67402 + 1.86874i 0.188143 + 0.131484i
\(203\) 0 0
\(204\) 3.85997 8.31724i 0.270252 0.582324i
\(205\) 2.69968 + 2.69968i 0.188554 + 0.188554i
\(206\) −3.36357 18.9747i −0.234351 1.32203i
\(207\) 0.0428675i 0.00297950i
\(208\) −1.36801 + 16.3210i −0.0948547 + 1.13166i
\(209\) 25.5086i 1.76447i
\(210\) 0 0
\(211\) −0.716512 + 0.716512i −0.0493267 + 0.0493267i −0.731340 0.682013i \(-0.761105\pi\)
0.682013 + 0.731340i \(0.261105\pi\)
\(212\) −9.35554 + 20.1588i −0.642541 + 1.38451i
\(213\) −8.91694 8.91694i −0.610979 0.610979i
\(214\) −5.47675 3.82743i −0.374383 0.261638i
\(215\) 4.06130i 0.276978i
\(216\) 3.75163 14.1559i 0.255266 0.963185i
\(217\) 0 0
\(218\) −9.55186 6.67533i −0.646933 0.452110i
\(219\) −8.10278 8.10278i −0.547535 0.547535i
\(220\) −2.38274 6.50960i −0.160644 0.438877i
\(221\) 7.63676 + 7.63676i 0.513704 + 0.513704i
\(222\) 9.57664 1.69761i 0.642742 0.113936i
\(223\) 12.9181 0.865062 0.432531 0.901619i \(-0.357621\pi\)
0.432531 + 0.901619i \(0.357621\pi\)
\(224\) 0 0
\(225\) 0.0938201 0.00625467
\(226\) 25.7406 4.56294i 1.71224 0.303522i
\(227\) 10.9984 + 10.9984i 0.729990 + 0.729990i 0.970617 0.240628i \(-0.0773533\pi\)
−0.240628 + 0.970617i \(0.577353\pi\)
\(228\) 6.65563 + 18.1831i 0.440780 + 1.20420i
\(229\) 9.79182 + 9.79182i 0.647062 + 0.647062i 0.952282 0.305220i \(-0.0987300\pi\)
−0.305220 + 0.952282i \(0.598730\pi\)
\(230\) 1.77464 + 1.24021i 0.117017 + 0.0817771i
\(231\) 0 0
\(232\) −0.810136 0.214705i −0.0531881 0.0140961i
\(233\) 12.3002i 0.805812i 0.915241 + 0.402906i \(0.132000\pi\)
−0.915241 + 0.402906i \(0.868000\pi\)
\(234\) −0.100584 0.0702930i −0.00657536 0.00459520i
\(235\) −2.71849 2.71849i −0.177334 0.177334i
\(236\) 4.56037 9.82643i 0.296855 0.639646i
\(237\) −18.5369 + 18.5369i −1.20410 + 1.20410i
\(238\) 0 0
\(239\) 7.20218i 0.465870i 0.972492 + 0.232935i \(0.0748329\pi\)
−0.972492 + 0.232935i \(0.925167\pi\)
\(240\) −3.39693 4.01848i −0.219271 0.259392i
\(241\) 23.9465i 1.54253i 0.636514 + 0.771265i \(0.280376\pi\)
−0.636514 + 0.771265i \(0.719624\pi\)
\(242\) 2.46191 + 13.8882i 0.158258 + 0.892770i
\(243\) 0.155723 + 0.155723i 0.00998964 + 0.00998964i
\(244\) −5.09723 + 10.9832i −0.326317 + 0.703130i
\(245\) 0 0
\(246\) −10.1644 7.10341i −0.648059 0.452897i
\(247\) −22.8065 −1.45114
\(248\) −16.2904 + 9.46468i −1.03444 + 0.601008i
\(249\) 19.6785i 1.24707i
\(250\) −5.77984 + 8.27049i −0.365549 + 0.523072i
\(251\) −6.11266 + 6.11266i −0.385828 + 0.385828i −0.873196 0.487369i \(-0.837957\pi\)
0.487369 + 0.873196i \(0.337957\pi\)
\(252\) 0 0
\(253\) −6.55066 6.55066i −0.411837 0.411837i
\(254\) −3.22543 18.1954i −0.202381 1.14168i
\(255\) −3.46974 −0.217283
\(256\) 2.66350 15.7767i 0.166469 0.986047i
\(257\) 22.7840i 1.42123i 0.703583 + 0.710613i \(0.251582\pi\)
−0.703583 + 0.710613i \(0.748418\pi\)
\(258\) −2.30242 12.9885i −0.143343 0.808630i
\(259\) 0 0
\(260\) 5.82003 2.13033i 0.360943 0.132118i
\(261\) 0.00444020 0.00444020i 0.000274841 0.000274841i
\(262\) 9.96002 + 6.96057i 0.615332 + 0.430026i
\(263\) 10.5758 0.652130 0.326065 0.945347i \(-0.394277\pi\)
0.326065 + 0.945347i \(0.394277\pi\)
\(264\) 11.3107 + 19.4677i 0.696125 + 1.19815i
\(265\) 8.40973 0.516605
\(266\) 0 0
\(267\) −9.64903 9.64903i −0.590511 0.590511i
\(268\) −8.05394 + 17.3542i −0.491973 + 1.06008i
\(269\) −7.32471 + 7.32471i −0.446595 + 0.446595i −0.894221 0.447626i \(-0.852270\pi\)
0.447626 + 0.894221i \(0.352270\pi\)
\(270\) −5.45656 + 0.967264i −0.332076 + 0.0588658i
\(271\) −24.6645 −1.49826 −0.749131 0.662422i \(-0.769529\pi\)
−0.749131 + 0.662422i \(0.769529\pi\)
\(272\) −6.81118 8.05746i −0.412989 0.488555i
\(273\) 0 0
\(274\) 5.69884 + 32.1485i 0.344280 + 1.94216i
\(275\) 14.3368 14.3368i 0.864543 0.864543i
\(276\) −6.37862 2.96027i −0.383948 0.178187i
\(277\) 7.58476 7.58476i 0.455724 0.455724i −0.441525 0.897249i \(-0.645562\pi\)
0.897249 + 0.441525i \(0.145562\pi\)
\(278\) 6.98130 9.98968i 0.418710 0.599141i
\(279\) 0.141158i 0.00845093i
\(280\) 0 0
\(281\) 6.46396i 0.385608i −0.981237 0.192804i \(-0.938242\pi\)
0.981237 0.192804i \(-0.0617581\pi\)
\(282\) 10.2352 + 7.15288i 0.609497 + 0.425948i
\(283\) −13.9329 + 13.9329i −0.828224 + 0.828224i −0.987271 0.159047i \(-0.949158\pi\)
0.159047 + 0.987271i \(0.449158\pi\)
\(284\) −13.6260 + 4.98759i −0.808555 + 0.295959i
\(285\) 5.18103 5.18103i 0.306898 0.306898i
\(286\) −26.1120 + 4.62877i −1.54403 + 0.273705i
\(287\) 0 0
\(288\) 0.0921817 + 0.0766371i 0.00543186 + 0.00451588i
\(289\) 10.0428 0.590754
\(290\) 0.0553562 + 0.312277i 0.00325063 + 0.0183376i
\(291\) 10.8100 10.8100i 0.633693 0.633693i
\(292\) −12.3819 + 4.53220i −0.724596 + 0.265227i
\(293\) 2.96394 + 2.96394i 0.173155 + 0.173155i 0.788364 0.615209i \(-0.210928\pi\)
−0.615209 + 0.788364i \(0.710928\pi\)
\(294\) 0 0
\(295\) −4.09933 −0.238672
\(296\) 2.86692 10.8176i 0.166637 0.628763i
\(297\) 23.7120 1.37591
\(298\) −9.78689 + 14.0042i −0.566939 + 0.811244i
\(299\) 5.85675 5.85675i 0.338704 0.338704i
\(300\) 6.47886 13.9603i 0.374057 0.805998i
\(301\) 0 0
\(302\) 2.26611 0.401705i 0.130400 0.0231155i
\(303\) 4.00957i 0.230344i
\(304\) 22.2019 + 1.86095i 1.27337 + 0.106733i
\(305\) 4.58192 0.262360
\(306\) 0.0778354 0.0137976i 0.00444955 0.000788755i
\(307\) 8.60981 + 8.60981i 0.491388 + 0.491388i 0.908743 0.417356i \(-0.137043\pi\)
−0.417356 + 0.908743i \(0.637043\pi\)
\(308\) 0 0
\(309\) 16.7476 16.7476i 0.952736 0.952736i
\(310\) 5.84372 + 4.08389i 0.331901 + 0.231950i
\(311\) 5.76192i 0.326728i 0.986566 + 0.163364i \(0.0522346\pi\)
−0.986566 + 0.163364i \(0.947765\pi\)
\(312\) −17.4054 + 10.1125i −0.985389 + 0.572510i
\(313\) 8.03237 0.454016 0.227008 0.973893i \(-0.427106\pi\)
0.227008 + 0.973893i \(0.427106\pi\)
\(314\) 19.4867 27.8840i 1.09970 1.57358i
\(315\) 0 0
\(316\) 10.3684 + 28.3263i 0.583269 + 1.59348i
\(317\) −6.59717 6.59717i −0.370534 0.370534i 0.497138 0.867672i \(-0.334384\pi\)
−0.867672 + 0.497138i \(0.834384\pi\)
\(318\) −26.8953 + 4.76763i −1.50821 + 0.267355i
\(319\) 1.35703i 0.0759791i
\(320\) −5.83958 + 1.59896i −0.326443 + 0.0893847i
\(321\) 8.21213i 0.458356i
\(322\) 0 0
\(323\) 10.3885 10.3885i 0.578031 0.578031i
\(324\) 17.0218 6.23056i 0.945655 0.346142i
\(325\) 12.8181 + 12.8181i 0.711021 + 0.711021i
\(326\) 7.38706 10.5703i 0.409131 0.585434i
\(327\) 14.3226i 0.792040i
\(328\) −12.3374 + 7.16804i −0.681222 + 0.395789i
\(329\) 0 0
\(330\) 4.88042 6.98349i 0.268658 0.384428i
\(331\) −3.63131 3.63131i −0.199595 0.199595i 0.600231 0.799826i \(-0.295075\pi\)
−0.799826 + 0.600231i \(0.795075\pi\)
\(332\) −20.5388 9.53191i −1.12722 0.523132i
\(333\) 0.0592893 + 0.0592893i 0.00324904 + 0.00324904i
\(334\) −0.786813 4.43860i −0.0430525 0.242869i
\(335\) 7.23972 0.395548
\(336\) 0 0
\(337\) 1.50446 0.0819532 0.0409766 0.999160i \(-0.486953\pi\)
0.0409766 + 0.999160i \(0.486953\pi\)
\(338\) −0.929475 5.24339i −0.0505568 0.285203i
\(339\) 22.7194 + 22.7194i 1.23395 + 1.23395i
\(340\) −1.68068 + 3.62144i −0.0911478 + 0.196400i
\(341\) −21.5707 21.5707i −1.16812 1.16812i
\(342\) −0.0956216 + 0.136827i −0.00517062 + 0.00739875i
\(343\) 0 0
\(344\) −14.6716 3.88833i −0.791042 0.209644i
\(345\) 2.66100i 0.143263i
\(346\) 15.6091 22.3354i 0.839150 1.20076i
\(347\) 6.14205 + 6.14205i 0.329723 + 0.329723i 0.852481 0.522758i \(-0.175097\pi\)
−0.522758 + 0.852481i \(0.675097\pi\)
\(348\) −0.354072 0.967318i −0.0189802 0.0518537i
\(349\) 15.6677 15.6677i 0.838672 0.838672i −0.150012 0.988684i \(-0.547931\pi\)
0.988684 + 0.150012i \(0.0479313\pi\)
\(350\) 0 0
\(351\) 21.2002i 1.13158i
\(352\) 25.7975 2.37540i 1.37501 0.126609i
\(353\) 24.8767i 1.32405i 0.749480 + 0.662027i \(0.230303\pi\)
−0.749480 + 0.662027i \(0.769697\pi\)
\(354\) 13.1101 2.32399i 0.696796 0.123518i
\(355\) 3.88255 + 3.88255i 0.206065 + 0.206065i
\(356\) −14.7447 + 5.39707i −0.781468 + 0.286044i
\(357\) 0 0
\(358\) 5.89668 8.43768i 0.311649 0.445945i
\(359\) 8.65728 0.456914 0.228457 0.973554i \(-0.426632\pi\)
0.228457 + 0.973554i \(0.426632\pi\)
\(360\) 0.0116210 0.0438490i 0.000612481 0.00231105i
\(361\) 12.0243i 0.632859i
\(362\) 9.17407 + 6.41131i 0.482179 + 0.336971i
\(363\) −12.2581 + 12.2581i −0.643386 + 0.643386i
\(364\) 0 0
\(365\) 3.52806 + 3.52806i 0.184667 + 0.184667i
\(366\) −14.6535 + 2.59757i −0.765952 + 0.135777i
\(367\) 23.9341 1.24935 0.624676 0.780884i \(-0.285231\pi\)
0.624676 + 0.780884i \(0.285231\pi\)
\(368\) −6.17939 + 5.22360i −0.322123 + 0.272299i
\(369\) 0.106906i 0.00556529i
\(370\) −4.16980 + 0.739164i −0.216778 + 0.0384273i
\(371\) 0 0
\(372\) −21.0042 9.74787i −1.08901 0.505403i
\(373\) 1.67321 1.67321i 0.0866353 0.0866353i −0.662461 0.749096i \(-0.730488\pi\)
0.749096 + 0.662461i \(0.230488\pi\)
\(374\) 9.78574 14.0026i 0.506009 0.724058i
\(375\) −12.4012 −0.640396
\(376\) 12.4234 7.21796i 0.640687 0.372238i
\(377\) 1.21328 0.0624870
\(378\) 0 0
\(379\) −5.34619 5.34619i −0.274615 0.274615i 0.556340 0.830955i \(-0.312205\pi\)
−0.830955 + 0.556340i \(0.812205\pi\)
\(380\) −2.89795 7.91716i −0.148662 0.406142i
\(381\) 16.0598 16.0598i 0.822766 0.822766i
\(382\) −1.17642 6.63647i −0.0601909 0.339551i
\(383\) 25.1400 1.28459 0.642296 0.766457i \(-0.277982\pi\)
0.642296 + 0.766457i \(0.277982\pi\)
\(384\) 17.7692 8.42424i 0.906781 0.429898i
\(385\) 0 0
\(386\) −7.43735 + 1.31839i −0.378551 + 0.0671043i
\(387\) 0.0804124 0.0804124i 0.00408759 0.00408759i
\(388\) −6.04645 16.5188i −0.306962 0.838615i
\(389\) 4.45094 4.45094i 0.225672 0.225672i −0.585210 0.810882i \(-0.698988\pi\)
0.810882 + 0.585210i \(0.198988\pi\)
\(390\) 6.24372 + 4.36343i 0.316163 + 0.220951i
\(391\) 5.33557i 0.269831i
\(392\) 0 0
\(393\) 14.9346i 0.753350i
\(394\) −13.3761 + 19.1401i −0.673876 + 0.964262i
\(395\) 8.07122 8.07122i 0.406107 0.406107i
\(396\) −0.0817105 + 0.176065i −0.00410611 + 0.00884762i
\(397\) 12.7682 12.7682i 0.640816 0.640816i −0.309940 0.950756i \(-0.600309\pi\)
0.950756 + 0.309940i \(0.100309\pi\)
\(398\) −2.57360 14.5183i −0.129003 0.727735i
\(399\) 0 0
\(400\) −11.4324 13.5243i −0.571620 0.676213i
\(401\) 15.7766 0.787848 0.393924 0.919143i \(-0.371117\pi\)
0.393924 + 0.919143i \(0.371117\pi\)
\(402\) −23.1535 + 4.10433i −1.15479 + 0.204705i
\(403\) 19.2857 19.2857i 0.960688 0.960688i
\(404\) 4.18487 + 1.94217i 0.208205 + 0.0966264i
\(405\) −4.85014 4.85014i −0.241005 0.241005i
\(406\) 0 0
\(407\) 18.1202 0.898186
\(408\) 3.32196 12.5346i 0.164462 0.620556i
\(409\) −29.9701 −1.48193 −0.740963 0.671546i \(-0.765630\pi\)
−0.740963 + 0.671546i \(0.765630\pi\)
\(410\) 4.42572 + 3.09292i 0.218571 + 0.152748i
\(411\) −28.3752 + 28.3752i −1.39964 + 1.39964i
\(412\) −9.36756 25.5920i −0.461507 1.26083i
\(413\) 0 0
\(414\) −0.0105816 0.0596931i −0.000520056 0.00293376i
\(415\) 8.56827i 0.420600i
\(416\) 2.12378 + 23.0648i 0.104127 + 1.13084i
\(417\) 14.9791 0.733527
\(418\) 6.29665 + 35.5209i 0.307979 + 1.73738i
\(419\) −19.0681 19.0681i −0.931537 0.931537i 0.0662653 0.997802i \(-0.478892\pi\)
−0.997802 + 0.0662653i \(0.978892\pi\)
\(420\) 0 0
\(421\) 1.12116 1.12116i 0.0546418 0.0546418i −0.679258 0.733900i \(-0.737698\pi\)
0.733900 + 0.679258i \(0.237698\pi\)
\(422\) −0.820880 + 1.17461i −0.0399598 + 0.0571793i
\(423\) 0.107650i 0.00523413i
\(424\) −8.05155 + 30.3806i −0.391018 + 1.47541i
\(425\) −11.6775 −0.566440
\(426\) −14.6180 10.2158i −0.708243 0.494956i
\(427\) 0 0
\(428\) −8.57117 3.97781i −0.414303 0.192275i
\(429\) −23.0472 23.0472i −1.11273 1.11273i
\(430\) 1.00251 + 5.65537i 0.0483452 + 0.272726i
\(431\) 16.4410i 0.791933i 0.918265 + 0.395966i \(0.129590\pi\)
−0.918265 + 0.395966i \(0.870410\pi\)
\(432\) 1.72988 20.6382i 0.0832287 0.992955i
\(433\) 34.3709i 1.65176i −0.563847 0.825879i \(-0.690679\pi\)
0.563847 0.825879i \(-0.309321\pi\)
\(434\) 0 0
\(435\) −0.275625 + 0.275625i −0.0132152 + 0.0132152i
\(436\) −14.9488 6.93760i −0.715916 0.332251i
\(437\) −7.96710 7.96710i −0.381118 0.381118i
\(438\) −13.2833 9.28304i −0.634700 0.443561i
\(439\) 9.66830i 0.461443i −0.973020 0.230721i \(-0.925891\pi\)
0.973020 0.230721i \(-0.0741086\pi\)
\(440\) −4.92482 8.47648i −0.234782 0.404100i
\(441\) 0 0
\(442\) 12.5193 + 8.74913i 0.595483 + 0.416154i
\(443\) 24.5950 + 24.5950i 1.16854 + 1.16854i 0.982551 + 0.185992i \(0.0595499\pi\)
0.185992 + 0.982551i \(0.440450\pi\)
\(444\) 12.9165 4.72787i 0.612988 0.224375i
\(445\) 4.20132 + 4.20132i 0.199161 + 0.199161i
\(446\) 17.9886 3.18876i 0.851783 0.150992i
\(447\) −20.9987 −0.993205
\(448\) 0 0
\(449\) −35.5072 −1.67569 −0.837844 0.545910i \(-0.816184\pi\)
−0.837844 + 0.545910i \(0.816184\pi\)
\(450\) 0.130645 0.0231589i 0.00615866 0.00109172i
\(451\) −16.3365 16.3365i −0.769254 0.769254i
\(452\) 34.7176 12.7078i 1.63298 0.597726i
\(453\) 2.00013 + 2.00013i 0.0939745 + 0.0939745i
\(454\) 18.0302 + 12.6004i 0.846200 + 0.591368i
\(455\) 0 0
\(456\) 13.7564 + 23.6771i 0.644201 + 1.10878i
\(457\) 30.1215i 1.40902i −0.709692 0.704512i \(-0.751166\pi\)
0.709692 0.704512i \(-0.248834\pi\)
\(458\) 16.0522 + 11.2181i 0.750070 + 0.524188i
\(459\) −9.65680 9.65680i −0.450741 0.450741i
\(460\) 2.77734 + 1.28894i 0.129494 + 0.0600972i
\(461\) 2.37946 2.37946i 0.110822 0.110822i −0.649521 0.760344i \(-0.725031\pi\)
0.760344 + 0.649521i \(0.225031\pi\)
\(462\) 0 0
\(463\) 1.23324i 0.0573136i 0.999589 + 0.0286568i \(0.00912299\pi\)
−0.999589 + 0.0286568i \(0.990877\pi\)
\(464\) −1.18112 0.0990003i −0.0548320 0.00459597i
\(465\) 8.76239i 0.406346i
\(466\) 3.03623 + 17.1281i 0.140651 + 0.793443i
\(467\) 22.5465 + 22.5465i 1.04333 + 1.04333i 0.999018 + 0.0443082i \(0.0141084\pi\)
0.0443082 + 0.999018i \(0.485892\pi\)
\(468\) −0.157415 0.0730549i −0.00727649 0.00337696i
\(469\) 0 0
\(470\) −4.45654 3.11446i −0.205565 0.143659i
\(471\) 41.8107 1.92654
\(472\) 3.92474 14.8090i 0.180651 0.681641i
\(473\) 24.5759i 1.13000i
\(474\) −21.2370 + 30.3885i −0.975448 + 1.39579i
\(475\) 17.4368 17.4368i 0.800057 0.800057i
\(476\) 0 0
\(477\) −0.166510 0.166510i −0.00762396 0.00762396i
\(478\) 1.77781 + 10.0291i 0.0813153 + 0.458719i
\(479\) 13.2922 0.607337 0.303668 0.952778i \(-0.401789\pi\)
0.303668 + 0.952778i \(0.401789\pi\)
\(480\) −5.72217 4.75724i −0.261180 0.217137i
\(481\) 16.2007i 0.738690i
\(482\) 5.91105 + 33.3456i 0.269241 + 1.51885i
\(483\) 0 0
\(484\) 6.85645 + 18.7317i 0.311657 + 0.851442i
\(485\) −4.70682 + 4.70682i −0.213726 + 0.213726i
\(486\) 0.255284 + 0.178406i 0.0115799 + 0.00809265i
\(487\) −1.28409 −0.0581876 −0.0290938 0.999577i \(-0.509262\pi\)
−0.0290938 + 0.999577i \(0.509262\pi\)
\(488\) −4.38677 + 16.5524i −0.198580 + 0.749293i
\(489\) 15.8497 0.716746
\(490\) 0 0
\(491\) 7.08341 + 7.08341i 0.319670 + 0.319670i 0.848640 0.528970i \(-0.177422\pi\)
−0.528970 + 0.848640i \(0.677422\pi\)
\(492\) −15.9074 7.38251i −0.717162 0.332829i
\(493\) −0.552656 + 0.552656i −0.0248904 + 0.0248904i
\(494\) −31.7581 + 5.62964i −1.42887 + 0.253290i
\(495\) 0.0734499 0.00330133
\(496\) −20.3481 + 17.2008i −0.913657 + 0.772338i
\(497\) 0 0
\(498\) −4.85751 27.4023i −0.217670 1.22793i
\(499\) 16.0586 16.0586i 0.718882 0.718882i −0.249494 0.968376i \(-0.580264\pi\)
0.968376 + 0.249494i \(0.0802643\pi\)
\(500\) −6.00693 + 12.9434i −0.268638 + 0.578847i
\(501\) 3.91763 3.91763i 0.175027 0.175027i
\(502\) −7.00303 + 10.0208i −0.312561 + 0.447249i
\(503\) 36.0928i 1.60930i 0.593751 + 0.804649i \(0.297646\pi\)
−0.593751 + 0.804649i \(0.702354\pi\)
\(504\) 0 0
\(505\) 1.74582i 0.0776880i
\(506\) −10.7388 7.50483i −0.477398 0.333631i
\(507\) 4.62796 4.62796i 0.205535 0.205535i
\(508\) −8.98284 24.5410i −0.398549 1.08883i
\(509\) −3.84953 + 3.84953i −0.170627 + 0.170627i −0.787255 0.616628i \(-0.788498\pi\)
0.616628 + 0.787255i \(0.288498\pi\)
\(510\) −4.83163 + 0.856484i −0.213948 + 0.0379257i
\(511\) 0 0
\(512\) −0.185456 22.6267i −0.00819607 0.999966i
\(513\) 28.8392 1.27328
\(514\) 5.62408 + 31.7268i 0.248068 + 1.39941i
\(515\) −7.29212 + 7.29212i −0.321329 + 0.321329i
\(516\) −6.41227 17.5182i −0.282284 0.771197i
\(517\) 16.4502 + 16.4502i 0.723481 + 0.723481i
\(518\) 0 0
\(519\) 33.4908 1.47008
\(520\) 7.57856 4.40314i 0.332342 0.193090i
\(521\) −5.15722 −0.225942 −0.112971 0.993598i \(-0.536037\pi\)
−0.112971 + 0.993598i \(0.536037\pi\)
\(522\) 0.00508696 0.00727903i 0.000222650 0.000318594i
\(523\) 5.43529 5.43529i 0.237669 0.237669i −0.578215 0.815884i \(-0.696251\pi\)
0.815884 + 0.578215i \(0.196251\pi\)
\(524\) 15.5875 + 7.23406i 0.680945 + 0.316021i
\(525\) 0 0
\(526\) 14.7268 2.61056i 0.642119 0.113826i
\(527\) 17.5695i 0.765339i
\(528\) 20.5556 + 24.3168i 0.894570 + 1.05825i
\(529\) −18.9081 −0.822090
\(530\) 11.7106 2.07589i 0.508675 0.0901709i
\(531\) 0.0811654 + 0.0811654i 0.00352228 + 0.00352228i
\(532\) 0 0
\(533\) 14.6059 14.6059i 0.632653 0.632653i
\(534\) −15.8181 11.0545i −0.684517 0.478375i
\(535\) 3.57567i 0.154590i
\(536\) −6.93138 + 26.1539i −0.299390 + 1.12967i
\(537\) 12.6519 0.545970
\(538\) −8.39163 + 12.0077i −0.361789 + 0.517691i
\(539\) 0 0
\(540\) −7.35952 + 2.69384i −0.316704 + 0.115924i
\(541\) −5.52727 5.52727i −0.237636 0.237636i 0.578235 0.815871i \(-0.303742\pi\)
−0.815871 + 0.578235i \(0.803742\pi\)
\(542\) −34.3454 + 6.08828i −1.47526 + 0.261514i
\(543\) 13.7561i 0.590330i
\(544\) −11.4735 9.53875i −0.491924 0.408971i
\(545\) 6.23624i 0.267131i
\(546\) 0 0
\(547\) 3.45431 3.45431i 0.147696 0.147696i −0.629392 0.777088i \(-0.716696\pi\)
0.777088 + 0.629392i \(0.216696\pi\)
\(548\) 15.8713 + 43.3602i 0.677990 + 1.85226i
\(549\) −0.0907205 0.0907205i −0.00387186 0.00387186i
\(550\) 16.4251 23.5030i 0.700370 1.00217i
\(551\) 1.65046i 0.0703118i
\(552\) −9.61298 2.54766i −0.409156 0.108436i
\(553\) 0 0
\(554\) 8.68956 12.4341i 0.369184 0.528273i
\(555\) −3.68038 3.68038i −0.156223 0.156223i
\(556\) 7.25560 15.6340i 0.307706 0.663027i
\(557\) −20.4236 20.4236i −0.865374 0.865374i 0.126582 0.991956i \(-0.459599\pi\)
−0.991956 + 0.126582i \(0.959599\pi\)
\(558\) −0.0348441 0.196564i −0.00147507 0.00832120i
\(559\) 21.9726 0.929342
\(560\) 0 0
\(561\) 20.9963 0.886463
\(562\) −1.59559 9.00109i −0.0673059 0.379688i
\(563\) 0.664824 + 0.664824i 0.0280190 + 0.0280190i 0.720977 0.692959i \(-0.243693\pi\)
−0.692959 + 0.720977i \(0.743693\pi\)
\(564\) 16.0182 + 7.43392i 0.674488 + 0.313025i
\(565\) −9.89233 9.89233i −0.416173 0.416173i
\(566\) −15.9624 + 22.8409i −0.670948 + 0.960073i
\(567\) 0 0
\(568\) −17.7431 + 10.3087i −0.744485 + 0.432545i
\(569\) 13.2954i 0.557371i 0.960382 + 0.278686i \(0.0898987\pi\)
−0.960382 + 0.278686i \(0.910101\pi\)
\(570\) 5.93570 8.49351i 0.248619 0.355754i
\(571\) 5.78684 + 5.78684i 0.242172 + 0.242172i 0.817748 0.575576i \(-0.195222\pi\)
−0.575576 + 0.817748i \(0.695222\pi\)
\(572\) −35.2185 + 12.8912i −1.47256 + 0.539007i
\(573\) 5.85753 5.85753i 0.244702 0.244702i
\(574\) 0 0
\(575\) 8.95562i 0.373475i
\(576\) 0.147281 + 0.0839629i 0.00613670 + 0.00349846i
\(577\) 26.6018i 1.10745i 0.832701 + 0.553724i \(0.186794\pi\)
−0.832701 + 0.553724i \(0.813206\pi\)
\(578\) 13.9847 2.47901i 0.581686 0.103113i
\(579\) −6.56441 6.56441i −0.272808 0.272808i
\(580\) 0.154168 + 0.421183i 0.00640146 + 0.0174887i
\(581\) 0 0
\(582\) 12.3846 17.7213i 0.513358 0.734573i
\(583\) −50.8894 −2.10762
\(584\) −16.1231 + 9.36750i −0.667179 + 0.387630i
\(585\) 0.0656693i 0.00271509i
\(586\) 4.85894 + 3.39567i 0.200721 + 0.140274i
\(587\) −9.30074 + 9.30074i −0.383883 + 0.383883i −0.872499 0.488616i \(-0.837502\pi\)
0.488616 + 0.872499i \(0.337502\pi\)
\(588\) 0 0
\(589\) −26.2349 26.2349i −1.08099 1.08099i
\(590\) −5.70833 + 1.01189i −0.235008 + 0.0416590i
\(591\) −28.6996 −1.18054
\(592\) 1.32194 15.7713i 0.0543313 0.648196i
\(593\) 14.1060i 0.579266i −0.957138 0.289633i \(-0.906467\pi\)
0.957138 0.289633i \(-0.0935332\pi\)
\(594\) 33.0190 5.85316i 1.35479 0.240158i
\(595\) 0 0
\(596\) −10.1714 + 21.9168i −0.416638 + 0.897748i
\(597\) 12.8142 12.8142i 0.524451 0.524451i
\(598\) 6.70984 9.60125i 0.274386 0.392624i
\(599\) 29.4793 1.20449 0.602247 0.798310i \(-0.294272\pi\)
0.602247 + 0.798310i \(0.294272\pi\)
\(600\) 5.57583 21.0390i 0.227632 0.858915i
\(601\) −23.6858 −0.966164 −0.483082 0.875575i \(-0.660483\pi\)
−0.483082 + 0.875575i \(0.660483\pi\)
\(602\) 0 0
\(603\) −0.143344 0.143344i −0.00583742 0.00583742i
\(604\) 3.05641 1.11875i 0.124364 0.0455214i
\(605\) 5.33736 5.33736i 0.216995 0.216995i
\(606\) 0.989738 + 5.58334i 0.0402053 + 0.226808i
\(607\) 5.72600 0.232411 0.116206 0.993225i \(-0.462927\pi\)
0.116206 + 0.993225i \(0.462927\pi\)
\(608\) 31.3757 2.88903i 1.27245 0.117166i
\(609\) 0 0
\(610\) 6.38034 1.13102i 0.258333 0.0457936i
\(611\) −14.7077 + 14.7077i −0.595008 + 0.595008i
\(612\) 0.104980 0.0384264i 0.00424358 0.00155329i
\(613\) −1.59218 + 1.59218i −0.0643077 + 0.0643077i −0.738529 0.674221i \(-0.764479\pi\)
0.674221 + 0.738529i \(0.264479\pi\)
\(614\) 14.1145 + 9.86392i 0.569614 + 0.398075i
\(615\) 6.63616i 0.267596i
\(616\) 0 0
\(617\) 12.2572i 0.493457i 0.969085 + 0.246729i \(0.0793556\pi\)
−0.969085 + 0.246729i \(0.920644\pi\)
\(618\) 19.1870 27.4551i 0.771816 1.10441i
\(619\) 5.28135 5.28135i 0.212275 0.212275i −0.592958 0.805233i \(-0.702040\pi\)
0.805233 + 0.592958i \(0.202040\pi\)
\(620\) 9.14549 + 4.24435i 0.367292 + 0.170457i
\(621\) −7.40595 + 7.40595i −0.297190 + 0.297190i
\(622\) 1.42229 + 8.02350i 0.0570288 + 0.321713i
\(623\) 0 0
\(624\) −21.7409 + 18.3782i −0.870334 + 0.735716i
\(625\) −16.7365 −0.669459
\(626\) 11.1851 1.98274i 0.447047 0.0792462i
\(627\) −31.3517 + 31.3517i −1.25207 + 1.25207i
\(628\) 20.2524 43.6387i 0.808158 1.74137i
\(629\) −7.37954 7.37954i −0.294241 0.294241i
\(630\) 0 0
\(631\) −10.1046 −0.402257 −0.201129 0.979565i \(-0.564461\pi\)
−0.201129 + 0.979565i \(0.564461\pi\)
\(632\) 21.4302 + 36.8852i 0.852449 + 1.46721i
\(633\) −1.76128 −0.0700045
\(634\) −10.8151 7.55811i −0.429521 0.300171i
\(635\) −6.99263 + 6.99263i −0.277494 + 0.277494i
\(636\) −36.2750 + 13.2779i −1.43840 + 0.526502i
\(637\) 0 0
\(638\) −0.334974 1.88967i −0.0132618 0.0748127i
\(639\) 0.153747i 0.00608212i
\(640\) −7.73695 + 3.66803i −0.305830 + 0.144991i
\(641\) −22.2785 −0.879947 −0.439973 0.898011i \(-0.645012\pi\)
−0.439973 + 0.898011i \(0.645012\pi\)
\(642\) −2.02711 11.4354i −0.0800038 0.451320i
\(643\) 2.94059 + 2.94059i 0.115965 + 0.115965i 0.762708 0.646743i \(-0.223869\pi\)
−0.646743 + 0.762708i \(0.723869\pi\)
\(644\) 0 0
\(645\) −4.99159 + 4.99159i −0.196544 + 0.196544i
\(646\) 11.9017 17.0304i 0.468266 0.670051i
\(647\) 15.7728i 0.620092i −0.950722 0.310046i \(-0.899656\pi\)
0.950722 0.310046i \(-0.100344\pi\)
\(648\) 22.1649 12.8778i 0.870721 0.505888i
\(649\) 24.8061 0.973724
\(650\) 21.0134 + 14.6852i 0.824212 + 0.576001i
\(651\) 0 0
\(652\) 7.67730 16.5426i 0.300666 0.647859i
\(653\) 8.69876 + 8.69876i 0.340409 + 0.340409i 0.856521 0.516112i \(-0.172621\pi\)
−0.516112 + 0.856521i \(0.672621\pi\)
\(654\) −3.53544 19.9442i −0.138247 0.779881i
\(655\) 6.50272i 0.254082i
\(656\) −15.4106 + 13.0270i −0.601681 + 0.508617i
\(657\) 0.139709i 0.00545056i
\(658\) 0 0
\(659\) 22.1996 22.1996i 0.864775 0.864775i −0.127114 0.991888i \(-0.540571\pi\)
0.991888 + 0.127114i \(0.0405713\pi\)
\(660\) 5.07217 10.9292i 0.197434 0.425420i
\(661\) −0.693821 0.693821i −0.0269865 0.0269865i 0.693485 0.720471i \(-0.256074\pi\)
−0.720471 + 0.693485i \(0.756074\pi\)
\(662\) −5.95298 4.16025i −0.231369 0.161693i
\(663\) 18.7721i 0.729049i
\(664\) −30.9533 8.20334i −1.20122 0.318351i
\(665\) 0 0
\(666\) 0.0971959 + 0.0679254i 0.00376626 + 0.00263206i
\(667\) 0.423840 + 0.423840i 0.0164112 + 0.0164112i
\(668\) −2.19128 5.98654i −0.0847832 0.231626i
\(669\) 15.8772 + 15.8772i 0.613848 + 0.613848i
\(670\) 10.0813 1.78708i 0.389476 0.0690409i
\(671\) −27.7264 −1.07036
\(672\) 0 0
\(673\) −28.5560 −1.10075 −0.550376 0.834917i \(-0.685516\pi\)
−0.550376 + 0.834917i \(0.685516\pi\)
\(674\) 2.09497 0.371367i 0.0806952 0.0143045i
\(675\) −16.2087 16.2087i −0.623874 0.623874i
\(676\) −2.58859 7.07200i −0.0995613 0.272000i
\(677\) −5.22505 5.22505i −0.200815 0.200815i 0.599534 0.800349i \(-0.295353\pi\)
−0.800349 + 0.599534i \(0.795353\pi\)
\(678\) 37.2450 + 26.0287i 1.43039 + 0.999627i
\(679\) 0 0
\(680\) −1.44643 + 5.45774i −0.0554679 + 0.209295i
\(681\) 27.0355i 1.03600i
\(682\) −35.3618 24.7127i −1.35407 0.946297i
\(683\) 1.39461 + 1.39461i 0.0533633 + 0.0533633i 0.733285 0.679922i \(-0.237986\pi\)
−0.679922 + 0.733285i \(0.737986\pi\)
\(684\) −0.0993786 + 0.214136i −0.00379984 + 0.00818768i
\(685\) 12.3549 12.3549i 0.472058 0.472058i
\(686\) 0 0
\(687\) 24.0695i 0.918310i
\(688\) −21.3901 1.79290i −0.815491 0.0683538i
\(689\) 45.4986i 1.73336i
\(690\) 0.656850 + 3.70545i 0.0250059 + 0.141064i
\(691\) 0.158334 + 0.158334i 0.00602332 + 0.00602332i 0.710112 0.704089i \(-0.248644\pi\)
−0.704089 + 0.710112i \(0.748644\pi\)
\(692\) 16.2224 34.9551i 0.616682 1.32879i
\(693\) 0 0
\(694\) 10.0690 + 7.03671i 0.382213 + 0.267110i
\(695\) −6.52208 −0.247397
\(696\) −0.731823 1.25959i −0.0277397 0.0477448i
\(697\) 13.3062i 0.504008i
\(698\) 17.9498 25.6848i 0.679412 0.972184i
\(699\) −15.1177 + 15.1177i −0.571804 + 0.571804i
\(700\) 0 0
\(701\) 18.2761 + 18.2761i 0.690279 + 0.690279i 0.962293 0.272014i \(-0.0876898\pi\)
−0.272014 + 0.962293i \(0.587690\pi\)
\(702\) 5.23313 + 29.5213i 0.197512 + 1.11421i
\(703\) 22.0383 0.831191
\(704\) 35.3368 9.67572i 1.33181 0.364667i
\(705\) 6.68238i 0.251673i
\(706\) 6.14066 + 34.6409i 0.231107 + 1.30373i
\(707\) 0 0
\(708\) 17.6823 6.47232i 0.664541 0.243245i
\(709\) 1.21878 1.21878i 0.0457723 0.0457723i −0.683850 0.729622i \(-0.739696\pi\)
0.729622 + 0.683850i \(0.239696\pi\)
\(710\) 6.36486 + 4.44809i 0.238869 + 0.166934i
\(711\) −0.319615 −0.0119865
\(712\) −19.1998 + 11.1551i −0.719545 + 0.418055i
\(713\) 13.4743 0.504617
\(714\) 0 0
\(715\) 10.0351 + 10.0351i 0.375290 + 0.375290i
\(716\) 6.12837 13.2051i 0.229028 0.493497i
\(717\) −8.85193 + 8.85193i −0.330581 + 0.330581i
\(718\) 12.0553 2.13700i 0.449900 0.0797520i
\(719\) −51.0128 −1.90246 −0.951229 0.308486i \(-0.900178\pi\)
−0.951229 + 0.308486i \(0.900178\pi\)
\(720\) 0.00535844 0.0639285i 0.000199697 0.00238248i
\(721\) 0 0
\(722\) 2.96813 + 16.7439i 0.110462 + 0.623144i
\(723\) −29.4318 + 29.4318i −1.09458 + 1.09458i
\(724\) 14.3575 + 6.66322i 0.533593 + 0.247636i
\(725\) −0.927620 + 0.927620i −0.0344509 + 0.0344509i
\(726\) −14.0437 + 20.0954i −0.521209 + 0.745809i
\(727\) 31.5017i 1.16833i −0.811634 0.584166i \(-0.801422\pi\)
0.811634 0.584166i \(-0.198578\pi\)
\(728\) 0 0
\(729\) 26.8066i 0.992837i
\(730\) 5.78372 + 4.04196i 0.214065 + 0.149600i
\(731\) −10.0087 + 10.0087i −0.370183 + 0.370183i
\(732\) −19.7639 + 7.23427i −0.730495 + 0.267386i
\(733\) 29.5288 29.5288i 1.09067 1.09067i 0.0952142 0.995457i \(-0.469646\pi\)
0.995457 0.0952142i \(-0.0303536\pi\)
\(734\) 33.3284 5.90799i 1.23017 0.218068i
\(735\) 0 0
\(736\) −7.31541 + 8.79923i −0.269650 + 0.324344i
\(737\) −43.8094 −1.61374
\(738\) −0.0263890 0.148867i −0.000971393 0.00547986i
\(739\) 12.7370 12.7370i 0.468539 0.468539i −0.432902 0.901441i \(-0.642510\pi\)
0.901441 + 0.432902i \(0.142510\pi\)
\(740\) −5.62400 + 2.05858i −0.206743 + 0.0756748i
\(741\) −28.0306 28.0306i −1.02973 1.02973i
\(742\) 0 0
\(743\) −23.0128 −0.844256 −0.422128 0.906536i \(-0.638717\pi\)
−0.422128 + 0.906536i \(0.638717\pi\)
\(744\) −31.6546 8.38920i −1.16051 0.307563i
\(745\) 9.14312 0.334978
\(746\) 1.91693 2.74297i 0.0701836 0.100427i
\(747\) 0.169649 0.169649i 0.00620713 0.00620713i
\(748\) 10.1702 21.9142i 0.371860 0.801264i
\(749\) 0 0
\(750\) −17.2687 + 3.06116i −0.630565 + 0.111778i
\(751\) 0.461609i 0.0168443i −0.999965 0.00842217i \(-0.997319\pi\)
0.999965 0.00842217i \(-0.00268089\pi\)
\(752\) 15.5179 13.1177i 0.565879 0.478353i
\(753\) −15.0257 −0.547566
\(754\) 1.68950 0.299490i 0.0615278 0.0109068i
\(755\) −0.870885 0.870885i −0.0316947 0.0316947i
\(756\) 0 0
\(757\) −5.23204 + 5.23204i −0.190162 + 0.190162i −0.795766 0.605604i \(-0.792931\pi\)
0.605604 + 0.795766i \(0.292931\pi\)
\(758\) −8.76427 6.12492i −0.318332 0.222467i
\(759\) 16.1023i 0.584478i
\(760\) −5.98971 10.3093i −0.217270 0.373959i
\(761\) −21.2103 −0.768874 −0.384437 0.923151i \(-0.625604\pi\)
−0.384437 + 0.923151i \(0.625604\pi\)
\(762\) 18.3990 26.3275i 0.666526 0.953746i
\(763\) 0 0
\(764\) −3.27634 8.95091i −0.118534 0.323833i
\(765\) −0.0299128 0.0299128i −0.00108150 0.00108150i
\(766\) 35.0075 6.20565i 1.26487 0.224219i
\(767\) 22.1784i 0.800814i
\(768\) 22.6642 16.1170i 0.817825 0.581572i
\(769\) 10.8533i 0.391379i 0.980666 + 0.195689i \(0.0626944\pi\)
−0.980666 + 0.195689i \(0.937306\pi\)
\(770\) 0 0
\(771\) −28.0029 + 28.0029i −1.00850 + 1.00850i
\(772\) −10.0311 + 3.67173i −0.361028 + 0.132148i
\(773\) −34.4036 34.4036i −1.23741 1.23741i −0.961055 0.276357i \(-0.910873\pi\)
−0.276357 0.961055i \(-0.589127\pi\)
\(774\) 0.0921253 0.131824i 0.00331137 0.00473831i
\(775\) 29.4900i 1.05931i
\(776\) −12.4973 21.5100i −0.448626 0.772163i
\(777\) 0 0
\(778\) 5.09927 7.29665i 0.182818 0.261597i
\(779\) −19.8689 19.8689i −0.711876 0.711876i
\(780\) 9.77150 + 4.53488i 0.349876 + 0.162375i
\(781\) −23.4943 23.4943i −0.840693 0.840693i
\(782\) 1.31705 + 7.42980i 0.0470977 + 0.265689i
\(783\) −1.53421 −0.0548282
\(784\) 0 0
\(785\) −18.2049 −0.649762
\(786\) 3.68651 + 20.7965i 0.131493 + 0.741786i
\(787\) −9.48837 9.48837i −0.338224 0.338224i 0.517475 0.855699i \(-0.326872\pi\)
−0.855699 + 0.517475i \(0.826872\pi\)
\(788\) −13.9016 + 29.9544i −0.495224 + 1.06708i
\(789\) 12.9983 + 12.9983i 0.462751 + 0.462751i
\(790\) 9.24688 13.2315i 0.328989 0.470757i
\(791\) 0 0
\(792\) −0.0703216 + 0.265341i −0.00249877 + 0.00942850i
\(793\) 24.7893i 0.880293i
\(794\) 14.6280 20.9315i 0.519128 0.742830i
\(795\) 10.3361 + 10.3361i 0.366583 + 0.366583i
\(796\) −7.16749 19.5815i −0.254045 0.694047i
\(797\) −6.22856 + 6.22856i −0.220627 + 0.220627i −0.808762 0.588135i \(-0.799862\pi\)
0.588135 + 0.808762i \(0.299862\pi\)
\(798\) 0 0
\(799\) 13.3989i 0.474017i
\(800\) −19.2581 16.0106i −0.680875 0.566059i
\(801\) 0.166369i 0.00587837i
\(802\) 21.9690 3.89437i 0.775754 0.137515i
\(803\) −21.3492 21.3492i −0.753396 0.753396i
\(804\) −31.2282 + 11.4306i −1.10133 + 0.403126i
\(805\) 0 0
\(806\) 22.0948 31.6159i 0.778258 1.11362i
\(807\) −18.0051 −0.633808
\(808\) 6.30687 + 1.67147i 0.221875 + 0.0588019i
\(809\) 1.72438i 0.0606260i 0.999540 + 0.0303130i \(0.00965040\pi\)
−0.999540 + 0.0303130i \(0.990350\pi\)
\(810\) −7.95106 5.55661i −0.279372 0.195239i
\(811\) −29.5809 + 29.5809i −1.03872 + 1.03872i −0.0395050 + 0.999219i \(0.512578\pi\)
−0.999219 + 0.0395050i \(0.987422\pi\)
\(812\) 0 0
\(813\) −30.3142 30.3142i −1.06317 1.06317i
\(814\) 25.2325 4.47287i 0.884399 0.156774i
\(815\) −6.90115 −0.241737
\(816\) 1.53175 18.2745i 0.0536221 0.639735i
\(817\) 29.8899i 1.04572i
\(818\) −41.7335 + 7.39793i −1.45918 + 0.258663i
\(819\) 0 0
\(820\) 6.92631 + 3.21444i 0.241877 + 0.112253i
\(821\) −26.6950 + 26.6950i −0.931662 + 0.931662i −0.997810 0.0661475i \(-0.978929\pi\)
0.0661475 + 0.997810i \(0.478929\pi\)
\(822\) −32.5083 + 46.5168i −1.13386 + 1.62246i
\(823\) −36.7556 −1.28122 −0.640609 0.767867i \(-0.721318\pi\)
−0.640609 + 0.767867i \(0.721318\pi\)
\(824\) −19.3616 33.3247i −0.674494 1.16092i
\(825\) 35.2417 1.22696
\(826\) 0 0
\(827\) 25.1791 + 25.1791i 0.875565 + 0.875565i 0.993072 0.117507i \(-0.0374904\pi\)
−0.117507 + 0.993072i \(0.537490\pi\)
\(828\) −0.0294698 0.0805110i −0.00102415 0.00279795i
\(829\) −16.6238 + 16.6238i −0.577370 + 0.577370i −0.934178 0.356808i \(-0.883865\pi\)
0.356808 + 0.934178i \(0.383865\pi\)
\(830\) 2.11502 + 11.9314i 0.0734136 + 0.414143i
\(831\) 18.6443 0.646764
\(832\) 8.65076 + 31.5935i 0.299911 + 1.09531i
\(833\) 0 0
\(834\) 20.8584 3.69749i 0.722267 0.128034i
\(835\) −1.70579 + 1.70579i −0.0590312 + 0.0590312i
\(836\) 17.5362 + 47.9087i 0.606503 + 1.65696i
\(837\) −24.3870 + 24.3870i −0.842940 + 0.842940i
\(838\) −31.2592 21.8455i −1.07983 0.754642i
\(839\) 13.7267i 0.473899i 0.971522 + 0.236949i \(0.0761475\pi\)
−0.971522 + 0.236949i \(0.923852\pi\)
\(840\) 0 0
\(841\) 28.9122i 0.996972i
\(842\) 1.28446 1.83797i 0.0442656 0.0633405i
\(843\) 7.94461 7.94461i 0.273627 0.273627i
\(844\) −0.853133 + 1.83828i −0.0293660 + 0.0632763i
\(845\) −2.01508 + 2.01508i −0.0693207 + 0.0693207i
\(846\) 0.0265728 + 0.149903i 0.000913592 + 0.00515379i
\(847\) 0 0
\(848\) −3.71257 + 44.2925i −0.127490 + 1.52101i
\(849\) −34.2488 −1.17542
\(850\) −16.2609 + 2.88251i −0.557745 + 0.0988693i
\(851\) −5.65948 + 5.65948i −0.194004 + 0.194004i
\(852\) −22.8773 10.6172i −0.783763 0.363738i
\(853\) −2.88131 2.88131i −0.0986542 0.0986542i 0.656057 0.754711i \(-0.272223\pi\)
−0.754711 + 0.656057i \(0.772223\pi\)
\(854\) 0 0
\(855\) 0.0893318 0.00305508
\(856\) −12.9173 3.42338i −0.441504 0.117009i
\(857\) −15.5048 −0.529635 −0.264817 0.964299i \(-0.585312\pi\)
−0.264817 + 0.964299i \(0.585312\pi\)
\(858\) −37.7823 26.4042i −1.28987 0.901426i
\(859\) 17.3380 17.3380i 0.591566 0.591566i −0.346488 0.938054i \(-0.612626\pi\)
0.938054 + 0.346488i \(0.112626\pi\)
\(860\) 2.79199 + 7.62767i 0.0952060 + 0.260101i
\(861\) 0 0
\(862\) 4.05835 + 22.8941i 0.138228 + 0.779776i
\(863\) 47.0811i 1.60266i −0.598223 0.801329i \(-0.704126\pi\)
0.598223 0.801329i \(-0.295874\pi\)
\(864\) −2.68555 29.1658i −0.0913642 0.992239i
\(865\) −14.5824 −0.495815
\(866\) −8.48424 47.8616i −0.288306 1.62640i
\(867\) 12.3433 + 12.3433i 0.419199 + 0.419199i
\(868\) 0 0
\(869\) −48.8410 + 48.8410i −1.65682 + 1.65682i
\(870\) −0.315772 + 0.451845i −0.0107057 + 0.0153190i
\(871\) 39.1686i 1.32718i
\(872\) −22.5287 5.97063i −0.762919 0.202191i
\(873\) 0.186387 0.00630824
\(874\) −13.0608 9.12759i −0.441790 0.308745i
\(875\) 0 0
\(876\) −20.7885 9.64778i −0.702378 0.325968i
\(877\) 14.3234 + 14.3234i 0.483667 + 0.483667i 0.906301 0.422634i \(-0.138894\pi\)
−0.422634 + 0.906301i \(0.638894\pi\)
\(878\) −2.38656 13.4631i −0.0805425 0.454359i
\(879\) 7.28575i 0.245742i
\(880\) −8.95021 10.5879i −0.301711 0.356917i
\(881\) 29.7191i 1.00126i −0.865660 0.500632i \(-0.833101\pi\)
0.865660 0.500632i \(-0.166899\pi\)
\(882\) 0 0
\(883\) −10.1351 + 10.1351i −0.341074 + 0.341074i −0.856771 0.515697i \(-0.827533\pi\)
0.515697 + 0.856771i \(0.327533\pi\)
\(884\) 19.5929 + 9.09289i 0.658979 + 0.305827i
\(885\) −5.03833 5.03833i −0.169362 0.169362i
\(886\) 40.3198 + 28.1775i 1.35457 + 0.946642i
\(887\) 34.5097i 1.15872i 0.815070 + 0.579362i \(0.196698\pi\)
−0.815070 + 0.579362i \(0.803302\pi\)
\(888\) 16.8192 9.77193i 0.564415 0.327925i
\(889\) 0 0
\(890\) 6.88742 + 4.81328i 0.230867 + 0.161342i
\(891\) 29.3494 + 29.3494i 0.983242 + 0.983242i
\(892\) 24.2620 8.88073i 0.812352 0.297349i
\(893\) 20.0072 + 20.0072i 0.669517 + 0.669517i
\(894\) −29.2408 + 5.18340i −0.977959 + 0.173359i
\(895\) −5.50881 −0.184139
\(896\) 0 0
\(897\) 14.3966 0.480689
\(898\) −49.4439 + 8.76473i −1.64996 + 0.292483i
\(899\) 1.39566 + 1.39566i 0.0465480 + 0.0465480i
\(900\) 0.176207 0.0644978i 0.00587356 0.00214993i
\(901\) 20.7249 + 20.7249i 0.690447 + 0.690447i
\(902\) −26.7812 18.7160i −0.891715 0.623176i
\(903\) 0 0
\(904\) 45.2076 26.2655i 1.50358 0.873579i
\(905\) 5.98959i 0.199101i
\(906\) 3.27891 + 2.29147i 0.108935 + 0.0761291i
\(907\) 5.90330 + 5.90330i 0.196016 + 0.196016i 0.798290 0.602274i \(-0.205738\pi\)
−0.602274 + 0.798290i \(0.705738\pi\)
\(908\) 28.2175 + 13.0955i 0.936430 + 0.434590i
\(909\) −0.0345667 + 0.0345667i −0.00114650 + 0.00114650i
\(910\) 0 0
\(911\) 8.93090i 0.295894i 0.988995 + 0.147947i \(0.0472665\pi\)
−0.988995 + 0.147947i \(0.952734\pi\)
\(912\) 25.0004 + 29.5748i 0.827844 + 0.979319i
\(913\) 51.8487i 1.71594i
\(914\) −7.43530 41.9443i −0.245938 1.38739i
\(915\) 5.63147 + 5.63147i 0.186171 + 0.186171i
\(916\) 25.1219 + 11.6589i 0.830050 + 0.385220i
\(917\) 0 0
\(918\) −15.8309 11.0634i −0.522496 0.365147i
\(919\) 53.3261 1.75907 0.879533 0.475837i \(-0.157855\pi\)
0.879533 + 0.475837i \(0.157855\pi\)
\(920\) 4.18562 + 1.10929i 0.137996 + 0.0365721i
\(921\) 21.1640i 0.697377i
\(922\) 2.72605 3.90076i 0.0897777 0.128465i
\(923\) 21.0055 21.0055i 0.691406 0.691406i
\(924\) 0 0
\(925\) −12.3864 12.3864i −0.407262 0.407262i
\(926\) 0.304418 + 1.71729i 0.0100038 + 0.0564338i
\(927\) 0.288763 0.00948423
\(928\) −1.66915 + 0.153693i −0.0547925 + 0.00504522i
\(929\) 38.7764i 1.27221i −0.771601 0.636107i \(-0.780544\pi\)
0.771601 0.636107i \(-0.219456\pi\)
\(930\) 2.16294 + 12.2017i 0.0709257 + 0.400108i
\(931\) 0 0
\(932\) 8.45592 + 23.1014i 0.276983 + 0.756713i
\(933\) −7.08176 + 7.08176i −0.231846 + 0.231846i
\(934\) 36.9615 + 25.8306i 1.20942 + 0.845203i
\(935\) −9.14205 −0.298977
\(936\) −0.237234 0.0628724i −0.00775423 0.00205505i
\(937\) 14.3493 0.468771 0.234385 0.972144i \(-0.424692\pi\)
0.234385 + 0.972144i \(0.424692\pi\)
\(938\) 0 0
\(939\) 9.87228 + 9.87228i 0.322170 + 0.322170i
\(940\) −6.97454 3.23683i −0.227485 0.105574i
\(941\) −23.2491 + 23.2491i −0.757898 + 0.757898i −0.975940 0.218041i \(-0.930033\pi\)
0.218041 + 0.975940i \(0.430033\pi\)
\(942\) 58.2216 10.3207i 1.89696 0.336267i
\(943\) 10.2047 0.332311
\(944\) 1.80969 21.5904i 0.0589005 0.702709i
\(945\) 0 0
\(946\) −6.06642 34.2221i −0.197236 1.11266i
\(947\) 35.7306 35.7306i 1.16109 1.16109i 0.176851 0.984238i \(-0.443409\pi\)
0.984238 0.176851i \(-0.0565910\pi\)
\(948\) −22.0714 + 47.5583i −0.716847 + 1.54462i
\(949\) 19.0877 19.0877i 0.619612 0.619612i
\(950\) 19.9767 28.5851i 0.648130 0.927422i
\(951\) 16.2167i 0.525861i
\(952\) 0 0
\(953\) 12.5441i 0.406345i −0.979143 0.203172i \(-0.934875\pi\)
0.979143 0.203172i \(-0.0651252\pi\)
\(954\) −0.272968 0.190764i −0.00883765 0.00617620i
\(955\) −2.55045 + 2.55045i −0.0825305 + 0.0825305i
\(956\) 4.95122 + 13.5267i 0.160134 + 0.437484i
\(957\) 1.66787 1.66787i 0.0539147 0.0539147i
\(958\) 18.5095 3.28110i 0.598013 0.106008i
\(959\) 0 0
\(960\) −9.14244 5.21199i −0.295071 0.168216i
\(961\) 13.3695 0.431276
\(962\) 3.99905 + 22.5596i 0.128935 + 0.727351i
\(963\) 0.0707971 0.0707971i 0.00228140 0.00228140i
\(964\) 16.4623 + 44.9748i 0.530216 + 1.44854i
\(965\) 2.85823 + 2.85823i 0.0920098 + 0.0920098i
\(966\) 0 0
\(967\) −19.7015 −0.633559 −0.316779 0.948499i \(-0.602601\pi\)
−0.316779 + 0.948499i \(0.602601\pi\)
\(968\) 14.1714 + 24.3915i 0.455488 + 0.783973i
\(969\) 25.5362 0.820342
\(970\) −5.39241 + 7.71611i −0.173140 + 0.247749i
\(971\) −14.0553 + 14.0553i −0.451055 + 0.451055i −0.895705 0.444650i \(-0.853328\pi\)
0.444650 + 0.895705i \(0.353328\pi\)
\(972\) 0.399523 + 0.185415i 0.0128147 + 0.00594720i
\(973\) 0 0
\(974\) −1.78810 + 0.316969i −0.0572943 + 0.0101563i
\(975\) 31.5086i 1.00908i
\(976\) −2.02274 + 24.1322i −0.0647463 + 0.772452i
\(977\) 44.0733 1.41003 0.705015 0.709193i \(-0.250940\pi\)
0.705015 + 0.709193i \(0.250940\pi\)
\(978\) 22.0707 3.91239i 0.705743 0.125104i
\(979\) −25.4232 25.4232i −0.812530 0.812530i
\(980\) 0 0
\(981\) 0.123475 0.123475i 0.00394227 0.00394227i
\(982\) 11.6122 + 8.11518i 0.370559 + 0.258966i
\(983\) 45.0025i 1.43536i 0.696375 + 0.717678i \(0.254795\pi\)
−0.696375 + 0.717678i \(0.745205\pi\)
\(984\) −23.9735 6.35353i −0.764247 0.202543i
\(985\) 12.4962 0.398162
\(986\) −0.633156 + 0.905995i −0.0201638 + 0.0288528i
\(987\) 0 0
\(988\) −42.8337 + 15.6786i −1.36272 + 0.498803i
\(989\) 7.67579 + 7.67579i 0.244076 + 0.244076i
\(990\) 0.102279 0.0181307i 0.00325065 0.000576230i
\(991\) 37.1273i 1.17939i −0.807627 0.589693i \(-0.799249\pi\)
0.807627 0.589693i \(-0.200751\pi\)
\(992\) −24.0889 + 28.9750i −0.764824 + 0.919957i
\(993\) 8.92622i 0.283265i
\(994\) 0 0
\(995\) −5.57949 + 5.57949i −0.176882 + 0.176882i
\(996\) −13.5282 36.9588i −0.428657 1.17109i
\(997\) 40.8093 + 40.8093i 1.29244 + 1.29244i 0.933271 + 0.359174i \(0.116941\pi\)
0.359174 + 0.933271i \(0.383059\pi\)
\(998\) 18.3977 26.3257i 0.582370 0.833324i
\(999\) 20.4861i 0.648152i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.195.26 56
7.2 even 3 784.2.w.f.227.5 56
7.3 odd 6 784.2.w.f.19.6 56
7.4 even 3 112.2.v.a.19.6 yes 56
7.5 odd 6 112.2.v.a.3.5 56
7.6 odd 2 inner 784.2.j.a.195.25 56
16.11 odd 4 inner 784.2.j.a.587.25 56
28.11 odd 6 448.2.z.a.47.4 56
28.19 even 6 448.2.z.a.367.4 56
56.5 odd 6 896.2.z.b.479.4 56
56.11 odd 6 896.2.z.a.607.11 56
56.19 even 6 896.2.z.a.479.11 56
56.53 even 6 896.2.z.b.607.4 56
112.5 odd 12 448.2.z.a.143.4 56
112.11 odd 12 112.2.v.a.75.5 yes 56
112.19 even 12 896.2.z.b.31.4 56
112.27 even 4 inner 784.2.j.a.587.26 56
112.53 even 12 448.2.z.a.271.4 56
112.59 even 12 784.2.w.f.411.5 56
112.61 odd 12 896.2.z.a.31.11 56
112.67 odd 12 896.2.z.b.159.4 56
112.75 even 12 112.2.v.a.59.6 yes 56
112.107 odd 12 784.2.w.f.619.6 56
112.109 even 12 896.2.z.a.159.11 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.5 56 7.5 odd 6
112.2.v.a.19.6 yes 56 7.4 even 3
112.2.v.a.59.6 yes 56 112.75 even 12
112.2.v.a.75.5 yes 56 112.11 odd 12
448.2.z.a.47.4 56 28.11 odd 6
448.2.z.a.143.4 56 112.5 odd 12
448.2.z.a.271.4 56 112.53 even 12
448.2.z.a.367.4 56 28.19 even 6
784.2.j.a.195.25 56 7.6 odd 2 inner
784.2.j.a.195.26 56 1.1 even 1 trivial
784.2.j.a.587.25 56 16.11 odd 4 inner
784.2.j.a.587.26 56 112.27 even 4 inner
784.2.w.f.19.6 56 7.3 odd 6
784.2.w.f.227.5 56 7.2 even 3
784.2.w.f.411.5 56 112.59 even 12
784.2.w.f.619.6 56 112.107 odd 12
896.2.z.a.31.11 56 112.61 odd 12
896.2.z.a.159.11 56 112.109 even 12
896.2.z.a.479.11 56 56.19 even 6
896.2.z.a.607.11 56 56.11 odd 6
896.2.z.b.31.4 56 112.19 even 12
896.2.z.b.159.4 56 112.67 odd 12
896.2.z.b.479.4 56 56.5 odd 6
896.2.z.b.607.4 56 56.53 even 6