Properties

Label 784.2.j.a.195.18
Level $784$
Weight $2$
Character 784.195
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 195.18
Character \(\chi\) \(=\) 784.195
Dual form 784.2.j.a.587.18

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.714421 - 1.22049i) q^{2} +(1.43319 + 1.43319i) q^{3} +(-0.979204 - 1.74389i) q^{4} +(-1.82200 - 1.82200i) q^{5} +(2.77309 - 0.725295i) q^{6} +(-2.82797 - 0.0507629i) q^{8} +1.10805i q^{9} +(-3.52541 + 0.922061i) q^{10} +(-3.69842 - 3.69842i) q^{11} +(1.09594 - 3.90271i) q^{12} +(0.848888 - 0.848888i) q^{13} -5.22253i q^{15} +(-2.08232 + 3.41525i) q^{16} -2.58596i q^{17} +(1.35237 + 0.791616i) q^{18} +(3.45869 + 3.45869i) q^{19} +(-1.39326 + 4.96148i) q^{20} +(-7.15612 + 1.87166i) q^{22} -6.31934 q^{23} +(-3.98026 - 4.12577i) q^{24} +1.63936i q^{25} +(-0.429597 - 1.64252i) q^{26} +(2.71152 - 2.71152i) q^{27} +(-3.92758 - 3.92758i) q^{29} +(-6.37406 - 3.73109i) q^{30} -1.17078 q^{31} +(2.68064 + 4.98138i) q^{32} -10.6010i q^{33} +(-3.15615 - 1.84747i) q^{34} +(1.93232 - 1.08501i) q^{36} +(4.42235 - 4.42235i) q^{37} +(6.69227 - 1.75034i) q^{38} +2.43323 q^{39} +(5.06007 + 5.24505i) q^{40} +4.77063 q^{41} +(4.80121 + 4.80121i) q^{43} +(-2.82813 + 10.0711i) q^{44} +(2.01887 - 2.01887i) q^{45} +(-4.51467 + 7.71270i) q^{46} -6.78527 q^{47} +(-7.87905 + 1.91034i) q^{48} +(2.00083 + 1.17120i) q^{50} +(3.70617 - 3.70617i) q^{51} +(-2.31160 - 0.649134i) q^{52} +(5.38707 - 5.38707i) q^{53} +(-1.37222 - 5.24655i) q^{54} +13.4770i q^{55} +9.91391i q^{57} +(-7.59953 + 1.98763i) q^{58} +(0.592462 - 0.592462i) q^{59} +(-9.10753 + 5.11392i) q^{60} +(3.20342 - 3.20342i) q^{61} +(-0.836430 + 1.42893i) q^{62} +(7.99485 + 0.287112i) q^{64} -3.09335 q^{65} +(-12.9385 - 7.57361i) q^{66} +(-0.275920 + 0.275920i) q^{67} +(-4.50964 + 2.53218i) q^{68} +(-9.05679 - 9.05679i) q^{69} +3.83330 q^{71} +(0.0562480 - 3.13354i) q^{72} +9.69181 q^{73} +(-2.23802 - 8.55686i) q^{74} +(-2.34951 + 2.34951i) q^{75} +(2.64482 - 9.41835i) q^{76} +(1.73835 - 2.96974i) q^{78} -1.10178i q^{79} +(10.0166 - 2.42860i) q^{80} +11.0964 q^{81} +(3.40824 - 5.82251i) q^{82} +(9.73434 + 9.73434i) q^{83} +(-4.71162 + 4.71162i) q^{85} +(9.28993 - 2.42975i) q^{86} -11.2579i q^{87} +(10.2713 + 10.6468i) q^{88} -15.8223 q^{89} +(-1.02169 - 3.90634i) q^{90} +(6.18792 + 11.0202i) q^{92} +(-1.67795 - 1.67795i) q^{93} +(-4.84754 + 8.28137i) q^{94} -12.6035i q^{95} +(-3.29740 + 10.9811i) q^{96} -1.12228i q^{97} +(4.09804 - 4.09804i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.714421 1.22049i 0.505172 0.863019i
\(3\) 1.43319 + 1.43319i 0.827451 + 0.827451i 0.987164 0.159712i \(-0.0510567\pi\)
−0.159712 + 0.987164i \(0.551057\pi\)
\(4\) −0.979204 1.74389i −0.489602 0.871946i
\(5\) −1.82200 1.82200i −0.814823 0.814823i 0.170530 0.985353i \(-0.445452\pi\)
−0.985353 + 0.170530i \(0.945452\pi\)
\(6\) 2.77309 0.725295i 1.13211 0.296100i
\(7\) 0 0
\(8\) −2.82797 0.0507629i −0.999839 0.0179474i
\(9\) 1.10805i 0.369351i
\(10\) −3.52541 + 0.922061i −1.11483 + 0.291581i
\(11\) −3.69842 3.69842i −1.11511 1.11511i −0.992448 0.122666i \(-0.960856\pi\)
−0.122666 0.992448i \(-0.539144\pi\)
\(12\) 1.09594 3.90271i 0.316371 1.12661i
\(13\) 0.848888 0.848888i 0.235439 0.235439i −0.579519 0.814958i \(-0.696760\pi\)
0.814958 + 0.579519i \(0.196760\pi\)
\(14\) 0 0
\(15\) 5.22253i 1.34845i
\(16\) −2.08232 + 3.41525i −0.520580 + 0.853813i
\(17\) 2.58596i 0.627188i −0.949557 0.313594i \(-0.898467\pi\)
0.949557 0.313594i \(-0.101533\pi\)
\(18\) 1.35237 + 0.791616i 0.318757 + 0.186586i
\(19\) 3.45869 + 3.45869i 0.793479 + 0.793479i 0.982058 0.188579i \(-0.0603883\pi\)
−0.188579 + 0.982058i \(0.560388\pi\)
\(20\) −1.39326 + 4.96148i −0.311543 + 1.10942i
\(21\) 0 0
\(22\) −7.15612 + 1.87166i −1.52569 + 0.399039i
\(23\) −6.31934 −1.31767 −0.658836 0.752286i \(-0.728951\pi\)
−0.658836 + 0.752286i \(0.728951\pi\)
\(24\) −3.98026 4.12577i −0.812467 0.842168i
\(25\) 1.63936i 0.327872i
\(26\) −0.429597 1.64252i −0.0842510 0.322126i
\(27\) 2.71152 2.71152i 0.521831 0.521831i
\(28\) 0 0
\(29\) −3.92758 3.92758i −0.729333 0.729333i 0.241154 0.970487i \(-0.422474\pi\)
−0.970487 + 0.241154i \(0.922474\pi\)
\(30\) −6.37406 3.73109i −1.16374 0.681201i
\(31\) −1.17078 −0.210278 −0.105139 0.994458i \(-0.533529\pi\)
−0.105139 + 0.994458i \(0.533529\pi\)
\(32\) 2.68064 + 4.98138i 0.473874 + 0.880593i
\(33\) 10.6010i 1.84541i
\(34\) −3.15615 1.84747i −0.541275 0.316838i
\(35\) 0 0
\(36\) 1.93232 1.08501i 0.322054 0.180835i
\(37\) 4.42235 4.42235i 0.727029 0.727029i −0.242997 0.970027i \(-0.578131\pi\)
0.970027 + 0.242997i \(0.0781307\pi\)
\(38\) 6.69227 1.75034i 1.08563 0.283943i
\(39\) 2.43323 0.389629
\(40\) 5.06007 + 5.24505i 0.800068 + 0.829315i
\(41\) 4.77063 0.745047 0.372523 0.928023i \(-0.378493\pi\)
0.372523 + 0.928023i \(0.378493\pi\)
\(42\) 0 0
\(43\) 4.80121 + 4.80121i 0.732177 + 0.732177i 0.971051 0.238873i \(-0.0767781\pi\)
−0.238873 + 0.971051i \(0.576778\pi\)
\(44\) −2.82813 + 10.0711i −0.426357 + 1.51828i
\(45\) 2.01887 2.01887i 0.300955 0.300955i
\(46\) −4.51467 + 7.71270i −0.665652 + 1.13718i
\(47\) −6.78527 −0.989733 −0.494867 0.868969i \(-0.664783\pi\)
−0.494867 + 0.868969i \(0.664783\pi\)
\(48\) −7.87905 + 1.91034i −1.13724 + 0.275734i
\(49\) 0 0
\(50\) 2.00083 + 1.17120i 0.282960 + 0.165632i
\(51\) 3.70617 3.70617i 0.518967 0.518967i
\(52\) −2.31160 0.649134i −0.320562 0.0900187i
\(53\) 5.38707 5.38707i 0.739971 0.739971i −0.232602 0.972572i \(-0.574724\pi\)
0.972572 + 0.232602i \(0.0747238\pi\)
\(54\) −1.37222 5.24655i −0.186735 0.713965i
\(55\) 13.4770i 1.81724i
\(56\) 0 0
\(57\) 9.91391i 1.31313i
\(58\) −7.59953 + 1.98763i −0.997867 + 0.260989i
\(59\) 0.592462 0.592462i 0.0771320 0.0771320i −0.667488 0.744620i \(-0.732631\pi\)
0.744620 + 0.667488i \(0.232631\pi\)
\(60\) −9.10753 + 5.11392i −1.17578 + 0.660205i
\(61\) 3.20342 3.20342i 0.410156 0.410156i −0.471637 0.881793i \(-0.656337\pi\)
0.881793 + 0.471637i \(0.156337\pi\)
\(62\) −0.836430 + 1.42893i −0.106227 + 0.181474i
\(63\) 0 0
\(64\) 7.99485 + 0.287112i 0.999356 + 0.0358890i
\(65\) −3.09335 −0.383682
\(66\) −12.9385 7.57361i −1.59262 0.932247i
\(67\) −0.275920 + 0.275920i −0.0337089 + 0.0337089i −0.723760 0.690051i \(-0.757588\pi\)
0.690051 + 0.723760i \(0.257588\pi\)
\(68\) −4.50964 + 2.53218i −0.546874 + 0.307072i
\(69\) −9.05679 9.05679i −1.09031 1.09031i
\(70\) 0 0
\(71\) 3.83330 0.454929 0.227465 0.973786i \(-0.426956\pi\)
0.227465 + 0.973786i \(0.426956\pi\)
\(72\) 0.0562480 3.13354i 0.00662889 0.369291i
\(73\) 9.69181 1.13434 0.567170 0.823601i \(-0.308038\pi\)
0.567170 + 0.823601i \(0.308038\pi\)
\(74\) −2.23802 8.55686i −0.260165 0.994715i
\(75\) −2.34951 + 2.34951i −0.271298 + 0.271298i
\(76\) 2.64482 9.41835i 0.303382 1.08036i
\(77\) 0 0
\(78\) 1.73835 2.96974i 0.196830 0.336257i
\(79\) 1.10178i 0.123960i −0.998077 0.0619798i \(-0.980259\pi\)
0.998077 0.0619798i \(-0.0197414\pi\)
\(80\) 10.0166 2.42860i 1.11989 0.271526i
\(81\) 11.0964 1.23293
\(82\) 3.40824 5.82251i 0.376377 0.642989i
\(83\) 9.73434 + 9.73434i 1.06848 + 1.06848i 0.997476 + 0.0710068i \(0.0226212\pi\)
0.0710068 + 0.997476i \(0.477379\pi\)
\(84\) 0 0
\(85\) −4.71162 + 4.71162i −0.511047 + 0.511047i
\(86\) 9.28993 2.42975i 1.00176 0.262007i
\(87\) 11.2579i 1.20698i
\(88\) 10.2713 + 10.6468i 1.09492 + 1.13495i
\(89\) −15.8223 −1.67716 −0.838582 0.544775i \(-0.816615\pi\)
−0.838582 + 0.544775i \(0.816615\pi\)
\(90\) −1.02169 3.90634i −0.107696 0.411764i
\(91\) 0 0
\(92\) 6.18792 + 11.0202i 0.645135 + 1.14894i
\(93\) −1.67795 1.67795i −0.173995 0.173995i
\(94\) −4.84754 + 8.28137i −0.499986 + 0.854158i
\(95\) 12.6035i 1.29309i
\(96\) −3.29740 + 10.9811i −0.336540 + 1.12075i
\(97\) 1.12228i 0.113950i −0.998376 0.0569750i \(-0.981854\pi\)
0.998376 0.0569750i \(-0.0181455\pi\)
\(98\) 0 0
\(99\) 4.09804 4.09804i 0.411868 0.411868i
\(100\) 2.85887 1.60527i 0.285887 0.160527i
\(101\) 10.2613 + 10.2613i 1.02104 + 1.02104i 0.999774 + 0.0212662i \(0.00676975\pi\)
0.0212662 + 0.999774i \(0.493230\pi\)
\(102\) −1.87558 7.17112i −0.185711 0.710046i
\(103\) 0.856691i 0.0844122i −0.999109 0.0422061i \(-0.986561\pi\)
0.999109 0.0422061i \(-0.0134386\pi\)
\(104\) −2.44372 + 2.35754i −0.239627 + 0.231176i
\(105\) 0 0
\(106\) −2.72624 10.4235i −0.264796 1.01242i
\(107\) 3.73045 + 3.73045i 0.360636 + 0.360636i 0.864047 0.503411i \(-0.167922\pi\)
−0.503411 + 0.864047i \(0.667922\pi\)
\(108\) −7.38372 2.07346i −0.710498 0.199519i
\(109\) −9.79400 9.79400i −0.938095 0.938095i 0.0600977 0.998192i \(-0.480859\pi\)
−0.998192 + 0.0600977i \(0.980859\pi\)
\(110\) 16.4486 + 9.62827i 1.56831 + 0.918020i
\(111\) 12.6761 1.20316
\(112\) 0 0
\(113\) −8.67774 −0.816333 −0.408167 0.912907i \(-0.633832\pi\)
−0.408167 + 0.912907i \(0.633832\pi\)
\(114\) 12.0999 + 7.08271i 1.13326 + 0.663357i
\(115\) 11.5138 + 11.5138i 1.07367 + 1.07367i
\(116\) −3.00337 + 10.6952i −0.278856 + 0.993022i
\(117\) 0.940612 + 0.940612i 0.0869596 + 0.0869596i
\(118\) −0.299828 1.14636i −0.0276014 0.105531i
\(119\) 0 0
\(120\) −0.265111 + 14.7692i −0.0242012 + 1.34823i
\(121\) 16.3566i 1.48696i
\(122\) −1.62116 6.19834i −0.146773 0.561171i
\(123\) 6.83720 + 6.83720i 0.616490 + 0.616490i
\(124\) 1.14643 + 2.04171i 0.102953 + 0.183351i
\(125\) −6.12308 + 6.12308i −0.547665 + 0.547665i
\(126\) 0 0
\(127\) 14.0559i 1.24726i −0.781721 0.623628i \(-0.785658\pi\)
0.781721 0.623628i \(-0.214342\pi\)
\(128\) 6.06211 9.55253i 0.535820 0.844332i
\(129\) 13.7621i 1.21168i
\(130\) −2.20995 + 3.77540i −0.193826 + 0.331125i
\(131\) 10.6822 + 10.6822i 0.933304 + 0.933304i 0.997911 0.0646069i \(-0.0205794\pi\)
−0.0646069 + 0.997911i \(0.520579\pi\)
\(132\) −18.4871 + 10.3806i −1.60909 + 0.903514i
\(133\) 0 0
\(134\) 0.139635 + 0.533881i 0.0120626 + 0.0461203i
\(135\) −9.88076 −0.850400
\(136\) −0.131271 + 7.31303i −0.0112564 + 0.627087i
\(137\) 5.04671i 0.431170i −0.976485 0.215585i \(-0.930834\pi\)
0.976485 0.215585i \(-0.0691658\pi\)
\(138\) −17.5241 + 4.58338i −1.49175 + 0.390163i
\(139\) −3.77959 + 3.77959i −0.320581 + 0.320581i −0.848990 0.528409i \(-0.822789\pi\)
0.528409 + 0.848990i \(0.322789\pi\)
\(140\) 0 0
\(141\) −9.72456 9.72456i −0.818956 0.818956i
\(142\) 2.73859 4.67851i 0.229818 0.392612i
\(143\) −6.27908 −0.525083
\(144\) −3.78428 2.30732i −0.315357 0.192277i
\(145\) 14.3121i 1.18855i
\(146\) 6.92404 11.8288i 0.573037 0.978957i
\(147\) 0 0
\(148\) −12.0425 3.38172i −0.989885 0.277975i
\(149\) 0.192817 0.192817i 0.0157962 0.0157962i −0.699165 0.714961i \(-0.746445\pi\)
0.714961 + 0.699165i \(0.246445\pi\)
\(150\) 1.18902 + 4.54610i 0.0970831 + 0.371188i
\(151\) 9.16056 0.745476 0.372738 0.927937i \(-0.378419\pi\)
0.372738 + 0.927937i \(0.378419\pi\)
\(152\) −9.60551 9.95666i −0.779110 0.807592i
\(153\) 2.86538 0.231652
\(154\) 0 0
\(155\) 2.13316 + 2.13316i 0.171340 + 0.171340i
\(156\) −2.38263 4.24329i −0.190763 0.339735i
\(157\) −10.5358 + 10.5358i −0.840849 + 0.840849i −0.988969 0.148120i \(-0.952678\pi\)
0.148120 + 0.988969i \(0.452678\pi\)
\(158\) −1.34471 0.787134i −0.106979 0.0626210i
\(159\) 15.4414 1.22458
\(160\) 4.19196 13.9602i 0.331404 1.10365i
\(161\) 0 0
\(162\) 7.92749 13.5430i 0.622842 1.06404i
\(163\) 13.6590 13.6590i 1.06985 1.06985i 0.0724835 0.997370i \(-0.476908\pi\)
0.997370 0.0724835i \(-0.0230924\pi\)
\(164\) −4.67142 8.31946i −0.364776 0.649640i
\(165\) −19.3151 + 19.3151i −1.50368 + 1.50368i
\(166\) 18.8351 4.92627i 1.46189 0.382353i
\(167\) 3.48341i 0.269554i −0.990876 0.134777i \(-0.956968\pi\)
0.990876 0.134777i \(-0.0430318\pi\)
\(168\) 0 0
\(169\) 11.5588i 0.889137i
\(170\) 2.38441 + 9.11658i 0.182876 + 0.699210i
\(171\) −3.83241 + 3.83241i −0.293072 + 0.293072i
\(172\) 3.67143 13.0742i 0.279944 0.996895i
\(173\) 0.0517881 0.0517881i 0.00393737 0.00393737i −0.705135 0.709073i \(-0.749114\pi\)
0.709073 + 0.705135i \(0.249114\pi\)
\(174\) −13.7402 8.04290i −1.04164 0.609730i
\(175\) 0 0
\(176\) 20.3323 4.92974i 1.53260 0.371593i
\(177\) 1.69822 0.127646
\(178\) −11.3038 + 19.3110i −0.847257 + 1.44742i
\(179\) 2.20071 2.20071i 0.164489 0.164489i −0.620063 0.784552i \(-0.712893\pi\)
0.784552 + 0.620063i \(0.212893\pi\)
\(180\) −5.49758 1.54381i −0.409765 0.115069i
\(181\) 3.34414 + 3.34414i 0.248568 + 0.248568i 0.820383 0.571815i \(-0.193760\pi\)
−0.571815 + 0.820383i \(0.693760\pi\)
\(182\) 0 0
\(183\) 9.18219 0.678767
\(184\) 17.8709 + 0.320788i 1.31746 + 0.0236488i
\(185\) −16.1150 −1.18480
\(186\) −3.24668 + 0.849160i −0.238058 + 0.0622635i
\(187\) −9.56396 + 9.56396i −0.699386 + 0.699386i
\(188\) 6.64416 + 11.8328i 0.484575 + 0.862994i
\(189\) 0 0
\(190\) −15.3824 9.00419i −1.11596 0.653233i
\(191\) 0.313041i 0.0226508i −0.999936 0.0113254i \(-0.996395\pi\)
0.999936 0.0113254i \(-0.00360507\pi\)
\(192\) 11.0466 + 11.8696i 0.797222 + 0.856615i
\(193\) −10.3561 −0.745450 −0.372725 0.927942i \(-0.621576\pi\)
−0.372725 + 0.927942i \(0.621576\pi\)
\(194\) −1.36973 0.801779i −0.0983410 0.0575644i
\(195\) −4.43334 4.43334i −0.317478 0.317478i
\(196\) 0 0
\(197\) 0.112804 0.112804i 0.00803695 0.00803695i −0.703077 0.711114i \(-0.748191\pi\)
0.711114 + 0.703077i \(0.248191\pi\)
\(198\) −2.07390 7.92935i −0.147386 0.563514i
\(199\) 21.3316i 1.51216i −0.654482 0.756078i \(-0.727113\pi\)
0.654482 0.756078i \(-0.272887\pi\)
\(200\) 0.0832188 4.63607i 0.00588446 0.327820i
\(201\) −0.790889 −0.0557850
\(202\) 19.8548 5.19296i 1.39698 0.365375i
\(203\) 0 0
\(204\) −10.0923 2.83406i −0.706599 0.198424i
\(205\) −8.69208 8.69208i −0.607081 0.607081i
\(206\) −1.04558 0.612038i −0.0728493 0.0426427i
\(207\) 7.00216i 0.486684i
\(208\) 1.13151 + 4.66682i 0.0784561 + 0.323586i
\(209\) 25.5834i 1.76964i
\(210\) 0 0
\(211\) 7.71946 7.71946i 0.531430 0.531430i −0.389568 0.920998i \(-0.627376\pi\)
0.920998 + 0.389568i \(0.127376\pi\)
\(212\) −14.6695 4.11943i −1.00751 0.282923i
\(213\) 5.49384 + 5.49384i 0.376432 + 0.376432i
\(214\) 7.21811 1.88787i 0.493420 0.129052i
\(215\) 17.4956i 1.19319i
\(216\) −7.80573 + 7.53044i −0.531113 + 0.512382i
\(217\) 0 0
\(218\) −18.9505 + 4.95646i −1.28349 + 0.335694i
\(219\) 13.8902 + 13.8902i 0.938611 + 0.938611i
\(220\) 23.5025 13.1967i 1.58454 0.889725i
\(221\) −2.19519 2.19519i −0.147665 0.147665i
\(222\) 9.05608 15.4711i 0.607804 1.03835i
\(223\) −9.74121 −0.652319 −0.326160 0.945315i \(-0.605755\pi\)
−0.326160 + 0.945315i \(0.605755\pi\)
\(224\) 0 0
\(225\) −1.81650 −0.121100
\(226\) −6.19957 + 10.5911i −0.412389 + 0.704511i
\(227\) 0.737245 + 0.737245i 0.0489327 + 0.0489327i 0.731150 0.682217i \(-0.238984\pi\)
−0.682217 + 0.731150i \(0.738984\pi\)
\(228\) 17.2888 9.70774i 1.14498 0.642911i
\(229\) 3.80206 + 3.80206i 0.251247 + 0.251247i 0.821482 0.570234i \(-0.193148\pi\)
−0.570234 + 0.821482i \(0.693148\pi\)
\(230\) 22.2783 5.82681i 1.46899 0.384209i
\(231\) 0 0
\(232\) 10.9077 + 11.3065i 0.716126 + 0.742305i
\(233\) 12.7849i 0.837565i −0.908087 0.418782i \(-0.862457\pi\)
0.908087 0.418782i \(-0.137543\pi\)
\(234\) 1.82000 0.476016i 0.118977 0.0311182i
\(235\) 12.3628 + 12.3628i 0.806457 + 0.806457i
\(236\) −1.61333 0.453049i −0.105019 0.0294910i
\(237\) 1.57905 1.57905i 0.102571 0.102571i
\(238\) 0 0
\(239\) 26.2285i 1.69658i 0.529530 + 0.848291i \(0.322368\pi\)
−0.529530 + 0.848291i \(0.677632\pi\)
\(240\) 17.8363 + 10.8750i 1.15133 + 0.701977i
\(241\) 22.0466i 1.42014i −0.704129 0.710072i \(-0.748662\pi\)
0.704129 0.710072i \(-0.251338\pi\)
\(242\) 19.9630 + 11.6855i 1.28327 + 0.751171i
\(243\) 7.76864 + 7.76864i 0.498359 + 0.498359i
\(244\) −8.72321 2.44962i −0.558446 0.156821i
\(245\) 0 0
\(246\) 13.2294 3.46011i 0.843475 0.220609i
\(247\) 5.87208 0.373632
\(248\) 3.31093 + 0.0594322i 0.210244 + 0.00377395i
\(249\) 27.9023i 1.76823i
\(250\) 3.09871 + 11.8476i 0.195980 + 0.749310i
\(251\) 15.4991 15.4991i 0.978295 0.978295i −0.0214744 0.999769i \(-0.506836\pi\)
0.999769 + 0.0214744i \(0.00683604\pi\)
\(252\) 0 0
\(253\) 23.3715 + 23.3715i 1.46936 + 1.46936i
\(254\) −17.1551 10.0418i −1.07641 0.630079i
\(255\) −13.5053 −0.845733
\(256\) −7.32789 14.2233i −0.457993 0.888956i
\(257\) 1.89372i 0.118127i −0.998254 0.0590633i \(-0.981189\pi\)
0.998254 0.0590633i \(-0.0188114\pi\)
\(258\) 16.7965 + 9.83191i 1.04570 + 0.612108i
\(259\) 0 0
\(260\) 3.02902 + 5.39446i 0.187852 + 0.334550i
\(261\) 4.35196 4.35196i 0.269380 0.269380i
\(262\) 20.6690 5.40593i 1.27694 0.333979i
\(263\) −9.35219 −0.576680 −0.288340 0.957528i \(-0.593103\pi\)
−0.288340 + 0.957528i \(0.593103\pi\)
\(264\) −0.538140 + 29.9795i −0.0331202 + 1.84511i
\(265\) −19.6305 −1.20589
\(266\) 0 0
\(267\) −22.6764 22.6764i −1.38777 1.38777i
\(268\) 0.751355 + 0.210992i 0.0458963 + 0.0128884i
\(269\) 18.8600 18.8600i 1.14992 1.14992i 0.163348 0.986568i \(-0.447771\pi\)
0.986568 0.163348i \(-0.0522294\pi\)
\(270\) −7.05903 + 12.0594i −0.429599 + 0.733911i
\(271\) 8.60151 0.522504 0.261252 0.965271i \(-0.415865\pi\)
0.261252 + 0.965271i \(0.415865\pi\)
\(272\) 8.83171 + 5.38480i 0.535501 + 0.326501i
\(273\) 0 0
\(274\) −6.15948 3.60548i −0.372108 0.217815i
\(275\) 6.06304 6.06304i 0.365615 0.365615i
\(276\) −6.92562 + 24.6625i −0.416874 + 1.48451i
\(277\) 18.1220 18.1220i 1.08884 1.08884i 0.0931953 0.995648i \(-0.470292\pi\)
0.995648 0.0931953i \(-0.0297081\pi\)
\(278\) 1.91274 + 7.31318i 0.114719 + 0.438615i
\(279\) 1.29729i 0.0776664i
\(280\) 0 0
\(281\) 23.2859i 1.38912i −0.719434 0.694561i \(-0.755599\pi\)
0.719434 0.694561i \(-0.244401\pi\)
\(282\) −18.8162 + 4.92132i −1.12049 + 0.293060i
\(283\) −7.17907 + 7.17907i −0.426752 + 0.426752i −0.887520 0.460769i \(-0.847574\pi\)
0.460769 + 0.887520i \(0.347574\pi\)
\(284\) −3.75358 6.68486i −0.222734 0.396674i
\(285\) 18.0631 18.0631i 1.06997 1.06997i
\(286\) −4.48591 + 7.66357i −0.265257 + 0.453156i
\(287\) 0 0
\(288\) −5.51964 + 2.97028i −0.325248 + 0.175026i
\(289\) 10.3128 0.606635
\(290\) 17.4678 + 10.2249i 1.02574 + 0.600425i
\(291\) 1.60843 1.60843i 0.0942880 0.0942880i
\(292\) −9.49026 16.9015i −0.555375 0.989084i
\(293\) 0.0961358 + 0.0961358i 0.00561631 + 0.00561631i 0.709909 0.704293i \(-0.248736\pi\)
−0.704293 + 0.709909i \(0.748736\pi\)
\(294\) 0 0
\(295\) −2.15893 −0.125698
\(296\) −12.7308 + 12.2818i −0.739961 + 0.713864i
\(297\) −20.0566 −1.16380
\(298\) −0.0975790 0.373084i −0.00565260 0.0216122i
\(299\) −5.36441 + 5.36441i −0.310232 + 0.310232i
\(300\) 6.39795 + 1.79664i 0.369386 + 0.103729i
\(301\) 0 0
\(302\) 6.54450 11.1804i 0.376594 0.643360i
\(303\) 29.4128i 1.68972i
\(304\) −19.0144 + 4.61020i −1.09055 + 0.264413i
\(305\) −11.6732 −0.668408
\(306\) 2.04709 3.49718i 0.117024 0.199920i
\(307\) −16.2451 16.2451i −0.927157 0.927157i 0.0703642 0.997521i \(-0.477584\pi\)
−0.997521 + 0.0703642i \(0.977584\pi\)
\(308\) 0 0
\(309\) 1.22780 1.22780i 0.0698470 0.0698470i
\(310\) 4.12748 1.07953i 0.234425 0.0613132i
\(311\) 14.2183i 0.806245i 0.915146 + 0.403122i \(0.132075\pi\)
−0.915146 + 0.403122i \(0.867925\pi\)
\(312\) −6.88111 0.123518i −0.389566 0.00699283i
\(313\) −26.8805 −1.51938 −0.759689 0.650287i \(-0.774649\pi\)
−0.759689 + 0.650287i \(0.774649\pi\)
\(314\) 5.33187 + 20.3859i 0.300895 + 1.15044i
\(315\) 0 0
\(316\) −1.92138 + 1.07886i −0.108086 + 0.0606909i
\(317\) −11.3452 11.3452i −0.637210 0.637210i 0.312656 0.949866i \(-0.398781\pi\)
−0.949866 + 0.312656i \(0.898781\pi\)
\(318\) 11.0316 18.8461i 0.618623 1.05683i
\(319\) 29.0516i 1.62658i
\(320\) −14.0435 15.0897i −0.785055 0.843541i
\(321\) 10.6929i 0.596818i
\(322\) 0 0
\(323\) 8.94405 8.94405i 0.497660 0.497660i
\(324\) −10.8656 19.3509i −0.603645 1.07505i
\(325\) 1.39163 + 1.39163i 0.0771940 + 0.0771940i
\(326\) −6.91241 26.4289i −0.382843 1.46376i
\(327\) 28.0733i 1.55246i
\(328\) −13.4912 0.242171i −0.744927 0.0133717i
\(329\) 0 0
\(330\) 9.77481 + 37.3730i 0.538086 + 2.05732i
\(331\) −13.4302 13.4302i −0.738190 0.738190i 0.234038 0.972227i \(-0.424806\pi\)
−0.972227 + 0.234038i \(0.924806\pi\)
\(332\) 7.44374 26.5075i 0.408528 1.45479i
\(333\) 4.90019 + 4.90019i 0.268529 + 0.268529i
\(334\) −4.25147 2.48862i −0.232630 0.136171i
\(335\) 1.00545 0.0549336
\(336\) 0 0
\(337\) 15.6500 0.852513 0.426256 0.904602i \(-0.359832\pi\)
0.426256 + 0.904602i \(0.359832\pi\)
\(338\) 14.1074 + 8.25784i 0.767342 + 0.449167i
\(339\) −12.4368 12.4368i −0.675476 0.675476i
\(340\) 12.8302 + 3.60292i 0.695815 + 0.195396i
\(341\) 4.33003 + 4.33003i 0.234484 + 0.234484i
\(342\) 1.93947 + 7.41539i 0.104875 + 0.400978i
\(343\) 0 0
\(344\) −13.3340 13.8214i −0.718919 0.745200i
\(345\) 33.0029i 1.77682i
\(346\) −0.0262084 0.100205i −0.00140897 0.00538708i
\(347\) −13.8619 13.8619i −0.744146 0.744146i 0.229227 0.973373i \(-0.426380\pi\)
−0.973373 + 0.229227i \(0.926380\pi\)
\(348\) −19.6326 + 11.0238i −1.05242 + 0.590937i
\(349\) −7.34147 + 7.34147i −0.392980 + 0.392980i −0.875748 0.482768i \(-0.839631\pi\)
0.482768 + 0.875748i \(0.339631\pi\)
\(350\) 0 0
\(351\) 4.60354i 0.245719i
\(352\) 8.50912 28.3373i 0.453538 1.51038i
\(353\) 12.0704i 0.642441i 0.947004 + 0.321221i \(0.104093\pi\)
−0.947004 + 0.321221i \(0.895907\pi\)
\(354\) 1.21324 2.07266i 0.0644832 0.110161i
\(355\) −6.98427 6.98427i −0.370687 0.370687i
\(356\) 15.4933 + 27.5925i 0.821143 + 1.46240i
\(357\) 0 0
\(358\) −1.11371 4.25818i −0.0588616 0.225052i
\(359\) −1.73675 −0.0916620 −0.0458310 0.998949i \(-0.514594\pi\)
−0.0458310 + 0.998949i \(0.514594\pi\)
\(360\) −5.81179 + 5.60682i −0.306308 + 0.295506i
\(361\) 4.92512i 0.259217i
\(362\) 6.47062 1.69237i 0.340088 0.0889491i
\(363\) −23.4420 + 23.4420i −1.23039 + 1.23039i
\(364\) 0 0
\(365\) −17.6585 17.6585i −0.924287 0.924287i
\(366\) 6.55996 11.2068i 0.342894 0.585789i
\(367\) 10.4351 0.544706 0.272353 0.962197i \(-0.412198\pi\)
0.272353 + 0.962197i \(0.412198\pi\)
\(368\) 13.1589 21.5821i 0.685954 1.12505i
\(369\) 5.28610i 0.275184i
\(370\) −11.5129 + 19.6683i −0.598528 + 1.02250i
\(371\) 0 0
\(372\) −1.28311 + 4.56921i −0.0665260 + 0.236903i
\(373\) −7.76406 + 7.76406i −0.402008 + 0.402008i −0.878940 0.476932i \(-0.841749\pi\)
0.476932 + 0.878940i \(0.341749\pi\)
\(374\) 4.84004 + 18.5054i 0.250273 + 0.956894i
\(375\) −17.5510 −0.906332
\(376\) 19.1885 + 0.344440i 0.989574 + 0.0177631i
\(377\) −6.66815 −0.343427
\(378\) 0 0
\(379\) 19.3486 + 19.3486i 0.993870 + 0.993870i 0.999981 0.00611151i \(-0.00194537\pi\)
−0.00611151 + 0.999981i \(0.501945\pi\)
\(380\) −21.9791 + 12.3414i −1.12750 + 0.633099i
\(381\) 20.1447 20.1447i 1.03204 1.03204i
\(382\) −0.382064 0.223643i −0.0195481 0.0114426i
\(383\) −17.8263 −0.910879 −0.455440 0.890267i \(-0.650518\pi\)
−0.455440 + 0.890267i \(0.650518\pi\)
\(384\) 22.3787 5.00243i 1.14201 0.255279i
\(385\) 0 0
\(386\) −7.39863 + 12.6396i −0.376581 + 0.643337i
\(387\) −5.31999 + 5.31999i −0.270430 + 0.270430i
\(388\) −1.95713 + 1.09894i −0.0993582 + 0.0557901i
\(389\) −4.41294 + 4.41294i −0.223745 + 0.223745i −0.810073 0.586329i \(-0.800573\pi\)
0.586329 + 0.810073i \(0.300573\pi\)
\(390\) −8.57814 + 2.24359i −0.434371 + 0.113608i
\(391\) 16.3416i 0.826429i
\(392\) 0 0
\(393\) 30.6190i 1.54453i
\(394\) −0.0570868 0.218266i −0.00287599 0.0109961i
\(395\) −2.00744 + 2.00744i −0.101005 + 0.101005i
\(396\) −11.1594 3.13372i −0.560779 0.157475i
\(397\) −4.99372 + 4.99372i −0.250628 + 0.250628i −0.821228 0.570600i \(-0.806711\pi\)
0.570600 + 0.821228i \(0.306711\pi\)
\(398\) −26.0350 15.2397i −1.30502 0.763899i
\(399\) 0 0
\(400\) −5.59883 3.41367i −0.279942 0.170684i
\(401\) −20.9900 −1.04819 −0.524096 0.851659i \(-0.675597\pi\)
−0.524096 + 0.851659i \(0.675597\pi\)
\(402\) −0.565028 + 0.965274i −0.0281810 + 0.0481435i
\(403\) −0.993860 + 0.993860i −0.0495077 + 0.0495077i
\(404\) 7.84671 27.9426i 0.390389 1.39020i
\(405\) −20.2176 20.2176i −1.00462 1.00462i
\(406\) 0 0
\(407\) −32.7114 −1.62144
\(408\) −10.6691 + 10.2928i −0.528198 + 0.509570i
\(409\) −36.1916 −1.78956 −0.894780 0.446508i \(-0.852667\pi\)
−0.894780 + 0.446508i \(0.852667\pi\)
\(410\) −16.8184 + 4.39881i −0.830603 + 0.217242i
\(411\) 7.23289 7.23289i 0.356772 0.356772i
\(412\) −1.49398 + 0.838875i −0.0736029 + 0.0413284i
\(413\) 0 0
\(414\) −8.54608 5.00249i −0.420017 0.245859i
\(415\) 35.4719i 1.74125i
\(416\) 6.50419 + 1.95308i 0.318894 + 0.0957575i
\(417\) −10.8337 −0.530530
\(418\) −31.2243 18.2773i −1.52723 0.893972i
\(419\) 5.15413 + 5.15413i 0.251796 + 0.251796i 0.821707 0.569911i \(-0.193022\pi\)
−0.569911 + 0.821707i \(0.693022\pi\)
\(420\) 0 0
\(421\) −7.75876 + 7.75876i −0.378139 + 0.378139i −0.870430 0.492292i \(-0.836159\pi\)
0.492292 + 0.870430i \(0.336159\pi\)
\(422\) −3.90660 14.9365i −0.190170 0.727097i
\(423\) 7.51843i 0.365559i
\(424\) −15.5079 + 14.9610i −0.753132 + 0.726571i
\(425\) 4.23933 0.205638
\(426\) 10.6301 2.78027i 0.515030 0.134705i
\(427\) 0 0
\(428\) 2.85263 10.1584i 0.137887 0.491024i
\(429\) −8.99910 8.99910i −0.434480 0.434480i
\(430\) −21.3532 12.4992i −1.02974 0.602766i
\(431\) 24.7968i 1.19442i 0.802085 + 0.597209i \(0.203724\pi\)
−0.802085 + 0.597209i \(0.796276\pi\)
\(432\) 3.61427 + 14.9067i 0.173892 + 0.717201i
\(433\) 4.84981i 0.233067i 0.993187 + 0.116534i \(0.0371782\pi\)
−0.993187 + 0.116534i \(0.962822\pi\)
\(434\) 0 0
\(435\) −20.5119 + 20.5119i −0.983471 + 0.983471i
\(436\) −7.48935 + 26.6700i −0.358675 + 1.27726i
\(437\) −21.8566 21.8566i −1.04555 1.04555i
\(438\) 26.8763 7.02942i 1.28420 0.335879i
\(439\) 37.2342i 1.77709i 0.458788 + 0.888546i \(0.348284\pi\)
−0.458788 + 0.888546i \(0.651716\pi\)
\(440\) 0.684133 38.1126i 0.0326148 1.81695i
\(441\) 0 0
\(442\) −4.24751 + 1.11092i −0.202033 + 0.0528412i
\(443\) 17.7945 + 17.7945i 0.845441 + 0.845441i 0.989560 0.144119i \(-0.0460350\pi\)
−0.144119 + 0.989560i \(0.546035\pi\)
\(444\) −12.4125 22.1058i −0.589071 1.04909i
\(445\) 28.8283 + 28.8283i 1.36659 + 1.36659i
\(446\) −6.95933 + 11.8891i −0.329534 + 0.562964i
\(447\) 0.552685 0.0261411
\(448\) 0 0
\(449\) 0.885883 0.0418074 0.0209037 0.999781i \(-0.493346\pi\)
0.0209037 + 0.999781i \(0.493346\pi\)
\(450\) −1.29775 + 2.21702i −0.0611763 + 0.104511i
\(451\) −17.6438 17.6438i −0.830812 0.830812i
\(452\) 8.49728 + 15.1330i 0.399678 + 0.711799i
\(453\) 13.1288 + 13.1288i 0.616845 + 0.616845i
\(454\) 1.42651 0.373098i 0.0669492 0.0175104i
\(455\) 0 0
\(456\) 0.503259 28.0363i 0.0235673 1.31292i
\(457\) 34.6766i 1.62210i 0.584975 + 0.811052i \(0.301104\pi\)
−0.584975 + 0.811052i \(0.698896\pi\)
\(458\) 7.35667 1.92411i 0.343754 0.0899080i
\(459\) −7.01188 7.01188i −0.327286 0.327286i
\(460\) 8.80449 31.3533i 0.410511 1.46185i
\(461\) 4.11212 4.11212i 0.191520 0.191520i −0.604832 0.796353i \(-0.706760\pi\)
0.796353 + 0.604832i \(0.206760\pi\)
\(462\) 0 0
\(463\) 11.6892i 0.543245i 0.962404 + 0.271623i \(0.0875603\pi\)
−0.962404 + 0.271623i \(0.912440\pi\)
\(464\) 21.5921 5.23520i 1.00239 0.243038i
\(465\) 6.11444i 0.283550i
\(466\) −15.6038 9.13379i −0.722834 0.423115i
\(467\) 17.8096 + 17.8096i 0.824132 + 0.824132i 0.986698 0.162566i \(-0.0519770\pi\)
−0.162566 + 0.986698i \(0.551977\pi\)
\(468\) 0.719275 2.56138i 0.0332485 0.118400i
\(469\) 0 0
\(470\) 23.9209 6.25643i 1.10339 0.288588i
\(471\) −30.1996 −1.39152
\(472\) −1.70554 + 1.64539i −0.0785039 + 0.0757353i
\(473\) 35.5137i 1.63292i
\(474\) −0.799113 3.05533i −0.0367045 0.140336i
\(475\) −5.67005 + 5.67005i −0.260160 + 0.260160i
\(476\) 0 0
\(477\) 5.96915 + 5.96915i 0.273309 + 0.273309i
\(478\) 32.0117 + 18.7382i 1.46418 + 0.857066i
\(479\) 24.3079 1.11066 0.555328 0.831632i \(-0.312593\pi\)
0.555328 + 0.831632i \(0.312593\pi\)
\(480\) 26.0154 13.9997i 1.18744 0.638996i
\(481\) 7.50815i 0.342342i
\(482\) −26.9077 15.7505i −1.22561 0.717417i
\(483\) 0 0
\(484\) 28.5241 16.0164i 1.29655 0.728018i
\(485\) −2.04479 + 2.04479i −0.0928490 + 0.0928490i
\(486\) 15.0317 3.93148i 0.681850 0.178336i
\(487\) −31.0001 −1.40475 −0.702373 0.711809i \(-0.747876\pi\)
−0.702373 + 0.711809i \(0.747876\pi\)
\(488\) −9.22179 + 8.89656i −0.417451 + 0.402728i
\(489\) 39.1517 1.77050
\(490\) 0 0
\(491\) 8.29080 + 8.29080i 0.374159 + 0.374159i 0.868989 0.494831i \(-0.164770\pi\)
−0.494831 + 0.868989i \(0.664770\pi\)
\(492\) 5.22833 18.6184i 0.235711 0.839380i
\(493\) −10.1566 + 10.1566i −0.457429 + 0.457429i
\(494\) 4.19514 7.16683i 0.188748 0.322451i
\(495\) −14.9332 −0.671199
\(496\) 2.43794 3.99851i 0.109467 0.179538i
\(497\) 0 0
\(498\) 34.0545 + 19.9340i 1.52602 + 0.893263i
\(499\) −16.8125 + 16.8125i −0.752630 + 0.752630i −0.974969 0.222339i \(-0.928631\pi\)
0.222339 + 0.974969i \(0.428631\pi\)
\(500\) 16.6737 + 4.68225i 0.745672 + 0.209396i
\(501\) 4.99238 4.99238i 0.223043 0.223043i
\(502\) −7.84365 29.9894i −0.350079 1.33849i
\(503\) 3.42708i 0.152806i −0.997077 0.0764029i \(-0.975656\pi\)
0.997077 0.0764029i \(-0.0243435\pi\)
\(504\) 0 0
\(505\) 37.3923i 1.66393i
\(506\) 45.2219 11.8277i 2.01036 0.525803i
\(507\) −16.5659 + 16.5659i −0.735717 + 0.735717i
\(508\) −24.5119 + 13.7636i −1.08754 + 0.610659i
\(509\) 26.0099 26.0099i 1.15287 1.15287i 0.166896 0.985975i \(-0.446626\pi\)
0.985975 0.166896i \(-0.0533744\pi\)
\(510\) −9.64846 + 16.4831i −0.427241 + 0.729883i
\(511\) 0 0
\(512\) −22.5946 1.21779i −0.998551 0.0538191i
\(513\) 18.7566 0.828124
\(514\) −2.31127 1.35291i −0.101946 0.0596743i
\(515\) −1.56089 + 1.56089i −0.0687810 + 0.0687810i
\(516\) 23.9996 13.4759i 1.05652 0.593242i
\(517\) 25.0947 + 25.0947i 1.10367 + 1.10367i
\(518\) 0 0
\(519\) 0.148444 0.00651597
\(520\) 8.74789 + 0.157027i 0.383620 + 0.00688610i
\(521\) 13.6486 0.597957 0.298979 0.954260i \(-0.403354\pi\)
0.298979 + 0.954260i \(0.403354\pi\)
\(522\) −2.20240 8.42068i −0.0963965 0.368563i
\(523\) 13.4813 13.4813i 0.589498 0.589498i −0.347998 0.937495i \(-0.613138\pi\)
0.937495 + 0.347998i \(0.113138\pi\)
\(524\) 8.16851 29.0885i 0.356843 1.27074i
\(525\) 0 0
\(526\) −6.68140 + 11.4143i −0.291323 + 0.497686i
\(527\) 3.02759i 0.131884i
\(528\) 36.2052 + 22.0748i 1.57563 + 0.960681i
\(529\) 16.9340 0.736262
\(530\) −14.0244 + 23.9588i −0.609182 + 1.04071i
\(531\) 0.656479 + 0.656479i 0.0284888 + 0.0284888i
\(532\) 0 0
\(533\) 4.04973 4.04973i 0.175413 0.175413i
\(534\) −43.8768 + 11.4759i −1.89874 + 0.496609i
\(535\) 13.5938i 0.587710i
\(536\) 0.794299 0.766286i 0.0343085 0.0330985i
\(537\) 6.30805 0.272213
\(538\) −9.54452 36.4925i −0.411493 1.57331i
\(539\) 0 0
\(540\) 9.67528 + 17.2310i 0.416358 + 0.741503i
\(541\) −0.333702 0.333702i −0.0143470 0.0143470i 0.699897 0.714244i \(-0.253229\pi\)
−0.714244 + 0.699897i \(0.753229\pi\)
\(542\) 6.14510 10.4981i 0.263955 0.450931i
\(543\) 9.58556i 0.411356i
\(544\) 12.8817 6.93202i 0.552297 0.297208i
\(545\) 35.6893i 1.52876i
\(546\) 0 0
\(547\) 9.02908 9.02908i 0.386056 0.386056i −0.487222 0.873278i \(-0.661990\pi\)
0.873278 + 0.487222i \(0.161990\pi\)
\(548\) −8.80092 + 4.94176i −0.375957 + 0.211102i
\(549\) 3.54955 + 3.54955i 0.151491 + 0.151491i
\(550\) −3.06833 11.7315i −0.130834 0.500231i
\(551\) 27.1686i 1.15742i
\(552\) 25.1526 + 26.0721i 1.07057 + 1.10970i
\(553\) 0 0
\(554\) −9.17100 35.0644i −0.389638 1.48975i
\(555\) −23.0959 23.0959i −0.980364 0.980364i
\(556\) 10.2922 + 2.89021i 0.436486 + 0.122572i
\(557\) 4.91696 + 4.91696i 0.208338 + 0.208338i 0.803561 0.595223i \(-0.202936\pi\)
−0.595223 + 0.803561i \(0.702936\pi\)
\(558\) −1.58333 0.926809i −0.0670276 0.0392349i
\(559\) 8.15137 0.344766
\(560\) 0 0
\(561\) −27.4139 −1.15742
\(562\) −28.4203 16.6360i −1.19884 0.701746i
\(563\) 21.7464 + 21.7464i 0.916500 + 0.916500i 0.996773 0.0802729i \(-0.0255792\pi\)
−0.0802729 + 0.996773i \(0.525579\pi\)
\(564\) −7.43626 + 26.4809i −0.313123 + 1.11505i
\(565\) 15.8108 + 15.8108i 0.665167 + 0.665167i
\(566\) 3.63312 + 13.8909i 0.152711 + 0.583878i
\(567\) 0 0
\(568\) −10.8405 0.194590i −0.454856 0.00816480i
\(569\) 39.1128i 1.63969i −0.572584 0.819846i \(-0.694059\pi\)
0.572584 0.819846i \(-0.305941\pi\)
\(570\) −9.14123 34.9506i −0.382884 1.46392i
\(571\) 3.87913 + 3.87913i 0.162337 + 0.162337i 0.783601 0.621264i \(-0.213381\pi\)
−0.621264 + 0.783601i \(0.713381\pi\)
\(572\) 6.14850 + 10.9500i 0.257082 + 0.457844i
\(573\) 0.448646 0.448646i 0.0187425 0.0187425i
\(574\) 0 0
\(575\) 10.3597i 0.432028i
\(576\) −0.318136 + 8.85871i −0.0132556 + 0.369113i
\(577\) 34.7362i 1.44609i 0.690802 + 0.723044i \(0.257258\pi\)
−0.690802 + 0.723044i \(0.742742\pi\)
\(578\) 7.36769 12.5867i 0.306455 0.523537i
\(579\) −14.8423 14.8423i −0.616823 0.616823i
\(580\) 24.9587 14.0145i 1.03636 0.581919i
\(581\) 0 0
\(582\) −0.813982 3.11218i −0.0337406 0.129004i
\(583\) −39.8472 −1.65030
\(584\) −27.4082 0.491985i −1.13416 0.0203585i
\(585\) 3.42759i 0.141713i
\(586\) 0.186015 0.0486515i 0.00768419 0.00200978i
\(587\) 25.6897 25.6897i 1.06033 1.06033i 0.0622695 0.998059i \(-0.480166\pi\)
0.998059 0.0622695i \(-0.0198338\pi\)
\(588\) 0 0
\(589\) −4.04937 4.04937i −0.166851 0.166851i
\(590\) −1.54239 + 2.63496i −0.0634991 + 0.108480i
\(591\) 0.323338 0.0133004
\(592\) 5.89469 + 24.3122i 0.242270 + 0.999224i
\(593\) 24.4029i 1.00211i −0.865416 0.501054i \(-0.832946\pi\)
0.865416 0.501054i \(-0.167054\pi\)
\(594\) −14.3289 + 24.4790i −0.587921 + 1.00438i
\(595\) 0 0
\(596\) −0.525059 0.147445i −0.0215072 0.00603957i
\(597\) 30.5722 30.5722i 1.25124 1.25124i
\(598\) 2.71477 + 10.3797i 0.111015 + 0.424456i
\(599\) 26.7558 1.09321 0.546606 0.837390i \(-0.315920\pi\)
0.546606 + 0.837390i \(0.315920\pi\)
\(600\) 6.76362 6.52509i 0.276124 0.266386i
\(601\) 16.1853 0.660212 0.330106 0.943944i \(-0.392915\pi\)
0.330106 + 0.943944i \(0.392915\pi\)
\(602\) 0 0
\(603\) −0.305733 0.305733i −0.0124504 0.0124504i
\(604\) −8.97006 15.9750i −0.364987 0.650015i
\(605\) 29.8016 29.8016i 1.21161 1.21161i
\(606\) 35.8981 + 21.0131i 1.45826 + 0.853600i
\(607\) −5.03295 −0.204281 −0.102141 0.994770i \(-0.532569\pi\)
−0.102141 + 0.994770i \(0.532569\pi\)
\(608\) −7.95758 + 26.5006i −0.322723 + 1.07474i
\(609\) 0 0
\(610\) −8.33962 + 14.2471i −0.337661 + 0.576849i
\(611\) −5.75993 + 5.75993i −0.233022 + 0.233022i
\(612\) −2.80579 4.99692i −0.113417 0.201988i
\(613\) −0.321378 + 0.321378i −0.0129803 + 0.0129803i −0.713567 0.700587i \(-0.752922\pi\)
0.700587 + 0.713567i \(0.252922\pi\)
\(614\) −31.4329 + 8.22118i −1.26853 + 0.331780i
\(615\) 24.9147i 1.00466i
\(616\) 0 0
\(617\) 4.35363i 0.175271i 0.996153 + 0.0876353i \(0.0279310\pi\)
−0.996153 + 0.0876353i \(0.972069\pi\)
\(618\) −0.621353 2.37568i −0.0249945 0.0955640i
\(619\) 3.47374 3.47374i 0.139621 0.139621i −0.633842 0.773463i \(-0.718523\pi\)
0.773463 + 0.633842i \(0.218523\pi\)
\(620\) 1.63120 5.80880i 0.0655106 0.233287i
\(621\) −17.1350 + 17.1350i −0.687603 + 0.687603i
\(622\) 17.3533 + 10.1578i 0.695804 + 0.407292i
\(623\) 0 0
\(624\) −5.06676 + 8.31009i −0.202833 + 0.332670i
\(625\) 30.5093 1.22037
\(626\) −19.2040 + 32.8075i −0.767547 + 1.31125i
\(627\) 36.6658 36.6658i 1.46429 1.46429i
\(628\) 28.6900 + 8.05661i 1.14486 + 0.321494i
\(629\) −11.4360 11.4360i −0.455984 0.455984i
\(630\) 0 0
\(631\) −22.0158 −0.876434 −0.438217 0.898869i \(-0.644390\pi\)
−0.438217 + 0.898869i \(0.644390\pi\)
\(632\) −0.0559295 + 3.11580i −0.00222475 + 0.123940i
\(633\) 22.1269 0.879464
\(634\) −21.9520 + 5.74148i −0.871825 + 0.228023i
\(635\) −25.6098 + 25.6098i −1.01629 + 1.01629i
\(636\) −15.1202 26.9281i −0.599556 1.06777i
\(637\) 0 0
\(638\) 35.4573 + 20.7551i 1.40377 + 0.821703i
\(639\) 4.24750i 0.168028i
\(640\) −28.4499 + 6.35955i −1.12458 + 0.251383i
\(641\) −23.9674 −0.946655 −0.473328 0.880886i \(-0.656947\pi\)
−0.473328 + 0.880886i \(0.656947\pi\)
\(642\) 13.0506 + 7.63922i 0.515065 + 0.301496i
\(643\) −30.4232 30.4232i −1.19977 1.19977i −0.974235 0.225537i \(-0.927586\pi\)
−0.225537 0.974235i \(-0.572414\pi\)
\(644\) 0 0
\(645\) 25.0745 25.0745i 0.987306 0.987306i
\(646\) −4.52632 17.3060i −0.178086 0.680894i
\(647\) 6.29719i 0.247568i 0.992309 + 0.123784i \(0.0395030\pi\)
−0.992309 + 0.123784i \(0.960497\pi\)
\(648\) −31.3802 0.563285i −1.23273 0.0221279i
\(649\) −4.38234 −0.172022
\(650\) 2.69269 0.704266i 0.105616 0.0276236i
\(651\) 0 0
\(652\) −37.1947 10.4449i −1.45666 0.409052i
\(653\) 22.5298 + 22.5298i 0.881660 + 0.881660i 0.993703 0.112043i \(-0.0357396\pi\)
−0.112043 + 0.993703i \(0.535740\pi\)
\(654\) −34.2632 20.0561i −1.33980 0.784257i
\(655\) 38.9257i 1.52095i
\(656\) −9.93397 + 16.2929i −0.387856 + 0.636130i
\(657\) 10.7390i 0.418970i
\(658\) 0 0
\(659\) −3.27251 + 3.27251i −0.127479 + 0.127479i −0.767968 0.640489i \(-0.778732\pi\)
0.640489 + 0.767968i \(0.278732\pi\)
\(660\) 52.5969 + 14.7700i 2.04733 + 0.574922i
\(661\) −10.4890 10.4890i −0.407976 0.407976i 0.473056 0.881032i \(-0.343151\pi\)
−0.881032 + 0.473056i \(0.843151\pi\)
\(662\) −25.9862 + 6.79663i −1.00998 + 0.264158i
\(663\) 6.29224i 0.244370i
\(664\) −27.0343 28.0226i −1.04913 1.08749i
\(665\) 0 0
\(666\) 9.48145 2.47985i 0.367399 0.0960921i
\(667\) 24.8197 + 24.8197i 0.961022 + 0.961022i
\(668\) −6.07469 + 3.41097i −0.235037 + 0.131974i
\(669\) −13.9610 13.9610i −0.539762 0.539762i
\(670\) 0.718315 1.22714i 0.0277509 0.0474087i
\(671\) −23.6951 −0.914740
\(672\) 0 0
\(673\) 1.09724 0.0422955 0.0211478 0.999776i \(-0.493268\pi\)
0.0211478 + 0.999776i \(0.493268\pi\)
\(674\) 11.1807 19.1008i 0.430666 0.735734i
\(675\) 4.44515 + 4.44515i 0.171094 + 0.171094i
\(676\) 20.1573 11.3184i 0.775279 0.435323i
\(677\) −11.7557 11.7557i −0.451807 0.451807i 0.444147 0.895954i \(-0.353507\pi\)
−0.895954 + 0.444147i \(0.853507\pi\)
\(678\) −24.0642 + 6.29392i −0.924180 + 0.241717i
\(679\) 0 0
\(680\) 13.5635 13.0852i 0.520137 0.501793i
\(681\) 2.11322i 0.0809788i
\(682\) 8.37823 2.19130i 0.320819 0.0839093i
\(683\) 13.7567 + 13.7567i 0.526384 + 0.526384i 0.919492 0.393108i \(-0.128600\pi\)
−0.393108 + 0.919492i \(0.628600\pi\)
\(684\) 10.4360 + 2.93060i 0.399032 + 0.112054i
\(685\) −9.19511 + 9.19511i −0.351327 + 0.351327i
\(686\) 0 0
\(687\) 10.8981i 0.415790i
\(688\) −26.3950 + 6.39969i −1.00630 + 0.243986i
\(689\) 9.14603i 0.348436i
\(690\) 40.2798 + 23.5780i 1.53343 + 0.897600i
\(691\) 0.913410 + 0.913410i 0.0347478 + 0.0347478i 0.724267 0.689519i \(-0.242178\pi\)
−0.689519 + 0.724267i \(0.742178\pi\)
\(692\) −0.141024 0.0396017i −0.00536092 0.00150543i
\(693\) 0 0
\(694\) −26.8216 + 7.01511i −1.01813 + 0.266290i
\(695\) 13.7728 0.522433
\(696\) −0.571485 + 31.8371i −0.0216621 + 1.20678i
\(697\) 12.3367i 0.467284i
\(698\) 3.71531 + 14.2051i 0.140626 + 0.537672i
\(699\) 18.3231 18.3231i 0.693044 0.693044i
\(700\) 0 0
\(701\) 4.42004 + 4.42004i 0.166942 + 0.166942i 0.785634 0.618692i \(-0.212337\pi\)
−0.618692 + 0.785634i \(0.712337\pi\)
\(702\) −5.61859 3.28887i −0.212060 0.124130i
\(703\) 30.5911 1.15376
\(704\) −28.5064 30.6301i −1.07438 1.15442i
\(705\) 35.4363i 1.33461i
\(706\) 14.7318 + 8.62334i 0.554439 + 0.324544i
\(707\) 0 0
\(708\) −1.66290 2.96151i −0.0624957 0.111300i
\(709\) 16.2358 16.2358i 0.609750 0.609750i −0.333131 0.942881i \(-0.608105\pi\)
0.942881 + 0.333131i \(0.108105\pi\)
\(710\) −13.5140 + 3.53454i −0.507170 + 0.132649i
\(711\) 1.22083 0.0457846
\(712\) 44.7451 + 0.803188i 1.67689 + 0.0301008i
\(713\) 7.39855 0.277078
\(714\) 0 0
\(715\) 11.4405 + 11.4405i 0.427849 + 0.427849i
\(716\) −5.99274 1.68286i −0.223959 0.0628913i
\(717\) −37.5904 + 37.5904i −1.40384 + 1.40384i
\(718\) −1.24077 + 2.11969i −0.0463051 + 0.0791060i
\(719\) −7.07123 −0.263712 −0.131856 0.991269i \(-0.542094\pi\)
−0.131856 + 0.991269i \(0.542094\pi\)
\(720\) 2.69102 + 11.0989i 0.100288 + 0.413631i
\(721\) 0 0
\(722\) 6.01107 + 3.51861i 0.223709 + 0.130949i
\(723\) 31.5968 31.5968i 1.17510 1.17510i
\(724\) 2.55722 9.10641i 0.0950385 0.338437i
\(725\) 6.43872 6.43872i 0.239128 0.239128i
\(726\) 11.8633 + 45.3583i 0.440289 + 1.68340i
\(727\) 21.2964i 0.789838i 0.918716 + 0.394919i \(0.129227\pi\)
−0.918716 + 0.394919i \(0.870773\pi\)
\(728\) 0 0
\(729\) 11.0213i 0.408196i
\(730\) −34.1676 + 8.93644i −1.26460 + 0.330753i
\(731\) 12.4157 12.4157i 0.459213 0.459213i
\(732\) −8.99124 16.0128i −0.332326 0.591848i
\(733\) −19.6915 + 19.6915i −0.727324 + 0.727324i −0.970086 0.242762i \(-0.921947\pi\)
0.242762 + 0.970086i \(0.421947\pi\)
\(734\) 7.45504 12.7359i 0.275171 0.470092i
\(735\) 0 0
\(736\) −16.9398 31.4790i −0.624411 1.16033i
\(737\) 2.04093 0.0751786
\(738\) 6.45165 + 3.77651i 0.237489 + 0.139015i
\(739\) −19.6401 + 19.6401i −0.722472 + 0.722472i −0.969108 0.246636i \(-0.920675\pi\)
0.246636 + 0.969108i \(0.420675\pi\)
\(740\) 15.7799 + 28.1029i 0.580081 + 1.03308i
\(741\) 8.41580 + 8.41580i 0.309162 + 0.309162i
\(742\) 0 0
\(743\) −4.98267 −0.182796 −0.0913982 0.995814i \(-0.529134\pi\)
−0.0913982 + 0.995814i \(0.529134\pi\)
\(744\) 4.66001 + 4.83036i 0.170844 + 0.177090i
\(745\) −0.702624 −0.0257422
\(746\) 3.92917 + 15.0228i 0.143857 + 0.550024i
\(747\) −10.7862 + 10.7862i −0.394645 + 0.394645i
\(748\) 26.0436 + 7.31345i 0.952248 + 0.267406i
\(749\) 0 0
\(750\) −12.5388 + 21.4209i −0.457854 + 0.782181i
\(751\) 16.3335i 0.596018i 0.954563 + 0.298009i \(0.0963226\pi\)
−0.954563 + 0.298009i \(0.903677\pi\)
\(752\) 14.1291 23.1734i 0.515235 0.845047i
\(753\) 44.4263 1.61898
\(754\) −4.76387 + 8.13842i −0.173490 + 0.296384i
\(755\) −16.6905 16.6905i −0.607431 0.607431i
\(756\) 0 0
\(757\) 38.1458 38.1458i 1.38643 1.38643i 0.553747 0.832685i \(-0.313198\pi\)
0.832685 0.553747i \(-0.186802\pi\)
\(758\) 37.4378 9.79176i 1.35980 0.355653i
\(759\) 66.9916i 2.43164i
\(760\) −0.639789 + 35.6423i −0.0232076 + 1.29288i
\(761\) 33.0136 1.19674 0.598371 0.801219i \(-0.295815\pi\)
0.598371 + 0.801219i \(0.295815\pi\)
\(762\) −10.1946 38.9782i −0.369313 1.41203i
\(763\) 0 0
\(764\) −0.545909 + 0.306531i −0.0197503 + 0.0110899i
\(765\) −5.22072 5.22072i −0.188756 0.188756i
\(766\) −12.7355 + 21.7568i −0.460151 + 0.786105i
\(767\) 1.00587i 0.0363198i
\(768\) 9.88240 30.8869i 0.356600 1.11453i
\(769\) 18.6850i 0.673800i −0.941540 0.336900i \(-0.890622\pi\)
0.941540 0.336900i \(-0.109378\pi\)
\(770\) 0 0
\(771\) 2.71405 2.71405i 0.0977441 0.0977441i
\(772\) 10.1408 + 18.0600i 0.364974 + 0.649992i
\(773\) 24.6966 + 24.6966i 0.888275 + 0.888275i 0.994357 0.106083i \(-0.0338308\pi\)
−0.106083 + 0.994357i \(0.533831\pi\)
\(774\) 2.69229 + 10.2937i 0.0967725 + 0.370000i
\(775\) 1.91933i 0.0689444i
\(776\) −0.0569701 + 3.17377i −0.00204511 + 0.113932i
\(777\) 0 0
\(778\) 2.23326 + 8.53865i 0.0800662 + 0.306126i
\(779\) 16.5001 + 16.5001i 0.591179 + 0.591179i
\(780\) −3.39013 + 12.0724i −0.121386 + 0.432262i
\(781\) −14.1771 14.1771i −0.507298 0.507298i
\(782\) 19.9448 + 11.6748i 0.713223 + 0.417489i
\(783\) −21.2994 −0.761178
\(784\) 0 0
\(785\) 38.3925 1.37029
\(786\) 37.3703 + 21.8749i 1.33296 + 0.780252i
\(787\) 17.2340 + 17.2340i 0.614325 + 0.614325i 0.944070 0.329745i \(-0.106963\pi\)
−0.329745 + 0.944070i \(0.606963\pi\)
\(788\) −0.307176 0.0862598i −0.0109427 0.00307288i
\(789\) −13.4034 13.4034i −0.477175 0.477175i
\(790\) 1.01591 + 3.88422i 0.0361443 + 0.138194i
\(791\) 0 0
\(792\) −11.7972 + 11.3811i −0.419194 + 0.404410i
\(793\) 5.43868i 0.193133i
\(794\) 2.52718 + 9.66242i 0.0896862 + 0.342907i
\(795\) −28.1341 28.1341i −0.997815 0.997815i
\(796\) −37.2000 + 20.8880i −1.31852 + 0.740354i
\(797\) 25.8769 25.8769i 0.916608 0.916608i −0.0801732 0.996781i \(-0.525547\pi\)
0.996781 + 0.0801732i \(0.0255473\pi\)
\(798\) 0 0
\(799\) 17.5465i 0.620749i
\(800\) −8.16629 + 4.39453i −0.288722 + 0.155370i
\(801\) 17.5320i 0.619462i
\(802\) −14.9957 + 25.6182i −0.529518 + 0.904610i
\(803\) −35.8443 35.8443i −1.26492 1.26492i
\(804\) 0.774442 + 1.37922i 0.0273124 + 0.0486415i
\(805\) 0 0
\(806\) 0.502964 + 1.92303i 0.0177162 + 0.0677360i
\(807\) 54.0599 1.90300
\(808\) −28.4978 29.5396i −1.00255 1.03920i
\(809\) 23.0197i 0.809331i 0.914465 + 0.404665i \(0.132612\pi\)
−0.914465 + 0.404665i \(0.867388\pi\)
\(810\) −39.1193 + 10.2315i −1.37451 + 0.359500i
\(811\) −8.31612 + 8.31612i −0.292019 + 0.292019i −0.837877 0.545859i \(-0.816204\pi\)
0.545859 + 0.837877i \(0.316204\pi\)
\(812\) 0 0
\(813\) 12.3276 + 12.3276i 0.432347 + 0.432347i
\(814\) −23.3697 + 39.9240i −0.819107 + 1.39933i
\(815\) −49.7733 −1.74348
\(816\) 4.94007 + 20.3749i 0.172937 + 0.713265i
\(817\) 33.2118i 1.16193i
\(818\) −25.8561 + 44.1716i −0.904036 + 1.54442i
\(819\) 0 0
\(820\) −6.64673 + 23.6694i −0.232114 + 0.826570i
\(821\) −1.59482 + 1.59482i −0.0556596 + 0.0556596i −0.734389 0.678729i \(-0.762531\pi\)
0.678729 + 0.734389i \(0.262531\pi\)
\(822\) −3.66035 13.9950i −0.127670 0.488132i
\(823\) 8.74544 0.304847 0.152423 0.988315i \(-0.451292\pi\)
0.152423 + 0.988315i \(0.451292\pi\)
\(824\) −0.0434881 + 2.42270i −0.00151498 + 0.0843986i
\(825\) 17.3789 0.605057
\(826\) 0 0
\(827\) −2.25129 2.25129i −0.0782850 0.0782850i 0.666880 0.745165i \(-0.267629\pi\)
−0.745165 + 0.666880i \(0.767629\pi\)
\(828\) −12.2110 + 6.85654i −0.424362 + 0.238281i
\(829\) 4.58643 4.58643i 0.159293 0.159293i −0.622960 0.782254i \(-0.714070\pi\)
0.782254 + 0.622960i \(0.214070\pi\)
\(830\) −43.2932 25.3419i −1.50273 0.879630i
\(831\) 51.9443 1.80193
\(832\) 7.03045 6.54300i 0.243737 0.226838i
\(833\) 0 0
\(834\) −7.73984 + 13.2225i −0.268009 + 0.457857i
\(835\) −6.34677 + 6.34677i −0.219639 + 0.219639i
\(836\) −44.6146 + 25.0513i −1.54303 + 0.866418i
\(837\) −3.17459 + 3.17459i −0.109730 + 0.109730i
\(838\) 9.97280 2.60836i 0.344505 0.0901042i
\(839\) 15.8804i 0.548253i −0.961694 0.274126i \(-0.911611\pi\)
0.961694 0.274126i \(-0.0883886\pi\)
\(840\) 0 0
\(841\) 1.85175i 0.0638536i
\(842\) 3.92648 + 15.0125i 0.135316 + 0.517366i
\(843\) 33.3731 33.3731i 1.14943 1.14943i
\(844\) −21.0208 5.90298i −0.723567 0.203189i
\(845\) 21.0601 21.0601i 0.724489 0.724489i
\(846\) −9.17619 5.37133i −0.315484 0.184670i
\(847\) 0 0
\(848\) 7.18060 + 29.6158i 0.246583 + 1.01701i
\(849\) −20.5779 −0.706232
\(850\) 3.02867 5.17407i 0.103882 0.177469i
\(851\) −27.9463 + 27.9463i −0.957987 + 0.957987i
\(852\) 4.20107 14.9602i 0.143926 0.512530i
\(853\) 31.2018 + 31.2018i 1.06833 + 1.06833i 0.997488 + 0.0708400i \(0.0225680\pi\)
0.0708400 + 0.997488i \(0.477432\pi\)
\(854\) 0 0
\(855\) 13.9653 0.477603
\(856\) −10.3602 10.7390i −0.354106 0.367051i
\(857\) −0.513545 −0.0175424 −0.00877118 0.999962i \(-0.502792\pi\)
−0.00877118 + 0.999962i \(0.502792\pi\)
\(858\) −17.4125 + 4.55418i −0.594452 + 0.155477i
\(859\) 14.9840 14.9840i 0.511248 0.511248i −0.403661 0.914909i \(-0.632262\pi\)
0.914909 + 0.403661i \(0.132262\pi\)
\(860\) −30.5104 + 17.1318i −1.04040 + 0.584188i
\(861\) 0 0
\(862\) 30.2643 + 17.7154i 1.03081 + 0.603387i
\(863\) 47.8726i 1.62960i −0.579741 0.814801i \(-0.696846\pi\)
0.579741 0.814801i \(-0.303154\pi\)
\(864\) 20.7757 + 6.23852i 0.706803 + 0.212239i
\(865\) −0.188716 −0.00641652
\(866\) 5.91916 + 3.46481i 0.201141 + 0.117739i
\(867\) 14.7802 + 14.7802i 0.501961 + 0.501961i
\(868\) 0 0
\(869\) −4.07483 + 4.07483i −0.138229 + 0.138229i
\(870\) 10.3805 + 39.6888i 0.351931 + 1.34558i
\(871\) 0.468449i 0.0158728i
\(872\) 27.2000 + 28.1943i 0.921107 + 0.954780i
\(873\) 1.24354 0.0420875
\(874\) −42.2907 + 11.0610i −1.43051 + 0.374144i
\(875\) 0 0
\(876\) 10.6217 37.8243i 0.358873 1.27796i
\(877\) 16.0031 + 16.0031i 0.540387 + 0.540387i 0.923642 0.383255i \(-0.125197\pi\)
−0.383255 + 0.923642i \(0.625197\pi\)
\(878\) 45.4441 + 26.6009i 1.53366 + 0.897737i
\(879\) 0.275561i 0.00929445i
\(880\) −46.0274 28.0635i −1.55158 0.946019i
\(881\) 17.7026i 0.596417i 0.954501 + 0.298209i \(0.0963891\pi\)
−0.954501 + 0.298209i \(0.903611\pi\)
\(882\) 0 0
\(883\) −13.2141 + 13.2141i −0.444691 + 0.444691i −0.893585 0.448894i \(-0.851818\pi\)
0.448894 + 0.893585i \(0.351818\pi\)
\(884\) −1.67864 + 5.97772i −0.0564587 + 0.201052i
\(885\) −3.09415 3.09415i −0.104009 0.104009i
\(886\) 34.4308 9.00527i 1.15672 0.302538i
\(887\) 51.2242i 1.71994i 0.510344 + 0.859970i \(0.329518\pi\)
−0.510344 + 0.859970i \(0.670482\pi\)
\(888\) −35.8477 0.643476i −1.20297 0.0215937i
\(889\) 0 0
\(890\) 55.7803 14.5892i 1.86976 0.489030i
\(891\) −41.0390 41.0390i −1.37486 1.37486i
\(892\) 9.53863 + 16.9876i 0.319377 + 0.568787i
\(893\) −23.4682 23.4682i −0.785332 0.785332i
\(894\) 0.394850 0.674548i 0.0132058 0.0225603i
\(895\) −8.01938 −0.268058
\(896\) 0 0
\(897\) −15.3764 −0.513403
\(898\) 0.632894 1.08121i 0.0211199 0.0360806i
\(899\) 4.59833 + 4.59833i 0.153363 + 0.153363i
\(900\) 1.77872 + 3.16778i 0.0592908 + 0.105593i
\(901\) −13.9308 13.9308i −0.464101 0.464101i
\(902\) −34.1391 + 8.92899i −1.13671 + 0.297303i
\(903\) 0 0
\(904\) 24.5404 + 0.440508i 0.816202 + 0.0146511i
\(905\) 12.1860i 0.405078i
\(906\) 25.4031 6.64411i 0.843962 0.220736i
\(907\) −6.00802 6.00802i −0.199493 0.199493i 0.600290 0.799783i \(-0.295052\pi\)
−0.799783 + 0.600290i \(0.795052\pi\)
\(908\) 0.563763 2.00759i 0.0187091 0.0666242i
\(909\) −11.3701 + 11.3701i −0.377122 + 0.377122i
\(910\) 0 0
\(911\) 19.6850i 0.652192i −0.945337 0.326096i \(-0.894267\pi\)
0.945337 0.326096i \(-0.105733\pi\)
\(912\) −33.8585 20.6439i −1.12117 0.683589i
\(913\) 72.0033i 2.38296i
\(914\) 42.3225 + 24.7737i 1.39991 + 0.819442i
\(915\) −16.7299 16.7299i −0.553075 0.553075i
\(916\) 2.90739 10.3534i 0.0960630 0.342086i
\(917\) 0 0
\(918\) −13.5674 + 3.54851i −0.447790 + 0.117118i
\(919\) 35.4627 1.16981 0.584903 0.811104i \(-0.301133\pi\)
0.584903 + 0.811104i \(0.301133\pi\)
\(920\) −31.9763 33.1453i −1.05423 1.09277i
\(921\) 46.5646i 1.53435i
\(922\) −2.08102 7.95659i −0.0685349 0.262036i
\(923\) 3.25404 3.25404i 0.107108 0.107108i
\(924\) 0 0
\(925\) 7.24983 + 7.24983i 0.238373 + 0.238373i
\(926\) 14.2666 + 8.35105i 0.468831 + 0.274432i
\(927\) 0.949258 0.0311777
\(928\) 9.03637 30.0932i 0.296633 0.987857i
\(929\) 43.9670i 1.44251i 0.692670 + 0.721255i \(0.256434\pi\)
−0.692670 + 0.721255i \(0.743566\pi\)
\(930\) 7.46262 + 4.36828i 0.244709 + 0.143242i
\(931\) 0 0
\(932\) −22.2954 + 12.5190i −0.730311 + 0.410073i
\(933\) −20.3775 + 20.3775i −0.667128 + 0.667128i
\(934\) 34.4601 9.01294i 1.12757 0.294912i
\(935\) 34.8511 1.13975
\(936\) −2.61228 2.70777i −0.0853849 0.0885063i
\(937\) −32.7634 −1.07033 −0.535167 0.844746i \(-0.679751\pi\)
−0.535167 + 0.844746i \(0.679751\pi\)
\(938\) 0 0
\(939\) −38.5248 38.5248i −1.25721 1.25721i
\(940\) 9.45365 33.6650i 0.308344 1.09803i
\(941\) −21.6724 + 21.6724i −0.706500 + 0.706500i −0.965798 0.259297i \(-0.916509\pi\)
0.259297 + 0.965798i \(0.416509\pi\)
\(942\) −21.5752 + 36.8584i −0.702959 + 1.20091i
\(943\) −30.1472 −0.981728
\(944\) 0.789712 + 3.25710i 0.0257029 + 0.106010i
\(945\) 0 0
\(946\) −43.3442 25.3718i −1.40924 0.824907i
\(947\) −8.13565 + 8.13565i −0.264373 + 0.264373i −0.826828 0.562455i \(-0.809857\pi\)
0.562455 + 0.826828i \(0.309857\pi\)
\(948\) −4.29992 1.20748i −0.139655 0.0392173i
\(949\) 8.22726 8.22726i 0.267068 0.267068i
\(950\) 2.86945 + 10.9711i 0.0930972 + 0.355948i
\(951\) 32.5196i 1.05452i
\(952\) 0 0
\(953\) 31.6828i 1.02631i 0.858297 + 0.513153i \(0.171523\pi\)
−0.858297 + 0.513153i \(0.828477\pi\)
\(954\) 11.5498 3.02082i 0.373939 0.0978025i
\(955\) −0.570360 + 0.570360i −0.0184564 + 0.0184564i
\(956\) 45.7397 25.6831i 1.47933 0.830650i
\(957\) −41.6364 + 41.6364i −1.34592 + 1.34592i
\(958\) 17.3661 29.6676i 0.561072 0.958516i
\(959\) 0 0
\(960\) 1.49945 41.7533i 0.0483946 1.34758i
\(961\) −29.6293 −0.955783
\(962\) −9.16364 5.36399i −0.295448 0.172942i
\(963\) −4.13354 + 4.13354i −0.133201 + 0.133201i
\(964\) −38.4468 + 21.5881i −1.23829 + 0.695305i
\(965\) 18.8688 + 18.8688i 0.607409 + 0.607409i
\(966\) 0 0
\(967\) 15.2574 0.490645 0.245322 0.969442i \(-0.421106\pi\)
0.245322 + 0.969442i \(0.421106\pi\)
\(968\) 0.830307 46.2559i 0.0266871 1.48672i
\(969\) 25.6370 0.823579
\(970\) 1.03481 + 3.95649i 0.0332257 + 0.127035i
\(971\) 21.4270 21.4270i 0.687625 0.687625i −0.274081 0.961707i \(-0.588374\pi\)
0.961707 + 0.274081i \(0.0883737\pi\)
\(972\) 5.94059 21.1548i 0.190544 0.678539i
\(973\) 0 0
\(974\) −22.1471 + 37.8353i −0.709639 + 1.21232i
\(975\) 3.98894i 0.127748i
\(976\) 4.26994 + 17.6110i 0.136677 + 0.563715i
\(977\) 50.3441 1.61065 0.805325 0.592834i \(-0.201991\pi\)
0.805325 + 0.592834i \(0.201991\pi\)
\(978\) 27.9708 47.7844i 0.894409 1.52798i
\(979\) 58.5176 + 58.5176i 1.87023 + 1.87023i
\(980\) 0 0
\(981\) 10.8523 10.8523i 0.346486 0.346486i
\(982\) 16.0420 4.19573i 0.511920 0.133891i
\(983\) 9.98285i 0.318404i 0.987246 + 0.159202i \(0.0508920\pi\)
−0.987246 + 0.159202i \(0.949108\pi\)
\(984\) −18.9883 19.6825i −0.605326 0.627455i
\(985\) −0.411057 −0.0130974
\(986\) 5.13995 + 19.6521i 0.163689 + 0.625850i
\(987\) 0 0
\(988\) −5.74997 10.2403i −0.182931 0.325787i
\(989\) −30.3405 30.3405i −0.964770 0.964770i
\(990\) −10.6686 + 18.2259i −0.339071 + 0.579258i
\(991\) 47.2120i 1.49974i −0.661587 0.749869i \(-0.730117\pi\)
0.661587 0.749869i \(-0.269883\pi\)
\(992\) −3.13843 5.83210i −0.0996454 0.185169i
\(993\) 38.4959i 1.22163i
\(994\) 0 0
\(995\) −38.8661 + 38.8661i −1.23214 + 1.23214i
\(996\) 48.6585 27.3220i 1.54181 0.865731i
\(997\) 24.5944 + 24.5944i 0.778911 + 0.778911i 0.979646 0.200734i \(-0.0643328\pi\)
−0.200734 + 0.979646i \(0.564333\pi\)
\(998\) 8.50831 + 32.5307i 0.269326 + 1.02974i
\(999\) 23.9825i 0.758774i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.195.18 56
7.2 even 3 784.2.w.f.227.1 56
7.3 odd 6 784.2.w.f.19.10 56
7.4 even 3 112.2.v.a.19.10 yes 56
7.5 odd 6 112.2.v.a.3.1 56
7.6 odd 2 inner 784.2.j.a.195.17 56
16.11 odd 4 inner 784.2.j.a.587.17 56
28.11 odd 6 448.2.z.a.47.3 56
28.19 even 6 448.2.z.a.367.3 56
56.5 odd 6 896.2.z.b.479.3 56
56.11 odd 6 896.2.z.a.607.12 56
56.19 even 6 896.2.z.a.479.12 56
56.53 even 6 896.2.z.b.607.3 56
112.5 odd 12 448.2.z.a.143.3 56
112.11 odd 12 112.2.v.a.75.1 yes 56
112.19 even 12 896.2.z.b.31.3 56
112.27 even 4 inner 784.2.j.a.587.18 56
112.53 even 12 448.2.z.a.271.3 56
112.59 even 12 784.2.w.f.411.1 56
112.61 odd 12 896.2.z.a.31.12 56
112.67 odd 12 896.2.z.b.159.3 56
112.75 even 12 112.2.v.a.59.10 yes 56
112.107 odd 12 784.2.w.f.619.10 56
112.109 even 12 896.2.z.a.159.12 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.1 56 7.5 odd 6
112.2.v.a.19.10 yes 56 7.4 even 3
112.2.v.a.59.10 yes 56 112.75 even 12
112.2.v.a.75.1 yes 56 112.11 odd 12
448.2.z.a.47.3 56 28.11 odd 6
448.2.z.a.143.3 56 112.5 odd 12
448.2.z.a.271.3 56 112.53 even 12
448.2.z.a.367.3 56 28.19 even 6
784.2.j.a.195.17 56 7.6 odd 2 inner
784.2.j.a.195.18 56 1.1 even 1 trivial
784.2.j.a.587.17 56 16.11 odd 4 inner
784.2.j.a.587.18 56 112.27 even 4 inner
784.2.w.f.19.10 56 7.3 odd 6
784.2.w.f.227.1 56 7.2 even 3
784.2.w.f.411.1 56 112.59 even 12
784.2.w.f.619.10 56 112.107 odd 12
896.2.z.a.31.12 56 112.61 odd 12
896.2.z.a.159.12 56 112.109 even 12
896.2.z.a.479.12 56 56.19 even 6
896.2.z.a.607.12 56 56.11 odd 6
896.2.z.b.31.3 56 112.19 even 12
896.2.z.b.159.3 56 112.67 odd 12
896.2.z.b.479.3 56 56.5 odd 6
896.2.z.b.607.3 56 56.53 even 6