Properties

Label 784.2.j.a.195.13
Level $784$
Weight $2$
Character 784.195
Analytic conductor $6.260$
Analytic rank $0$
Dimension $56$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [784,2,Mod(195,784)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("784.195"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(784, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 784 = 2^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 784.j (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [56] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.26027151847\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(28\) over \(\Q(i)\)
Twist minimal: no (minimal twist has level 112)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 195.13
Character \(\chi\) \(=\) 784.195
Dual form 784.2.j.a.587.13

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0617395 - 1.41287i) q^{2} +(-0.771824 - 0.771824i) q^{3} +(-1.99238 - 0.174459i) q^{4} +(1.02430 + 1.02430i) q^{5} +(-1.13814 + 1.04283i) q^{6} +(-0.369496 + 2.80419i) q^{8} -1.80857i q^{9} +(1.51044 - 1.38396i) q^{10} +(3.88550 + 3.88550i) q^{11} +(1.40311 + 1.67242i) q^{12} +(-1.84531 + 1.84531i) q^{13} -1.58116i q^{15} +(3.93913 + 0.695177i) q^{16} +6.57514i q^{17} +(-2.55527 - 0.111660i) q^{18} +(2.37516 + 2.37516i) q^{19} +(-1.86209 - 2.21949i) q^{20} +(5.72958 - 5.24981i) q^{22} +0.512345 q^{23} +(2.44953 - 1.87916i) q^{24} -2.90162i q^{25} +(2.49325 + 2.72111i) q^{26} +(-3.71137 + 3.71137i) q^{27} +(-2.30263 - 2.30263i) q^{29} +(-2.23396 - 0.0976199i) q^{30} +7.59274 q^{31} +(1.22539 - 5.52254i) q^{32} -5.99785i q^{33} +(9.28979 + 0.405946i) q^{34} +(-0.315522 + 3.60336i) q^{36} +(2.93978 - 2.93978i) q^{37} +(3.50243 - 3.20914i) q^{38} +2.84852 q^{39} +(-3.25080 + 2.49385i) q^{40} -0.453189 q^{41} +(3.40842 + 3.40842i) q^{43} +(-7.06353 - 8.41925i) q^{44} +(1.85252 - 1.85252i) q^{45} +(0.0316320 - 0.723875i) q^{46} +3.42936 q^{47} +(-2.50376 - 3.57687i) q^{48} +(-4.09960 - 0.179145i) q^{50} +(5.07485 - 5.07485i) q^{51} +(3.99849 - 3.35463i) q^{52} +(1.00457 - 1.00457i) q^{53} +(5.01453 + 5.47281i) q^{54} +7.95984i q^{55} -3.66642i q^{57} +(-3.39546 + 3.11114i) q^{58} +(-4.81367 + 4.81367i) q^{59} +(-0.275847 + 3.15026i) q^{60} +(3.57478 - 3.57478i) q^{61} +(0.468772 - 10.7275i) q^{62} +(-7.72695 - 2.07227i) q^{64} -3.78031 q^{65} +(-8.47416 - 0.370305i) q^{66} +(4.53739 - 4.53739i) q^{67} +(1.14709 - 13.1002i) q^{68} +(-0.395441 - 0.395441i) q^{69} +6.44865 q^{71} +(5.07158 + 0.668260i) q^{72} -14.8799 q^{73} +(-3.97201 - 4.33502i) q^{74} +(-2.23954 + 2.23954i) q^{75} +(-4.31785 - 5.14659i) q^{76} +(0.175866 - 4.02457i) q^{78} +3.85416i q^{79} +(3.32278 + 4.74691i) q^{80} +0.303337 q^{81} +(-0.0279796 + 0.640295i) q^{82} +(2.44051 + 2.44051i) q^{83} +(-6.73491 + 6.73491i) q^{85} +(5.02607 - 4.60520i) q^{86} +3.55445i q^{87} +(-12.3314 + 9.46001i) q^{88} -7.62687 q^{89} +(-2.50299 - 2.73174i) q^{90} +(-1.02079 - 0.0893834i) q^{92} +(-5.86026 - 5.86026i) q^{93} +(0.211727 - 4.84523i) q^{94} +4.86575i q^{95} +(-5.20822 + 3.31664i) q^{96} -11.2152i q^{97} +(7.02722 - 7.02722i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q + 4 q^{2} + 8 q^{4} + 4 q^{8} - 4 q^{11} - 16 q^{16} + 60 q^{18} - 28 q^{22} + 24 q^{23} - 24 q^{29} + 36 q^{30} + 24 q^{32} + 16 q^{36} - 12 q^{37} + 8 q^{39} - 52 q^{44} - 32 q^{46} + 68 q^{51} - 12 q^{53}+ \cdots - 16 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/784\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(687\) \(689\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.0617395 1.41287i 0.0436564 0.999047i
\(3\) −0.771824 0.771824i −0.445613 0.445613i 0.448280 0.893893i \(-0.352037\pi\)
−0.893893 + 0.448280i \(0.852037\pi\)
\(4\) −1.99238 0.174459i −0.996188 0.0872296i
\(5\) 1.02430 + 1.02430i 0.458080 + 0.458080i 0.898025 0.439945i \(-0.145002\pi\)
−0.439945 + 0.898025i \(0.645002\pi\)
\(6\) −1.13814 + 1.04283i −0.464642 + 0.425734i
\(7\) 0 0
\(8\) −0.369496 + 2.80419i −0.130636 + 0.991430i
\(9\) 1.80857i 0.602858i
\(10\) 1.51044 1.38396i 0.477642 0.437646i
\(11\) 3.88550 + 3.88550i 1.17152 + 1.17152i 0.981847 + 0.189677i \(0.0607442\pi\)
0.189677 + 0.981847i \(0.439256\pi\)
\(12\) 1.40311 + 1.67242i 0.405044 + 0.482785i
\(13\) −1.84531 + 1.84531i −0.511798 + 0.511798i −0.915077 0.403279i \(-0.867870\pi\)
0.403279 + 0.915077i \(0.367870\pi\)
\(14\) 0 0
\(15\) 1.58116i 0.408253i
\(16\) 3.93913 + 0.695177i 0.984782 + 0.173794i
\(17\) 6.57514i 1.59471i 0.603513 + 0.797353i \(0.293767\pi\)
−0.603513 + 0.797353i \(0.706233\pi\)
\(18\) −2.55527 0.111660i −0.602283 0.0263186i
\(19\) 2.37516 + 2.37516i 0.544900 + 0.544900i 0.924961 0.380061i \(-0.124097\pi\)
−0.380061 + 0.924961i \(0.624097\pi\)
\(20\) −1.86209 2.21949i −0.416376 0.496292i
\(21\) 0 0
\(22\) 5.72958 5.24981i 1.22155 1.11926i
\(23\) 0.512345 0.106831 0.0534157 0.998572i \(-0.482989\pi\)
0.0534157 + 0.998572i \(0.482989\pi\)
\(24\) 2.44953 1.87916i 0.500008 0.383581i
\(25\) 2.90162i 0.580325i
\(26\) 2.49325 + 2.72111i 0.488967 + 0.533653i
\(27\) −3.71137 + 3.71137i −0.714254 + 0.714254i
\(28\) 0 0
\(29\) −2.30263 2.30263i −0.427587 0.427587i 0.460219 0.887806i \(-0.347771\pi\)
−0.887806 + 0.460219i \(0.847771\pi\)
\(30\) −2.23396 0.0976199i −0.407864 0.0178229i
\(31\) 7.59274 1.36370 0.681848 0.731494i \(-0.261176\pi\)
0.681848 + 0.731494i \(0.261176\pi\)
\(32\) 1.22539 5.52254i 0.216621 0.976256i
\(33\) 5.99785i 1.04409i
\(34\) 9.28979 + 0.405946i 1.59319 + 0.0696191i
\(35\) 0 0
\(36\) −0.315522 + 3.60336i −0.0525871 + 0.600560i
\(37\) 2.93978 2.93978i 0.483297 0.483297i −0.422886 0.906183i \(-0.638983\pi\)
0.906183 + 0.422886i \(0.138983\pi\)
\(38\) 3.50243 3.20914i 0.568169 0.520592i
\(39\) 2.84852 0.456128
\(40\) −3.25080 + 2.49385i −0.513997 + 0.394313i
\(41\) −0.453189 −0.0707762 −0.0353881 0.999374i \(-0.511267\pi\)
−0.0353881 + 0.999374i \(0.511267\pi\)
\(42\) 0 0
\(43\) 3.40842 + 3.40842i 0.519779 + 0.519779i 0.917504 0.397726i \(-0.130200\pi\)
−0.397726 + 0.917504i \(0.630200\pi\)
\(44\) −7.06353 8.41925i −1.06487 1.26925i
\(45\) 1.85252 1.85252i 0.276157 0.276157i
\(46\) 0.0316320 0.723875i 0.00466388 0.106730i
\(47\) 3.42936 0.500224 0.250112 0.968217i \(-0.419533\pi\)
0.250112 + 0.968217i \(0.419533\pi\)
\(48\) −2.50376 3.57687i −0.361387 0.516277i
\(49\) 0 0
\(50\) −4.09960 0.179145i −0.579771 0.0253349i
\(51\) 5.07485 5.07485i 0.710622 0.710622i
\(52\) 3.99849 3.35463i 0.554491 0.465203i
\(53\) 1.00457 1.00457i 0.137988 0.137988i −0.634739 0.772727i \(-0.718892\pi\)
0.772727 + 0.634739i \(0.218892\pi\)
\(54\) 5.01453 + 5.47281i 0.682392 + 0.744755i
\(55\) 7.95984i 1.07330i
\(56\) 0 0
\(57\) 3.66642i 0.485629i
\(58\) −3.39546 + 3.11114i −0.445846 + 0.408512i
\(59\) −4.81367 + 4.81367i −0.626687 + 0.626687i −0.947233 0.320546i \(-0.896134\pi\)
0.320546 + 0.947233i \(0.396134\pi\)
\(60\) −0.275847 + 3.15026i −0.0356118 + 0.406697i
\(61\) 3.57478 3.57478i 0.457704 0.457704i −0.440197 0.897901i \(-0.645092\pi\)
0.897901 + 0.440197i \(0.145092\pi\)
\(62\) 0.468772 10.7275i 0.0595341 1.36240i
\(63\) 0 0
\(64\) −7.72695 2.07227i −0.965868 0.259034i
\(65\) −3.78031 −0.468889
\(66\) −8.47416 0.370305i −1.04310 0.0455813i
\(67\) 4.53739 4.53739i 0.554330 0.554330i −0.373358 0.927687i \(-0.621794\pi\)
0.927687 + 0.373358i \(0.121794\pi\)
\(68\) 1.14709 13.1002i 0.139106 1.58863i
\(69\) −0.395441 0.395441i −0.0476055 0.0476055i
\(70\) 0 0
\(71\) 6.44865 0.765314 0.382657 0.923890i \(-0.375009\pi\)
0.382657 + 0.923890i \(0.375009\pi\)
\(72\) 5.07158 + 0.668260i 0.597692 + 0.0787552i
\(73\) −14.8799 −1.74156 −0.870780 0.491673i \(-0.836385\pi\)
−0.870780 + 0.491673i \(0.836385\pi\)
\(74\) −3.97201 4.33502i −0.461737 0.503935i
\(75\) −2.23954 + 2.23954i −0.258600 + 0.258600i
\(76\) −4.31785 5.14659i −0.495291 0.590354i
\(77\) 0 0
\(78\) 0.175866 4.02457i 0.0199129 0.455693i
\(79\) 3.85416i 0.433627i 0.976213 + 0.216813i \(0.0695663\pi\)
−0.976213 + 0.216813i \(0.930434\pi\)
\(80\) 3.32278 + 4.74691i 0.371498 + 0.530721i
\(81\) 0.303337 0.0337041
\(82\) −0.0279796 + 0.640295i −0.00308983 + 0.0707087i
\(83\) 2.44051 + 2.44051i 0.267881 + 0.267881i 0.828246 0.560365i \(-0.189339\pi\)
−0.560365 + 0.828246i \(0.689339\pi\)
\(84\) 0 0
\(85\) −6.73491 + 6.73491i −0.730503 + 0.730503i
\(86\) 5.02607 4.60520i 0.541975 0.496592i
\(87\) 3.55445i 0.381077i
\(88\) −12.3314 + 9.46001i −1.31453 + 1.00844i
\(89\) −7.62687 −0.808447 −0.404223 0.914660i \(-0.632458\pi\)
−0.404223 + 0.914660i \(0.632458\pi\)
\(90\) −2.50299 2.73174i −0.263838 0.287950i
\(91\) 0 0
\(92\) −1.02079 0.0893834i −0.106424 0.00931886i
\(93\) −5.86026 5.86026i −0.607681 0.607681i
\(94\) 0.211727 4.84523i 0.0218380 0.499747i
\(95\) 4.86575i 0.499216i
\(96\) −5.20822 + 3.31664i −0.531561 + 0.338503i
\(97\) 11.2152i 1.13873i −0.822085 0.569365i \(-0.807189\pi\)
0.822085 0.569365i \(-0.192811\pi\)
\(98\) 0 0
\(99\) 7.02722 7.02722i 0.706263 0.706263i
\(100\) −0.506215 + 5.78113i −0.0506215 + 0.578113i
\(101\) 13.7547 + 13.7547i 1.36865 + 1.36865i 0.862375 + 0.506270i \(0.168976\pi\)
0.506270 + 0.862375i \(0.331024\pi\)
\(102\) −6.85677 7.48340i −0.678921 0.740967i
\(103\) 7.10181i 0.699762i −0.936794 0.349881i \(-0.886222\pi\)
0.936794 0.349881i \(-0.113778\pi\)
\(104\) −4.49277 5.85644i −0.440553 0.574271i
\(105\) 0 0
\(106\) −1.35729 1.48134i −0.131832 0.143880i
\(107\) 8.47936 + 8.47936i 0.819730 + 0.819730i 0.986069 0.166338i \(-0.0531944\pi\)
−0.166338 + 0.986069i \(0.553194\pi\)
\(108\) 8.04194 6.74697i 0.773836 0.649228i
\(109\) 7.33805 + 7.33805i 0.702858 + 0.702858i 0.965023 0.262165i \(-0.0844365\pi\)
−0.262165 + 0.965023i \(0.584436\pi\)
\(110\) 11.2462 + 0.491436i 1.07228 + 0.0468566i
\(111\) −4.53799 −0.430727
\(112\) 0 0
\(113\) −13.4601 −1.26622 −0.633109 0.774062i \(-0.718222\pi\)
−0.633109 + 0.774062i \(0.718222\pi\)
\(114\) −5.18015 0.226363i −0.485166 0.0212008i
\(115\) 0.524795 + 0.524795i 0.0489374 + 0.0489374i
\(116\) 4.18598 + 4.98941i 0.388659 + 0.463255i
\(117\) 3.33739 + 3.33739i 0.308542 + 0.308542i
\(118\) 6.50388 + 7.09826i 0.598730 + 0.653448i
\(119\) 0 0
\(120\) 4.43386 + 0.584231i 0.404755 + 0.0533327i
\(121\) 19.1943i 1.74494i
\(122\) −4.82998 5.27139i −0.437286 0.477249i
\(123\) 0.349782 + 0.349782i 0.0315388 + 0.0315388i
\(124\) −15.1276 1.32462i −1.35850 0.118955i
\(125\) 8.09362 8.09362i 0.723916 0.723916i
\(126\) 0 0
\(127\) 13.7356i 1.21884i 0.792849 + 0.609418i \(0.208597\pi\)
−0.792849 + 0.609418i \(0.791403\pi\)
\(128\) −3.40490 + 10.7892i −0.300953 + 0.953639i
\(129\) 5.26140i 0.463240i
\(130\) −0.233394 + 5.34106i −0.0204700 + 0.468442i
\(131\) −2.06043 2.06043i −0.180020 0.180020i 0.611344 0.791365i \(-0.290629\pi\)
−0.791365 + 0.611344i \(0.790629\pi\)
\(132\) −1.04638 + 11.9500i −0.0910758 + 1.04011i
\(133\) 0 0
\(134\) −6.13058 6.69085i −0.529601 0.578001i
\(135\) −7.60311 −0.654372
\(136\) −18.4379 2.42949i −1.58104 0.208327i
\(137\) 7.22491i 0.617266i 0.951181 + 0.308633i \(0.0998714\pi\)
−0.951181 + 0.308633i \(0.900129\pi\)
\(138\) −0.583119 + 0.534290i −0.0496384 + 0.0454818i
\(139\) 0.708981 0.708981i 0.0601350 0.0601350i −0.676400 0.736535i \(-0.736461\pi\)
0.736535 + 0.676400i \(0.236461\pi\)
\(140\) 0 0
\(141\) −2.64687 2.64687i −0.222906 0.222906i
\(142\) 0.398137 9.11108i 0.0334109 0.764585i
\(143\) −14.3399 −1.19917
\(144\) 1.25728 7.12421i 0.104773 0.593684i
\(145\) 4.71715i 0.391738i
\(146\) −0.918677 + 21.0233i −0.0760303 + 1.73990i
\(147\) 0 0
\(148\) −6.37002 + 5.34428i −0.523613 + 0.439297i
\(149\) 6.73169 6.73169i 0.551482 0.551482i −0.375387 0.926868i \(-0.622490\pi\)
0.926868 + 0.375387i \(0.122490\pi\)
\(150\) 3.02591 + 3.30244i 0.247064 + 0.269643i
\(151\) −7.10145 −0.577908 −0.288954 0.957343i \(-0.593307\pi\)
−0.288954 + 0.957343i \(0.593307\pi\)
\(152\) −7.53802 + 5.78279i −0.611414 + 0.469046i
\(153\) 11.8916 0.961381
\(154\) 0 0
\(155\) 7.77723 + 7.77723i 0.624683 + 0.624683i
\(156\) −5.67532 0.496950i −0.454389 0.0397878i
\(157\) −6.20590 + 6.20590i −0.495285 + 0.495285i −0.909966 0.414682i \(-0.863893\pi\)
0.414682 + 0.909966i \(0.363893\pi\)
\(158\) 5.44541 + 0.237954i 0.433214 + 0.0189306i
\(159\) −1.55070 −0.122978
\(160\) 6.91190 4.40156i 0.546433 0.347974i
\(161\) 0 0
\(162\) 0.0187278 0.428574i 0.00147140 0.0336719i
\(163\) −8.97988 + 8.97988i −0.703358 + 0.703358i −0.965130 0.261772i \(-0.915693\pi\)
0.261772 + 0.965130i \(0.415693\pi\)
\(164\) 0.902922 + 0.0790629i 0.0705064 + 0.00617378i
\(165\) 6.14360 6.14360i 0.478278 0.478278i
\(166\) 3.59879 3.29744i 0.279320 0.255931i
\(167\) 21.5280i 1.66588i 0.553361 + 0.832942i \(0.313345\pi\)
−0.553361 + 0.832942i \(0.686655\pi\)
\(168\) 0 0
\(169\) 6.18963i 0.476126i
\(170\) 9.09971 + 9.93133i 0.697916 + 0.761698i
\(171\) 4.29566 4.29566i 0.328497 0.328497i
\(172\) −6.19622 7.38548i −0.472458 0.563138i
\(173\) 14.1638 14.1638i 1.07685 1.07685i 0.0800649 0.996790i \(-0.474487\pi\)
0.996790 0.0800649i \(-0.0255127\pi\)
\(174\) 5.02195 + 0.219450i 0.380713 + 0.0166364i
\(175\) 0 0
\(176\) 12.6044 + 18.0066i 0.950091 + 1.35730i
\(177\) 7.43062 0.558520
\(178\) −0.470879 + 10.7757i −0.0352939 + 0.807676i
\(179\) 4.81665 4.81665i 0.360013 0.360013i −0.503804 0.863818i \(-0.668067\pi\)
0.863818 + 0.503804i \(0.168067\pi\)
\(180\) −4.01411 + 3.36773i −0.299194 + 0.251016i
\(181\) −6.32019 6.32019i −0.469776 0.469776i 0.432066 0.901842i \(-0.357785\pi\)
−0.901842 + 0.432066i \(0.857785\pi\)
\(182\) 0 0
\(183\) −5.51821 −0.407917
\(184\) −0.189309 + 1.43671i −0.0139561 + 0.105916i
\(185\) 6.02243 0.442778
\(186\) −8.64157 + 7.91795i −0.633631 + 0.580572i
\(187\) −25.5477 + 25.5477i −1.86824 + 1.86824i
\(188\) −6.83259 0.598284i −0.498318 0.0436344i
\(189\) 0 0
\(190\) 6.87465 + 0.300409i 0.498740 + 0.0217940i
\(191\) 13.3222i 0.963964i −0.876181 0.481982i \(-0.839917\pi\)
0.876181 0.481982i \(-0.160083\pi\)
\(192\) 4.36442 + 7.56327i 0.314975 + 0.545832i
\(193\) −10.5154 −0.756918 −0.378459 0.925618i \(-0.623546\pi\)
−0.378459 + 0.925618i \(0.623546\pi\)
\(194\) −15.8456 0.692421i −1.13765 0.0497129i
\(195\) 2.91773 + 2.91773i 0.208943 + 0.208943i
\(196\) 0 0
\(197\) 14.0642 14.0642i 1.00203 1.00203i 0.00203129 0.999998i \(-0.499353\pi\)
0.999998 0.00203129i \(-0.000646580\pi\)
\(198\) −9.49466 10.3624i −0.674756 0.736422i
\(199\) 24.1913i 1.71488i −0.514585 0.857439i \(-0.672054\pi\)
0.514585 0.857439i \(-0.327946\pi\)
\(200\) 8.13670 + 1.07214i 0.575352 + 0.0758116i
\(201\) −7.00413 −0.494033
\(202\) 20.2828 18.5843i 1.42709 1.30759i
\(203\) 0 0
\(204\) −10.9964 + 9.22566i −0.769900 + 0.645926i
\(205\) −0.464201 0.464201i −0.0324212 0.0324212i
\(206\) −10.0339 0.438462i −0.699095 0.0305491i
\(207\) 0.926615i 0.0644042i
\(208\) −8.55175 + 5.98611i −0.592957 + 0.415062i
\(209\) 18.4574i 1.27673i
\(210\) 0 0
\(211\) 8.81296 8.81296i 0.606709 0.606709i −0.335375 0.942085i \(-0.608863\pi\)
0.942085 + 0.335375i \(0.108863\pi\)
\(212\) −2.17673 + 1.82622i −0.149498 + 0.125425i
\(213\) −4.97723 4.97723i −0.341034 0.341034i
\(214\) 12.5037 11.4567i 0.854735 0.783162i
\(215\) 6.98248i 0.476201i
\(216\) −9.03606 11.7787i −0.614826 0.801441i
\(217\) 0 0
\(218\) 10.8207 9.91463i 0.732872 0.671504i
\(219\) 11.4847 + 11.4847i 0.776062 + 0.776062i
\(220\) 1.38867 15.8590i 0.0936239 1.06921i
\(221\) −12.1332 12.1332i −0.816167 0.816167i
\(222\) −0.280173 + 6.41157i −0.0188040 + 0.430316i
\(223\) −5.44902 −0.364893 −0.182447 0.983216i \(-0.558402\pi\)
−0.182447 + 0.983216i \(0.558402\pi\)
\(224\) 0 0
\(225\) −5.24780 −0.349853
\(226\) −0.831019 + 19.0173i −0.0552786 + 1.26501i
\(227\) 1.06414 + 1.06414i 0.0706293 + 0.0706293i 0.741539 0.670910i \(-0.234096\pi\)
−0.670910 + 0.741539i \(0.734096\pi\)
\(228\) −0.639640 + 7.30488i −0.0423612 + 0.483778i
\(229\) −3.49849 3.49849i −0.231187 0.231187i 0.582001 0.813188i \(-0.302270\pi\)
−0.813188 + 0.582001i \(0.802270\pi\)
\(230\) 0.773865 0.709064i 0.0510271 0.0467543i
\(231\) 0 0
\(232\) 7.30781 5.60619i 0.479781 0.368064i
\(233\) 12.4306i 0.814354i 0.913349 + 0.407177i \(0.133487\pi\)
−0.913349 + 0.407177i \(0.866513\pi\)
\(234\) 4.92133 4.50923i 0.321717 0.294778i
\(235\) 3.51269 + 3.51269i 0.229143 + 0.229143i
\(236\) 10.4304 8.75086i 0.678964 0.569632i
\(237\) 2.97474 2.97474i 0.193230 0.193230i
\(238\) 0 0
\(239\) 7.34038i 0.474810i −0.971411 0.237405i \(-0.923703\pi\)
0.971411 0.237405i \(-0.0762968\pi\)
\(240\) 1.09918 6.22838i 0.0709520 0.402040i
\(241\) 10.3739i 0.668241i −0.942530 0.334120i \(-0.891561\pi\)
0.942530 0.334120i \(-0.108439\pi\)
\(242\) 27.1189 + 1.18505i 1.74327 + 0.0761776i
\(243\) 10.9000 + 10.9000i 0.699235 + 0.699235i
\(244\) −7.74596 + 6.49865i −0.495884 + 0.416034i
\(245\) 0 0
\(246\) 0.515790 0.472600i 0.0328856 0.0301318i
\(247\) −8.76584 −0.557757
\(248\) −2.80548 + 21.2915i −0.178148 + 1.35201i
\(249\) 3.76729i 0.238743i
\(250\) −10.9355 11.9349i −0.691622 0.754829i
\(251\) −0.401720 + 0.401720i −0.0253563 + 0.0253563i −0.719671 0.694315i \(-0.755707\pi\)
0.694315 + 0.719671i \(0.255707\pi\)
\(252\) 0 0
\(253\) 1.99072 + 1.99072i 0.125156 + 0.125156i
\(254\) 19.4065 + 0.848029i 1.21767 + 0.0532100i
\(255\) 10.3963 0.651044
\(256\) 15.0335 + 5.47678i 0.939591 + 0.342299i
\(257\) 9.14767i 0.570616i −0.958436 0.285308i \(-0.907904\pi\)
0.958436 0.285308i \(-0.0920958\pi\)
\(258\) −7.43365 0.324836i −0.462799 0.0202234i
\(259\) 0 0
\(260\) 7.53179 + 0.659509i 0.467102 + 0.0409010i
\(261\) −4.16447 + 4.16447i −0.257774 + 0.257774i
\(262\) −3.03832 + 2.78390i −0.187708 + 0.171990i
\(263\) 4.58232 0.282558 0.141279 0.989970i \(-0.454879\pi\)
0.141279 + 0.989970i \(0.454879\pi\)
\(264\) 16.8191 + 2.21618i 1.03514 + 0.136397i
\(265\) 2.05795 0.126419
\(266\) 0 0
\(267\) 5.88661 + 5.88661i 0.360254 + 0.360254i
\(268\) −9.83177 + 8.24859i −0.600571 + 0.503863i
\(269\) 6.75155 6.75155i 0.411649 0.411649i −0.470664 0.882313i \(-0.655985\pi\)
0.882313 + 0.470664i \(0.155985\pi\)
\(270\) −0.469412 + 10.7422i −0.0285675 + 0.653748i
\(271\) −7.28357 −0.442445 −0.221223 0.975223i \(-0.571005\pi\)
−0.221223 + 0.975223i \(0.571005\pi\)
\(272\) −4.57088 + 25.9003i −0.277151 + 1.57044i
\(273\) 0 0
\(274\) 10.2078 + 0.446062i 0.616677 + 0.0269476i
\(275\) 11.2743 11.2743i 0.679864 0.679864i
\(276\) 0.718878 + 0.856855i 0.0432714 + 0.0515766i
\(277\) −22.8930 + 22.8930i −1.37551 + 1.37551i −0.523450 + 0.852056i \(0.675355\pi\)
−0.852056 + 0.523450i \(0.824645\pi\)
\(278\) −0.957922 1.04547i −0.0574523 0.0627029i
\(279\) 13.7320i 0.822115i
\(280\) 0 0
\(281\) 4.09880i 0.244514i −0.992498 0.122257i \(-0.960987\pi\)
0.992498 0.122257i \(-0.0390132\pi\)
\(282\) −3.90308 + 3.57625i −0.232425 + 0.212963i
\(283\) −9.65973 + 9.65973i −0.574211 + 0.574211i −0.933302 0.359091i \(-0.883087\pi\)
0.359091 + 0.933302i \(0.383087\pi\)
\(284\) −12.8481 1.12503i −0.762397 0.0667581i
\(285\) 3.75551 3.75551i 0.222457 0.222457i
\(286\) −0.885341 + 20.2604i −0.0523513 + 1.19802i
\(287\) 0 0
\(288\) −9.98792 2.21621i −0.588544 0.130591i
\(289\) −26.2325 −1.54309
\(290\) −6.66470 0.291235i −0.391365 0.0171019i
\(291\) −8.65616 + 8.65616i −0.507433 + 0.507433i
\(292\) 29.6463 + 2.59593i 1.73492 + 0.151916i
\(293\) −16.6941 16.6941i −0.975280 0.975280i 0.0244213 0.999702i \(-0.492226\pi\)
−0.999702 + 0.0244213i \(0.992226\pi\)
\(294\) 0 0
\(295\) −9.86128 −0.574146
\(296\) 7.15746 + 9.32994i 0.416019 + 0.542292i
\(297\) −28.8411 −1.67353
\(298\) −9.09536 9.92658i −0.526880 0.575032i
\(299\) −0.945438 + 0.945438i −0.0546761 + 0.0546761i
\(300\) 4.85272 4.07131i 0.280172 0.235057i
\(301\) 0 0
\(302\) −0.438440 + 10.0334i −0.0252294 + 0.577357i
\(303\) 21.2324i 1.21977i
\(304\) 7.70491 + 11.0072i 0.441907 + 0.631308i
\(305\) 7.32329 0.419330
\(306\) 0.734183 16.8013i 0.0419705 0.960465i
\(307\) −16.7590 16.7590i −0.956484 0.956484i 0.0426074 0.999092i \(-0.486434\pi\)
−0.999092 + 0.0426074i \(0.986434\pi\)
\(308\) 0 0
\(309\) −5.48135 + 5.48135i −0.311823 + 0.311823i
\(310\) 11.4683 10.5080i 0.651358 0.596816i
\(311\) 21.4836i 1.21822i −0.793085 0.609111i \(-0.791526\pi\)
0.793085 0.609111i \(-0.208474\pi\)
\(312\) −1.05251 + 7.98778i −0.0595869 + 0.452219i
\(313\) −20.8499 −1.17851 −0.589253 0.807949i \(-0.700578\pi\)
−0.589253 + 0.807949i \(0.700578\pi\)
\(314\) 8.38495 + 9.15125i 0.473190 + 0.516435i
\(315\) 0 0
\(316\) 0.672394 7.67894i 0.0378251 0.431974i
\(317\) −10.5401 10.5401i −0.591992 0.591992i 0.346177 0.938169i \(-0.387480\pi\)
−0.938169 + 0.346177i \(0.887480\pi\)
\(318\) −0.0957392 + 2.19092i −0.00536879 + 0.122861i
\(319\) 17.8937i 1.00186i
\(320\) −5.79208 10.0373i −0.323787 0.561104i
\(321\) 13.0891i 0.730565i
\(322\) 0 0
\(323\) −15.6170 + 15.6170i −0.868955 + 0.868955i
\(324\) −0.604361 0.0529198i −0.0335756 0.00293999i
\(325\) 5.35441 + 5.35441i 0.297009 + 0.297009i
\(326\) 12.1329 + 13.2418i 0.671982 + 0.733394i
\(327\) 11.3274i 0.626405i
\(328\) 0.167451 1.27083i 0.00924595 0.0701697i
\(329\) 0 0
\(330\) −8.30077 9.05938i −0.456942 0.498702i
\(331\) −2.11564 2.11564i −0.116286 0.116286i 0.646569 0.762855i \(-0.276203\pi\)
−0.762855 + 0.646569i \(0.776203\pi\)
\(332\) −4.43665 5.28819i −0.243493 0.290227i
\(333\) −5.31681 5.31681i −0.291360 0.291360i
\(334\) 30.4161 + 1.32913i 1.66430 + 0.0727265i
\(335\) 9.29528 0.507855
\(336\) 0 0
\(337\) −20.5605 −1.12000 −0.560000 0.828493i \(-0.689199\pi\)
−0.560000 + 0.828493i \(0.689199\pi\)
\(338\) 8.74512 + 0.382145i 0.475672 + 0.0207859i
\(339\) 10.3888 + 10.3888i 0.564243 + 0.564243i
\(340\) 14.5934 12.2435i 0.791440 0.663997i
\(341\) 29.5016 + 29.5016i 1.59760 + 1.59760i
\(342\) −5.80397 6.33440i −0.313843 0.342525i
\(343\) 0 0
\(344\) −10.8172 + 8.29845i −0.583227 + 0.447422i
\(345\) 0.810099i 0.0436143i
\(346\) −19.1371 20.8860i −1.02882 1.12284i
\(347\) −4.23701 4.23701i −0.227455 0.227455i 0.584174 0.811629i \(-0.301419\pi\)
−0.811629 + 0.584174i \(0.801419\pi\)
\(348\) 0.620106 7.08179i 0.0332412 0.379624i
\(349\) 3.15549 3.15549i 0.168909 0.168909i −0.617590 0.786500i \(-0.711891\pi\)
0.786500 + 0.617590i \(0.211891\pi\)
\(350\) 0 0
\(351\) 13.6973i 0.731108i
\(352\) 26.2191 16.6966i 1.39748 0.889931i
\(353\) 6.96846i 0.370894i 0.982654 + 0.185447i \(0.0593732\pi\)
−0.982654 + 0.185447i \(0.940627\pi\)
\(354\) 0.458763 10.4985i 0.0243830 0.557987i
\(355\) 6.60535 + 6.60535i 0.350575 + 0.350575i
\(356\) 15.1956 + 1.33058i 0.805365 + 0.0705205i
\(357\) 0 0
\(358\) −6.50790 7.10265i −0.343953 0.375387i
\(359\) −37.2374 −1.96531 −0.982656 0.185437i \(-0.940630\pi\)
−0.982656 + 0.185437i \(0.940630\pi\)
\(360\) 4.51032 + 5.87932i 0.237715 + 0.309867i
\(361\) 7.71720i 0.406169i
\(362\) −9.31978 + 8.53937i −0.489837 + 0.448819i
\(363\) 14.8146 14.8146i 0.777566 0.777566i
\(364\) 0 0
\(365\) −15.2415 15.2415i −0.797774 0.797774i
\(366\) −0.340691 + 7.79648i −0.0178082 + 0.407529i
\(367\) 26.0782 1.36127 0.680637 0.732621i \(-0.261703\pi\)
0.680637 + 0.732621i \(0.261703\pi\)
\(368\) 2.01819 + 0.356171i 0.105206 + 0.0185667i
\(369\) 0.819625i 0.0426680i
\(370\) 0.371822 8.50888i 0.0193301 0.442356i
\(371\) 0 0
\(372\) 10.6535 + 12.6982i 0.552357 + 0.658372i
\(373\) 25.8637 25.8637i 1.33917 1.33917i 0.442305 0.896865i \(-0.354161\pi\)
0.896865 0.442305i \(-0.145839\pi\)
\(374\) 34.5182 + 37.6728i 1.78489 + 1.94801i
\(375\) −12.4937 −0.645173
\(376\) −1.26714 + 9.61658i −0.0653475 + 0.495937i
\(377\) 8.49813 0.437676
\(378\) 0 0
\(379\) −0.261074 0.261074i −0.0134105 0.0134105i 0.700370 0.713780i \(-0.253018\pi\)
−0.713780 + 0.700370i \(0.753018\pi\)
\(380\) 0.848875 9.69441i 0.0435464 0.497313i
\(381\) 10.6015 10.6015i 0.543129 0.543129i
\(382\) −18.8225 0.822509i −0.963045 0.0420832i
\(383\) 17.5370 0.896097 0.448048 0.894009i \(-0.352119\pi\)
0.448048 + 0.894009i \(0.352119\pi\)
\(384\) 10.9553 5.69938i 0.559063 0.290845i
\(385\) 0 0
\(386\) −0.649218 + 14.8569i −0.0330443 + 0.756197i
\(387\) 6.16438 6.16438i 0.313353 0.313353i
\(388\) −1.95659 + 22.3449i −0.0993310 + 1.13439i
\(389\) 15.7537 15.7537i 0.798744 0.798744i −0.184154 0.982897i \(-0.558954\pi\)
0.982897 + 0.184154i \(0.0589544\pi\)
\(390\) 4.30250 3.94222i 0.217866 0.199622i
\(391\) 3.36874i 0.170365i
\(392\) 0 0
\(393\) 3.18058i 0.160439i
\(394\) −19.0024 20.7391i −0.957329 1.04482i
\(395\) −3.94781 + 3.94781i −0.198636 + 0.198636i
\(396\) −15.2268 + 12.7749i −0.765177 + 0.641963i
\(397\) −16.7346 + 16.7346i −0.839885 + 0.839885i −0.988843 0.148958i \(-0.952408\pi\)
0.148958 + 0.988843i \(0.452408\pi\)
\(398\) −34.1791 1.49356i −1.71324 0.0748655i
\(399\) 0 0
\(400\) 2.01714 11.4299i 0.100857 0.571493i
\(401\) 7.74461 0.386747 0.193374 0.981125i \(-0.438057\pi\)
0.193374 + 0.981125i \(0.438057\pi\)
\(402\) −0.432431 + 9.89589i −0.0215677 + 0.493562i
\(403\) −14.0110 + 14.0110i −0.697937 + 0.697937i
\(404\) −25.0049 29.8042i −1.24404 1.48281i
\(405\) 0.310707 + 0.310707i 0.0154392 + 0.0154392i
\(406\) 0 0
\(407\) 22.8451 1.13239
\(408\) 12.3557 + 16.1060i 0.611699 + 0.797365i
\(409\) 31.9303 1.57885 0.789425 0.613847i \(-0.210379\pi\)
0.789425 + 0.613847i \(0.210379\pi\)
\(410\) −0.684512 + 0.627193i −0.0338057 + 0.0309749i
\(411\) 5.57636 5.57636i 0.275062 0.275062i
\(412\) −1.23898 + 14.1495i −0.0610400 + 0.697095i
\(413\) 0 0
\(414\) −1.30918 0.0572087i −0.0643428 0.00281166i
\(415\) 4.99963i 0.245422i
\(416\) 7.92958 + 12.4520i 0.388780 + 0.610512i
\(417\) −1.09442 −0.0535938
\(418\) 26.0778 + 1.13955i 1.27551 + 0.0557373i
\(419\) 6.96449 + 6.96449i 0.340238 + 0.340238i 0.856457 0.516219i \(-0.172661\pi\)
−0.516219 + 0.856457i \(0.672661\pi\)
\(420\) 0 0
\(421\) 6.31935 6.31935i 0.307986 0.307986i −0.536142 0.844128i \(-0.680119\pi\)
0.844128 + 0.536142i \(0.180119\pi\)
\(422\) −11.9074 12.9956i −0.579644 0.632617i
\(423\) 6.20226i 0.301564i
\(424\) 2.44581 + 3.18817i 0.118779 + 0.154831i
\(425\) 19.0786 0.925447
\(426\) −7.33944 + 6.72486i −0.355597 + 0.325821i
\(427\) 0 0
\(428\) −15.4148 18.3734i −0.745101 0.888110i
\(429\) 11.0679 + 11.0679i 0.534364 + 0.534364i
\(430\) 9.86530 + 0.431095i 0.475747 + 0.0207892i
\(431\) 6.48444i 0.312344i 0.987730 + 0.156172i \(0.0499155\pi\)
−0.987730 + 0.156172i \(0.950085\pi\)
\(432\) −17.1996 + 12.0395i −0.827518 + 0.579252i
\(433\) 17.1718i 0.825223i −0.910907 0.412612i \(-0.864617\pi\)
0.910907 0.412612i \(-0.135383\pi\)
\(434\) 0 0
\(435\) −3.64081 + 3.64081i −0.174564 + 0.174564i
\(436\) −13.3400 15.9004i −0.638869 0.761489i
\(437\) 1.21690 + 1.21690i 0.0582124 + 0.0582124i
\(438\) 16.9353 15.5172i 0.809202 0.741442i
\(439\) 31.2986i 1.49380i −0.664937 0.746900i \(-0.731542\pi\)
0.664937 0.746900i \(-0.268458\pi\)
\(440\) −22.3209 2.94112i −1.06411 0.140213i
\(441\) 0 0
\(442\) −17.8917 + 16.3935i −0.851020 + 0.779758i
\(443\) 8.57187 + 8.57187i 0.407262 + 0.407262i 0.880783 0.473521i \(-0.157017\pi\)
−0.473521 + 0.880783i \(0.657017\pi\)
\(444\) 9.04138 + 0.791694i 0.429085 + 0.0375721i
\(445\) −7.81220 7.81220i −0.370334 0.370334i
\(446\) −0.336420 + 7.69873i −0.0159299 + 0.364545i
\(447\) −10.3914 −0.491495
\(448\) 0 0
\(449\) 33.4968 1.58081 0.790406 0.612583i \(-0.209869\pi\)
0.790406 + 0.612583i \(0.209869\pi\)
\(450\) −0.323997 + 7.41444i −0.0152733 + 0.349520i
\(451\) −1.76087 1.76087i −0.0829160 0.0829160i
\(452\) 26.8176 + 2.34824i 1.26139 + 0.110452i
\(453\) 5.48108 + 5.48108i 0.257523 + 0.257523i
\(454\) 1.56918 1.43778i 0.0736454 0.0674786i
\(455\) 0 0
\(456\) 10.2813 + 1.35473i 0.481467 + 0.0634408i
\(457\) 3.01270i 0.140928i 0.997514 + 0.0704641i \(0.0224480\pi\)
−0.997514 + 0.0704641i \(0.977552\pi\)
\(458\) −5.15889 + 4.72690i −0.241059 + 0.220873i
\(459\) −24.4028 24.4028i −1.13903 1.13903i
\(460\) −0.954034 1.13714i −0.0444820 0.0530196i
\(461\) −20.6763 + 20.6763i −0.962993 + 0.962993i −0.999339 0.0363467i \(-0.988428\pi\)
0.0363467 + 0.999339i \(0.488428\pi\)
\(462\) 0 0
\(463\) 11.6775i 0.542697i −0.962481 0.271349i \(-0.912530\pi\)
0.962481 0.271349i \(-0.0874696\pi\)
\(464\) −7.46961 10.6711i −0.346768 0.495392i
\(465\) 12.0053i 0.556733i
\(466\) 17.5627 + 0.767457i 0.813577 + 0.0355518i
\(467\) −7.17951 7.17951i −0.332228 0.332228i 0.521204 0.853432i \(-0.325483\pi\)
−0.853432 + 0.521204i \(0.825483\pi\)
\(468\) −6.06709 7.23157i −0.280451 0.334279i
\(469\) 0 0
\(470\) 5.17984 4.74609i 0.238928 0.218921i
\(471\) 9.57973 0.441411
\(472\) −11.7198 15.2771i −0.539448 0.703184i
\(473\) 26.4868i 1.21787i
\(474\) −4.01924 4.38656i −0.184610 0.201481i
\(475\) 6.89183 6.89183i 0.316219 0.316219i
\(476\) 0 0
\(477\) −1.81683 1.81683i −0.0831870 0.0831870i
\(478\) −10.3710 0.453192i −0.474357 0.0207285i
\(479\) −11.4462 −0.522992 −0.261496 0.965205i \(-0.584216\pi\)
−0.261496 + 0.965205i \(0.584216\pi\)
\(480\) −8.73200 1.93754i −0.398560 0.0884360i
\(481\) 10.8496i 0.494701i
\(482\) −14.6569 0.640478i −0.667604 0.0291730i
\(483\) 0 0
\(484\) 3.34862 38.2423i 0.152210 1.73828i
\(485\) 11.4877 11.4877i 0.521630 0.521630i
\(486\) 16.0732 14.7273i 0.729095 0.668043i
\(487\) −9.70073 −0.439582 −0.219791 0.975547i \(-0.570538\pi\)
−0.219791 + 0.975547i \(0.570538\pi\)
\(488\) 8.70349 + 11.3452i 0.393989 + 0.513574i
\(489\) 13.8618 0.626851
\(490\) 0 0
\(491\) −11.4667 11.4667i −0.517483 0.517483i 0.399326 0.916809i \(-0.369244\pi\)
−0.916809 + 0.399326i \(0.869244\pi\)
\(492\) −0.635875 0.757920i −0.0286675 0.0341697i
\(493\) 15.1401 15.1401i 0.681875 0.681875i
\(494\) −0.541199 + 12.3850i −0.0243497 + 0.557225i
\(495\) 14.3960 0.647050
\(496\) 29.9088 + 5.27830i 1.34294 + 0.237002i
\(497\) 0 0
\(498\) −5.32268 0.232591i −0.238515 0.0104226i
\(499\) 13.4945 13.4945i 0.604095 0.604095i −0.337302 0.941397i \(-0.609514\pi\)
0.941397 + 0.337302i \(0.109514\pi\)
\(500\) −17.5376 + 14.7135i −0.784303 + 0.658009i
\(501\) 16.6158 16.6158i 0.742339 0.742339i
\(502\) 0.542774 + 0.592378i 0.0242252 + 0.0264391i
\(503\) 22.4043i 0.998960i −0.866325 0.499480i \(-0.833524\pi\)
0.866325 0.499480i \(-0.166476\pi\)
\(504\) 0 0
\(505\) 28.1779i 1.25390i
\(506\) 2.93553 2.68971i 0.130500 0.119572i
\(507\) 4.77731 4.77731i 0.212168 0.212168i
\(508\) 2.39630 27.3665i 0.106319 1.21419i
\(509\) −10.6969 + 10.6969i −0.474132 + 0.474132i −0.903249 0.429117i \(-0.858825\pi\)
0.429117 + 0.903249i \(0.358825\pi\)
\(510\) 0.641864 14.6886i 0.0284222 0.650423i
\(511\) 0 0
\(512\) 8.66611 20.9021i 0.382992 0.923752i
\(513\) −17.6302 −0.778394
\(514\) −12.9244 0.564772i −0.570072 0.0249110i
\(515\) 7.27438 7.27438i 0.320547 0.320547i
\(516\) −0.917900 + 10.4827i −0.0404083 + 0.461475i
\(517\) 13.3248 + 13.3248i 0.586025 + 0.586025i
\(518\) 0 0
\(519\) −21.8639 −0.959721
\(520\) 1.39681 10.6007i 0.0612540 0.464871i
\(521\) −7.27601 −0.318768 −0.159384 0.987217i \(-0.550951\pi\)
−0.159384 + 0.987217i \(0.550951\pi\)
\(522\) 5.62672 + 6.14095i 0.246275 + 0.268782i
\(523\) 12.7559 12.7559i 0.557776 0.557776i −0.370898 0.928674i \(-0.620950\pi\)
0.928674 + 0.370898i \(0.120950\pi\)
\(524\) 3.74569 + 4.46461i 0.163631 + 0.195037i
\(525\) 0 0
\(526\) 0.282910 6.47421i 0.0123355 0.282289i
\(527\) 49.9233i 2.17469i
\(528\) 4.16957 23.6263i 0.181457 1.02820i
\(529\) −22.7375 −0.988587
\(530\) 0.127057 2.90761i 0.00551900 0.126298i
\(531\) 8.70588 + 8.70588i 0.377803 + 0.377803i
\(532\) 0 0
\(533\) 0.836275 0.836275i 0.0362231 0.0362231i
\(534\) 8.68042 7.95354i 0.375638 0.344184i
\(535\) 17.3708i 0.751005i
\(536\) 11.0471 + 14.4002i 0.477164 + 0.621995i
\(537\) −7.43522 −0.320853
\(538\) −9.12219 9.95586i −0.393286 0.429228i
\(539\) 0 0
\(540\) 15.1483 + 1.32643i 0.651878 + 0.0570806i
\(541\) 1.91584 + 1.91584i 0.0823686 + 0.0823686i 0.747091 0.664722i \(-0.231450\pi\)
−0.664722 + 0.747091i \(0.731450\pi\)
\(542\) −0.449684 + 10.2907i −0.0193156 + 0.442023i
\(543\) 9.75615i 0.418677i
\(544\) 36.3115 + 8.05712i 1.55684 + 0.345446i
\(545\) 15.0327i 0.643931i
\(546\) 0 0
\(547\) −20.4366 + 20.4366i −0.873807 + 0.873807i −0.992885 0.119078i \(-0.962006\pi\)
0.119078 + 0.992885i \(0.462006\pi\)
\(548\) 1.26045 14.3947i 0.0538438 0.614913i
\(549\) −6.46526 6.46526i −0.275930 0.275930i
\(550\) −15.2330 16.6251i −0.649536 0.708896i
\(551\) 10.9382i 0.465984i
\(552\) 1.25500 0.962777i 0.0534165 0.0409785i
\(553\) 0 0
\(554\) 30.9313 + 33.7581i 1.31415 + 1.43424i
\(555\) −4.64826 4.64826i −0.197308 0.197308i
\(556\) −1.53624 + 1.28887i −0.0651513 + 0.0546602i
\(557\) 3.33915 + 3.33915i 0.141484 + 0.141484i 0.774301 0.632817i \(-0.218101\pi\)
−0.632817 + 0.774301i \(0.718101\pi\)
\(558\) −19.4015 0.847809i −0.821332 0.0358906i
\(559\) −12.5792 −0.532044
\(560\) 0 0
\(561\) 39.4367 1.66502
\(562\) −5.79105 0.253058i −0.244281 0.0106746i
\(563\) −5.18939 5.18939i −0.218707 0.218707i 0.589247 0.807953i \(-0.299425\pi\)
−0.807953 + 0.589247i \(0.799425\pi\)
\(564\) 4.81179 + 5.73533i 0.202613 + 0.241501i
\(565\) −13.7872 13.7872i −0.580030 0.580030i
\(566\) 13.0515 + 14.2443i 0.548596 + 0.598732i
\(567\) 0 0
\(568\) −2.38275 + 18.0832i −0.0999779 + 0.758756i
\(569\) 12.4715i 0.522833i −0.965226 0.261416i \(-0.915810\pi\)
0.965226 0.261416i \(-0.0841896\pi\)
\(570\) −5.07416 5.53789i −0.212533 0.231957i
\(571\) 27.1588 + 27.1588i 1.13656 + 1.13656i 0.989063 + 0.147497i \(0.0471216\pi\)
0.147497 + 0.989063i \(0.452878\pi\)
\(572\) 28.5706 + 2.50174i 1.19460 + 0.104603i
\(573\) −10.2824 + 10.2824i −0.429555 + 0.429555i
\(574\) 0 0
\(575\) 1.48663i 0.0619969i
\(576\) −3.74786 + 13.9748i −0.156161 + 0.582281i
\(577\) 18.9417i 0.788552i −0.918992 0.394276i \(-0.870995\pi\)
0.918992 0.394276i \(-0.129005\pi\)
\(578\) −1.61958 + 37.0629i −0.0673656 + 1.54162i
\(579\) 8.11608 + 8.11608i 0.337293 + 0.337293i
\(580\) −0.822951 + 9.39835i −0.0341712 + 0.390245i
\(581\) 0 0
\(582\) 11.6956 + 12.7644i 0.484797 + 0.529102i
\(583\) 7.80649 0.323312
\(584\) 5.49806 41.7260i 0.227511 1.72663i
\(585\) 6.83696i 0.282674i
\(586\) −24.6172 + 22.5558i −1.01693 + 0.931773i
\(587\) 7.54134 7.54134i 0.311264 0.311264i −0.534135 0.845399i \(-0.679363\pi\)
0.845399 + 0.534135i \(0.179363\pi\)
\(588\) 0 0
\(589\) 18.0340 + 18.0340i 0.743078 + 0.743078i
\(590\) −0.608830 + 13.9327i −0.0250651 + 0.573598i
\(591\) −21.7101 −0.893035
\(592\) 13.6238 9.53651i 0.559936 0.391948i
\(593\) 11.8708i 0.487475i 0.969841 + 0.243737i \(0.0783735\pi\)
−0.969841 + 0.243737i \(0.921627\pi\)
\(594\) −1.78064 + 40.7486i −0.0730604 + 1.67194i
\(595\) 0 0
\(596\) −14.5865 + 12.2377i −0.597485 + 0.501274i
\(597\) −18.6715 + 18.6715i −0.764172 + 0.764172i
\(598\) 1.27741 + 1.39415i 0.0522370 + 0.0570109i
\(599\) 21.8341 0.892116 0.446058 0.895004i \(-0.352827\pi\)
0.446058 + 0.895004i \(0.352827\pi\)
\(600\) −5.45260 7.10760i −0.222602 0.290167i
\(601\) −37.4893 −1.52922 −0.764610 0.644493i \(-0.777068\pi\)
−0.764610 + 0.644493i \(0.777068\pi\)
\(602\) 0 0
\(603\) −8.20620 8.20620i −0.334182 0.334182i
\(604\) 14.1488 + 1.23891i 0.575705 + 0.0504107i
\(605\) −19.6607 + 19.6607i −0.799321 + 0.799321i
\(606\) −29.9986 1.31088i −1.21861 0.0532509i
\(607\) 4.67915 0.189921 0.0949605 0.995481i \(-0.469728\pi\)
0.0949605 + 0.995481i \(0.469728\pi\)
\(608\) 16.0274 10.2064i 0.649998 0.413925i
\(609\) 0 0
\(610\) 0.452136 10.3468i 0.0183065 0.418930i
\(611\) −6.32825 + 6.32825i −0.256014 + 0.256014i
\(612\) −23.6926 2.07460i −0.957717 0.0838609i
\(613\) 3.58488 3.58488i 0.144792 0.144792i −0.630995 0.775787i \(-0.717353\pi\)
0.775787 + 0.630995i \(0.217353\pi\)
\(614\) −24.7128 + 22.6435i −0.997329 + 0.913816i
\(615\) 0.716563i 0.0288946i
\(616\) 0 0
\(617\) 16.4696i 0.663041i 0.943448 + 0.331520i \(0.107562\pi\)
−0.943448 + 0.331520i \(0.892438\pi\)
\(618\) 7.40599 + 8.08283i 0.297913 + 0.325139i
\(619\) −10.7503 + 10.7503i −0.432093 + 0.432093i −0.889340 0.457247i \(-0.848835\pi\)
0.457247 + 0.889340i \(0.348835\pi\)
\(620\) −14.1384 16.8520i −0.567811 0.676792i
\(621\) −1.90151 + 1.90151i −0.0763048 + 0.0763048i
\(622\) −30.3534 1.32638i −1.21706 0.0531832i
\(623\) 0 0
\(624\) 11.2207 + 1.98022i 0.449186 + 0.0792723i
\(625\) 2.07246 0.0828985
\(626\) −1.28726 + 29.4581i −0.0514493 + 1.17738i
\(627\) 14.2459 14.2459i 0.568926 0.568926i
\(628\) 13.4472 11.2818i 0.536600 0.450193i
\(629\) 19.3295 + 19.3295i 0.770717 + 0.770717i
\(630\) 0 0
\(631\) −6.82302 −0.271620 −0.135810 0.990735i \(-0.543364\pi\)
−0.135810 + 0.990735i \(0.543364\pi\)
\(632\) −10.8078 1.42410i −0.429911 0.0566475i
\(633\) −13.6041 −0.540715
\(634\) −15.5425 + 14.2410i −0.617272 + 0.565584i
\(635\) −14.0694 + 14.0694i −0.558325 + 0.558325i
\(636\) 3.08957 + 0.270533i 0.122509 + 0.0107273i
\(637\) 0 0
\(638\) −25.2814 1.10475i −1.00090 0.0437375i
\(639\) 11.6629i 0.461376i
\(640\) −14.5390 + 7.56373i −0.574704 + 0.298982i
\(641\) 33.0759 1.30642 0.653210 0.757177i \(-0.273422\pi\)
0.653210 + 0.757177i \(0.273422\pi\)
\(642\) −18.4932 0.808117i −0.729868 0.0318939i
\(643\) −14.7445 14.7445i −0.581464 0.581464i 0.353841 0.935306i \(-0.384875\pi\)
−0.935306 + 0.353841i \(0.884875\pi\)
\(644\) 0 0
\(645\) 5.38925 5.38925i 0.212201 0.212201i
\(646\) 21.1006 + 23.0289i 0.830191 + 0.906062i
\(647\) 11.1144i 0.436951i 0.975842 + 0.218476i \(0.0701084\pi\)
−0.975842 + 0.218476i \(0.929892\pi\)
\(648\) −0.112082 + 0.850613i −0.00440298 + 0.0334152i
\(649\) −37.4071 −1.46836
\(650\) 7.89563 7.23448i 0.309692 0.283759i
\(651\) 0 0
\(652\) 19.4579 16.3247i 0.762031 0.639324i
\(653\) −11.8922 11.8922i −0.465378 0.465378i 0.435035 0.900413i \(-0.356736\pi\)
−0.900413 + 0.435035i \(0.856736\pi\)
\(654\) −16.0041 0.699347i −0.625808 0.0273466i
\(655\) 4.22099i 0.164928i
\(656\) −1.78517 0.315046i −0.0696991 0.0123005i
\(657\) 26.9114i 1.04991i
\(658\) 0 0
\(659\) 32.5839 32.5839i 1.26929 1.26929i 0.322834 0.946455i \(-0.395364\pi\)
0.946455 0.322834i \(-0.104636\pi\)
\(660\) −13.3122 + 11.1685i −0.518175 + 0.434735i
\(661\) 12.3984 + 12.3984i 0.482241 + 0.482241i 0.905847 0.423606i \(-0.139236\pi\)
−0.423606 + 0.905847i \(0.639236\pi\)
\(662\) −3.11973 + 2.85850i −0.121252 + 0.111099i
\(663\) 18.7294i 0.727389i
\(664\) −7.74542 + 5.94190i −0.300580 + 0.230590i
\(665\) 0 0
\(666\) −7.84020 + 7.18368i −0.303801 + 0.278362i
\(667\) −1.17974 1.17974i −0.0456797 0.0456797i
\(668\) 3.75575 42.8918i 0.145314 1.65953i
\(669\) 4.20569 + 4.20569i 0.162601 + 0.162601i
\(670\) 0.573886 13.1330i 0.0221711 0.507371i
\(671\) 27.7796 1.07242
\(672\) 0 0
\(673\) 11.0728 0.426827 0.213413 0.976962i \(-0.431542\pi\)
0.213413 + 0.976962i \(0.431542\pi\)
\(674\) −1.26939 + 29.0492i −0.0488952 + 1.11893i
\(675\) 10.7690 + 10.7690i 0.414499 + 0.414499i
\(676\) 1.07984 12.3321i 0.0415323 0.474311i
\(677\) −4.17016 4.17016i −0.160272 0.160272i 0.622415 0.782687i \(-0.286152\pi\)
−0.782687 + 0.622415i \(0.786152\pi\)
\(678\) 15.3194 14.0366i 0.588338 0.539073i
\(679\) 0 0
\(680\) −16.3974 21.3745i −0.628813 0.819674i
\(681\) 1.64266i 0.0629467i
\(682\) 43.5032 39.8604i 1.66582 1.52633i
\(683\) −2.25251 2.25251i −0.0861899 0.0861899i 0.662697 0.748887i \(-0.269412\pi\)
−0.748887 + 0.662697i \(0.769412\pi\)
\(684\) −9.30799 + 7.80915i −0.355900 + 0.298590i
\(685\) −7.40047 + 7.40047i −0.282757 + 0.282757i
\(686\) 0 0
\(687\) 5.40044i 0.206040i
\(688\) 11.0567 + 15.7956i 0.421534 + 0.602203i
\(689\) 3.70748i 0.141244i
\(690\) −1.14456 0.0500151i −0.0435727 0.00190404i
\(691\) 14.9572 + 14.9572i 0.568997 + 0.568997i 0.931847 0.362850i \(-0.118196\pi\)
−0.362850 + 0.931847i \(0.618196\pi\)
\(692\) −30.6906 + 25.7486i −1.16668 + 0.978816i
\(693\) 0 0
\(694\) −6.24792 + 5.72474i −0.237168 + 0.217308i
\(695\) 1.45242 0.0550933
\(696\) −9.96734 1.31335i −0.377811 0.0497825i
\(697\) 2.97978i 0.112867i
\(698\) −4.26346 4.65310i −0.161374 0.176122i
\(699\) 9.59422 9.59422i 0.362887 0.362887i
\(700\) 0 0
\(701\) 19.0687 + 19.0687i 0.720214 + 0.720214i 0.968649 0.248435i \(-0.0799162\pi\)
−0.248435 + 0.968649i \(0.579916\pi\)
\(702\) −19.3524 0.845665i −0.730411 0.0319176i
\(703\) 13.9649 0.526697
\(704\) −21.9713 38.0749i −0.828073 1.43500i
\(705\) 5.42237i 0.204218i
\(706\) 9.84549 + 0.430229i 0.370540 + 0.0161919i
\(707\) 0 0
\(708\) −14.8046 1.29634i −0.556391 0.0487194i
\(709\) −24.6933 + 24.6933i −0.927376 + 0.927376i −0.997536 0.0701596i \(-0.977649\pi\)
0.0701596 + 0.997536i \(0.477649\pi\)
\(710\) 9.74028 8.92466i 0.365546 0.334936i
\(711\) 6.97054 0.261416
\(712\) 2.81810 21.3872i 0.105613 0.801519i
\(713\) 3.89011 0.145686
\(714\) 0 0
\(715\) −14.6884 14.6884i −0.549315 0.549315i
\(716\) −10.4369 + 8.75627i −0.390045 + 0.327237i
\(717\) −5.66549 + 5.66549i −0.211582 + 0.211582i
\(718\) −2.29902 + 52.6114i −0.0857985 + 1.96344i
\(719\) −51.5103 −1.92101 −0.960505 0.278264i \(-0.910241\pi\)
−0.960505 + 0.278264i \(0.910241\pi\)
\(720\) 8.58514 6.00949i 0.319949 0.223960i
\(721\) 0 0
\(722\) −10.9034 0.476456i −0.405781 0.0177319i
\(723\) −8.00682 + 8.00682i −0.297777 + 0.297777i
\(724\) 11.4896 + 13.6948i 0.427007 + 0.508964i
\(725\) −6.68135 + 6.68135i −0.248139 + 0.248139i
\(726\) −20.0164 21.8457i −0.742879 0.810770i
\(727\) 10.3415i 0.383546i −0.981439 0.191773i \(-0.938576\pi\)
0.981439 0.191773i \(-0.0614237\pi\)
\(728\) 0 0
\(729\) 17.7358i 0.656881i
\(730\) −22.4751 + 20.5931i −0.831842 + 0.762186i
\(731\) −22.4108 + 22.4108i −0.828894 + 0.828894i
\(732\) 10.9943 + 0.962702i 0.406363 + 0.0355825i
\(733\) 14.2382 14.2382i 0.525902 0.525902i −0.393446 0.919348i \(-0.628717\pi\)
0.919348 + 0.393446i \(0.128717\pi\)
\(734\) 1.61006 36.8450i 0.0594283 1.35998i
\(735\) 0 0
\(736\) 0.627823 2.82945i 0.0231419 0.104295i
\(737\) 35.2601 1.29882
\(738\) 1.15802 + 0.0506033i 0.0426273 + 0.00186273i
\(739\) −21.6088 + 21.6088i −0.794893 + 0.794893i −0.982285 0.187392i \(-0.939997\pi\)
0.187392 + 0.982285i \(0.439997\pi\)
\(740\) −11.9989 1.05067i −0.441090 0.0386233i
\(741\) 6.76569 + 6.76569i 0.248544 + 0.248544i
\(742\) 0 0
\(743\) −36.5659 −1.34147 −0.670735 0.741697i \(-0.734021\pi\)
−0.670735 + 0.741697i \(0.734021\pi\)
\(744\) 18.5986 14.2679i 0.681858 0.523088i
\(745\) 13.7905 0.505246
\(746\) −34.9451 38.1387i −1.27943 1.39636i
\(747\) 4.41385 4.41385i 0.161494 0.161494i
\(748\) 55.3577 46.4437i 2.02408 1.69815i
\(749\) 0 0
\(750\) −0.771356 + 17.6519i −0.0281659 + 0.644557i
\(751\) 35.3286i 1.28916i −0.764537 0.644580i \(-0.777032\pi\)
0.764537 0.644580i \(-0.222968\pi\)
\(752\) 13.5087 + 2.38401i 0.492612 + 0.0869361i
\(753\) 0.620114 0.0225982
\(754\) 0.524671 12.0067i 0.0191074 0.437259i
\(755\) −7.27401 7.27401i −0.264728 0.264728i
\(756\) 0 0
\(757\) −1.06021 + 1.06021i −0.0385339 + 0.0385339i −0.726111 0.687577i \(-0.758674\pi\)
0.687577 + 0.726111i \(0.258674\pi\)
\(758\) −0.384981 + 0.352744i −0.0139831 + 0.0128122i
\(759\) 3.07297i 0.111542i
\(760\) −13.6445 1.79787i −0.494938 0.0652158i
\(761\) 30.4006 1.10202 0.551010 0.834498i \(-0.314243\pi\)
0.551010 + 0.834498i \(0.314243\pi\)
\(762\) −14.3239 15.6330i −0.518901 0.566323i
\(763\) 0 0
\(764\) −2.32419 + 26.5429i −0.0840862 + 0.960289i
\(765\) 12.1806 + 12.1806i 0.440390 + 0.440390i
\(766\) 1.08272 24.7774i 0.0391204 0.895242i
\(767\) 17.7655i 0.641474i
\(768\) −7.37608 15.8303i −0.266161 0.571227i
\(769\) 38.0523i 1.37220i 0.727507 + 0.686101i \(0.240679\pi\)
−0.727507 + 0.686101i \(0.759321\pi\)
\(770\) 0 0
\(771\) −7.06039 + 7.06039i −0.254274 + 0.254274i
\(772\) 20.9507 + 1.83452i 0.754033 + 0.0660257i
\(773\) −11.0014 11.0014i −0.395694 0.395694i 0.481017 0.876711i \(-0.340267\pi\)
−0.876711 + 0.481017i \(0.840267\pi\)
\(774\) −8.32885 9.09002i −0.299374 0.326734i
\(775\) 22.0313i 0.791387i
\(776\) 31.4495 + 4.14397i 1.12897 + 0.148760i
\(777\) 0 0
\(778\) −21.2852 23.2305i −0.763112 0.832853i
\(779\) −1.07640 1.07640i −0.0385659 0.0385659i
\(780\) −5.30420 6.32225i −0.189921 0.226373i
\(781\) 25.0563 + 25.0563i 0.896584 + 0.896584i
\(782\) 4.75958 + 0.207985i 0.170202 + 0.00743751i
\(783\) 17.0918 0.610812
\(784\) 0 0
\(785\) −12.7134 −0.453760
\(786\) 4.49372 + 0.196367i 0.160286 + 0.00700418i
\(787\) 11.8166 + 11.8166i 0.421217 + 0.421217i 0.885623 0.464406i \(-0.153732\pi\)
−0.464406 + 0.885623i \(0.653732\pi\)
\(788\) −30.4747 + 25.5675i −1.08562 + 0.910803i
\(789\) −3.53675 3.53675i −0.125912 0.125912i
\(790\) 5.33399 + 5.82146i 0.189775 + 0.207118i
\(791\) 0 0
\(792\) 17.1091 + 22.3022i 0.607946 + 0.792474i
\(793\) 13.1932i 0.468504i
\(794\) 22.6105 + 24.6769i 0.802418 + 0.875751i
\(795\) −1.58838 1.58838i −0.0563339 0.0563339i
\(796\) −4.22040 + 48.1983i −0.149588 + 1.70834i
\(797\) −6.46029 + 6.46029i −0.228835 + 0.228835i −0.812206 0.583371i \(-0.801733\pi\)
0.583371 + 0.812206i \(0.301733\pi\)
\(798\) 0 0
\(799\) 22.5486i 0.797710i
\(800\) −16.0243 3.55562i −0.566545 0.125710i
\(801\) 13.7938i 0.487379i
\(802\) 0.478148 10.9421i 0.0168840 0.386379i
\(803\) −57.8159 57.8159i −2.04028 2.04028i
\(804\) 13.9549 + 1.22193i 0.492150 + 0.0430943i
\(805\) 0 0
\(806\) 18.9306 + 20.6607i 0.666802 + 0.727741i
\(807\) −10.4220 −0.366872
\(808\) −43.6531 + 33.4885i −1.53571 + 1.17812i
\(809\) 28.8161i 1.01312i −0.862205 0.506559i \(-0.830917\pi\)
0.862205 0.506559i \(-0.169083\pi\)
\(810\) 0.458170 0.419805i 0.0160985 0.0147504i
\(811\) −32.3761 + 32.3761i −1.13688 + 1.13688i −0.147873 + 0.989006i \(0.547243\pi\)
−0.989006 + 0.147873i \(0.952757\pi\)
\(812\) 0 0
\(813\) 5.62163 + 5.62163i 0.197159 + 0.197159i
\(814\) 1.41044 32.2770i 0.0494360 1.13131i
\(815\) −18.3962 −0.644389
\(816\) 23.5184 16.4626i 0.823309 0.576305i
\(817\) 16.1911i 0.566455i
\(818\) 1.97136 45.1132i 0.0689270 1.57735i
\(819\) 0 0
\(820\) 0.843878 + 1.00585i 0.0294695 + 0.0351257i
\(821\) 19.1269 19.1269i 0.667534 0.667534i −0.289610 0.957145i \(-0.593526\pi\)
0.957145 + 0.289610i \(0.0935257\pi\)
\(822\) −7.53436 8.22293i −0.262791 0.286808i
\(823\) 24.3399 0.848435 0.424218 0.905560i \(-0.360549\pi\)
0.424218 + 0.905560i \(0.360549\pi\)
\(824\) 19.9148 + 2.62409i 0.693765 + 0.0914144i
\(825\) −17.4035 −0.605913
\(826\) 0 0
\(827\) −31.7583 31.7583i −1.10435 1.10435i −0.993880 0.110466i \(-0.964766\pi\)
−0.110466 0.993880i \(-0.535234\pi\)
\(828\) −0.161656 + 1.84617i −0.00561795 + 0.0641587i
\(829\) −29.0558 + 29.0558i −1.00915 + 1.00915i −0.00919347 + 0.999958i \(0.502926\pi\)
−0.999958 + 0.00919347i \(0.997074\pi\)
\(830\) 7.06380 + 0.308675i 0.245188 + 0.0107143i
\(831\) 35.3387 1.22589
\(832\) 18.0826 10.4346i 0.626902 0.361756i
\(833\) 0 0
\(834\) −0.0675688 + 1.54626i −0.00233971 + 0.0535427i
\(835\) −22.0511 + 22.0511i −0.763109 + 0.763109i
\(836\) 3.22007 36.7741i 0.111368 1.27186i
\(837\) −28.1795 + 28.1795i −0.974026 + 0.974026i
\(838\) 10.2699 9.40991i 0.354767 0.325060i
\(839\) 12.4384i 0.429423i −0.976678 0.214711i \(-0.931119\pi\)
0.976678 0.214711i \(-0.0688811\pi\)
\(840\) 0 0
\(841\) 18.3958i 0.634339i
\(842\) −8.53824 9.31855i −0.294247 0.321138i
\(843\) −3.16355 + 3.16355i −0.108959 + 0.108959i
\(844\) −19.0962 + 16.0212i −0.657319 + 0.551473i
\(845\) −6.34004 + 6.34004i −0.218104 + 0.218104i
\(846\) −8.76296 0.382924i −0.301277 0.0131652i
\(847\) 0 0
\(848\) 4.65546 3.25876i 0.159869 0.111906i
\(849\) 14.9112 0.511752
\(850\) 1.17790 26.9555i 0.0404017 0.924565i
\(851\) 1.50618 1.50618i 0.0516313 0.0516313i
\(852\) 9.04819 + 10.7848i 0.309986 + 0.369482i
\(853\) −11.8456 11.8456i −0.405585 0.405585i 0.474611 0.880196i \(-0.342589\pi\)
−0.880196 + 0.474611i \(0.842589\pi\)
\(854\) 0 0
\(855\) 8.80008 0.300956
\(856\) −26.9108 + 20.6446i −0.919792 + 0.705619i
\(857\) −15.0931 −0.515571 −0.257786 0.966202i \(-0.582993\pi\)
−0.257786 + 0.966202i \(0.582993\pi\)
\(858\) 16.3208 14.9542i 0.557183 0.510526i
\(859\) 32.2506 32.2506i 1.10037 1.10037i 0.106010 0.994365i \(-0.466193\pi\)
0.994365 0.106010i \(-0.0338075\pi\)
\(860\) 1.21816 13.9117i 0.0415388 0.474386i
\(861\) 0 0
\(862\) 9.16164 + 0.400346i 0.312047 + 0.0136358i
\(863\) 27.0774i 0.921724i 0.887472 + 0.460862i \(0.152460\pi\)
−0.887472 + 0.460862i \(0.847540\pi\)
\(864\) 15.9483 + 25.0441i 0.542573 + 0.852017i
\(865\) 29.0159 0.986572
\(866\) −24.2614 1.06018i −0.824437 0.0360263i
\(867\) 20.2469 + 20.2469i 0.687619 + 0.687619i
\(868\) 0 0
\(869\) −14.9754 + 14.9754i −0.508004 + 0.508004i
\(870\) 4.91920 + 5.36876i 0.166776 + 0.182018i
\(871\) 16.7458i 0.567410i
\(872\) −23.2887 + 17.8659i −0.788654 + 0.605016i
\(873\) −20.2835 −0.686493
\(874\) 1.79445 1.64419i 0.0606983 0.0556156i
\(875\) 0 0
\(876\) −20.8782 24.8854i −0.705408 0.840799i
\(877\) 6.44516 + 6.44516i 0.217638 + 0.217638i 0.807502 0.589865i \(-0.200819\pi\)
−0.589865 + 0.807502i \(0.700819\pi\)
\(878\) −44.2207 1.93236i −1.49237 0.0652139i
\(879\) 25.7698i 0.869195i
\(880\) −5.53349 + 31.3548i −0.186534 + 1.05697i
\(881\) 0.723819i 0.0243861i −0.999926 0.0121930i \(-0.996119\pi\)
0.999926 0.0121930i \(-0.00388126\pi\)
\(882\) 0 0
\(883\) −21.2381 + 21.2381i −0.714718 + 0.714718i −0.967518 0.252800i \(-0.918648\pi\)
0.252800 + 0.967518i \(0.418648\pi\)
\(884\) 22.0571 + 26.2906i 0.741862 + 0.884250i
\(885\) 7.61117 + 7.61117i 0.255847 + 0.255847i
\(886\) 12.6401 11.5817i 0.424653 0.389094i
\(887\) 20.2358i 0.679452i −0.940524 0.339726i \(-0.889666\pi\)
0.940524 0.339726i \(-0.110334\pi\)
\(888\) 1.67677 12.7254i 0.0562686 0.427036i
\(889\) 0 0
\(890\) −11.5199 + 10.5553i −0.386148 + 0.353813i
\(891\) 1.17862 + 1.17862i 0.0394851 + 0.0394851i
\(892\) 10.8565 + 0.950631i 0.363502 + 0.0318295i
\(893\) 8.14530 + 8.14530i 0.272572 + 0.272572i
\(894\) −0.641558 + 14.6816i −0.0214569 + 0.491026i
\(895\) 9.86738 0.329830
\(896\) 0 0
\(897\) 1.45942 0.0487288
\(898\) 2.06808 47.3265i 0.0690126 1.57931i
\(899\) −17.4832 17.4832i −0.583099 0.583099i
\(900\) 10.4556 + 0.915527i 0.348520 + 0.0305176i
\(901\) 6.60516 + 6.60516i 0.220050 + 0.220050i
\(902\) −2.59658 + 2.37915i −0.0864567 + 0.0792171i
\(903\) 0 0
\(904\) 4.97344 37.7446i 0.165414 1.25537i
\(905\) 12.9475i 0.430390i
\(906\) 8.08242 7.40562i 0.268520 0.246035i
\(907\) 9.46697 + 9.46697i 0.314346 + 0.314346i 0.846590 0.532245i \(-0.178651\pi\)
−0.532245 + 0.846590i \(0.678651\pi\)
\(908\) −1.93452 2.30581i −0.0641992 0.0765211i
\(909\) 24.8764 24.8764i 0.825099 0.825099i
\(910\) 0 0
\(911\) 34.5549i 1.14485i 0.819955 + 0.572427i \(0.193998\pi\)
−0.819955 + 0.572427i \(0.806002\pi\)
\(912\) 2.54881 14.4425i 0.0843995 0.478239i
\(913\) 18.9652i 0.627658i
\(914\) 4.25654 + 0.186003i 0.140794 + 0.00615242i
\(915\) −5.65229 5.65229i −0.186859 0.186859i
\(916\) 6.35996 + 7.58065i 0.210139 + 0.250472i
\(917\) 0 0
\(918\) −35.9845 + 32.9713i −1.18767 + 1.08821i
\(919\) 53.5178 1.76539 0.882695 0.469946i \(-0.155727\pi\)
0.882695 + 0.469946i \(0.155727\pi\)
\(920\) −1.66553 + 1.27771i −0.0549110 + 0.0421250i
\(921\) 25.8700i 0.852444i
\(922\) 27.9363 + 30.4894i 0.920034 + 1.00412i
\(923\) −11.8998 + 11.8998i −0.391686 + 0.391686i
\(924\) 0 0
\(925\) −8.53014 8.53014i −0.280469 0.280469i
\(926\) −16.4987 0.720960i −0.542180 0.0236922i
\(927\) −12.8442 −0.421857
\(928\) −15.5380 + 9.89472i −0.510058 + 0.324810i
\(929\) 0.0493449i 0.00161895i 1.00000 0.000809477i \(0.000257665\pi\)
−1.00000 0.000809477i \(0.999742\pi\)
\(930\) −16.9619 0.741202i −0.556203 0.0243050i
\(931\) 0 0
\(932\) 2.16863 24.7664i 0.0710357 0.811250i
\(933\) −16.5815 + 16.5815i −0.542855 + 0.542855i
\(934\) −10.5869 + 9.70042i −0.346415 + 0.317407i
\(935\) −52.3370 −1.71160
\(936\) −10.5918 + 8.12551i −0.346204 + 0.265591i
\(937\) −0.977039 −0.0319185 −0.0159592 0.999873i \(-0.505080\pi\)
−0.0159592 + 0.999873i \(0.505080\pi\)
\(938\) 0 0
\(939\) 16.0925 + 16.0925i 0.525157 + 0.525157i
\(940\) −6.38579 7.61143i −0.208281 0.248258i
\(941\) 27.5503 27.5503i 0.898115 0.898115i −0.0971546 0.995269i \(-0.530974\pi\)
0.995269 + 0.0971546i \(0.0309741\pi\)
\(942\) 0.591448 13.5349i 0.0192704 0.440990i
\(943\) −0.232189 −0.00756112
\(944\) −22.3080 + 15.6153i −0.726064 + 0.508235i
\(945\) 0 0
\(946\) 37.4223 + 1.63528i 1.21671 + 0.0531677i
\(947\) −16.2096 + 16.2096i −0.526741 + 0.526741i −0.919599 0.392858i \(-0.871486\pi\)
0.392858 + 0.919599i \(0.371486\pi\)
\(948\) −6.44576 + 5.40782i −0.209349 + 0.175638i
\(949\) 27.4581 27.4581i 0.891327 0.891327i
\(950\) −9.31173 10.1627i −0.302112 0.329722i
\(951\) 16.2702i 0.527599i
\(952\) 0 0
\(953\) 34.2308i 1.10884i −0.832235 0.554422i \(-0.812939\pi\)
0.832235 0.554422i \(-0.187061\pi\)
\(954\) −2.67911 + 2.45477i −0.0867393 + 0.0794760i
\(955\) 13.6460 13.6460i 0.441573 0.441573i
\(956\) −1.28060 + 14.6248i −0.0414175 + 0.473000i
\(957\) −13.8108 + 13.8108i −0.446440 + 0.446440i
\(958\) −0.706685 + 16.1720i −0.0228320 + 0.522493i
\(959\) 0 0
\(960\) −3.27659 + 12.2175i −0.105751 + 0.394319i
\(961\) 26.6497 0.859667
\(962\) 15.3291 + 0.669851i 0.494229 + 0.0215969i
\(963\) 15.3355 15.3355i 0.494181 0.494181i
\(964\) −1.80982 + 20.6687i −0.0582904 + 0.665693i
\(965\) −10.7710 10.7710i −0.346729 0.346729i
\(966\) 0 0
\(967\) 21.2761 0.684193 0.342096 0.939665i \(-0.388863\pi\)
0.342096 + 0.939665i \(0.388863\pi\)
\(968\) −53.8244 7.09221i −1.72998 0.227952i
\(969\) 24.1072 0.774435
\(970\) −15.5213 16.9398i −0.498360 0.543905i
\(971\) 21.1629 21.1629i 0.679150 0.679150i −0.280658 0.959808i \(-0.590553\pi\)
0.959808 + 0.280658i \(0.0905527\pi\)
\(972\) −19.8153 23.6185i −0.635576 0.757564i
\(973\) 0 0
\(974\) −0.598918 + 13.7058i −0.0191906 + 0.439163i
\(975\) 8.26532i 0.264702i
\(976\) 16.5666 11.5964i 0.530285 0.371192i
\(977\) −3.01443 −0.0964403 −0.0482201 0.998837i \(-0.515355\pi\)
−0.0482201 + 0.998837i \(0.515355\pi\)
\(978\) 0.855819 19.5848i 0.0273661 0.626254i
\(979\) −29.6342 29.6342i −0.947115 0.947115i
\(980\) 0 0
\(981\) 13.2714 13.2714i 0.423724 0.423724i
\(982\) −16.9088 + 15.4929i −0.539581 + 0.494398i
\(983\) 40.7478i 1.29965i 0.760083 + 0.649826i \(0.225158\pi\)
−0.760083 + 0.649826i \(0.774842\pi\)
\(984\) −1.11010 + 0.851612i −0.0353886 + 0.0271484i
\(985\) 28.8118 0.918020
\(986\) −20.4562 22.3256i −0.651457 0.710993i
\(987\) 0 0
\(988\) 17.4649 + 1.52928i 0.555631 + 0.0486529i
\(989\) 1.74629 + 1.74629i 0.0555287 + 0.0555287i
\(990\) 0.888799 20.3395i 0.0282479 0.646433i
\(991\) 24.4732i 0.777416i −0.921361 0.388708i \(-0.872921\pi\)
0.921361 0.388708i \(-0.127079\pi\)
\(992\) 9.30407 41.9312i 0.295405 1.33132i
\(993\) 3.26581i 0.103637i
\(994\) 0 0
\(995\) 24.7792 24.7792i 0.785552 0.785552i
\(996\) −0.657239 + 7.50587i −0.0208254 + 0.237833i
\(997\) −30.4640 30.4640i −0.964805 0.964805i 0.0345959 0.999401i \(-0.488986\pi\)
−0.999401 + 0.0345959i \(0.988986\pi\)
\(998\) −18.2327 19.8990i −0.577146 0.629892i
\(999\) 21.8213i 0.690394i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 784.2.j.a.195.13 56
7.2 even 3 784.2.w.f.227.3 56
7.3 odd 6 784.2.w.f.19.12 56
7.4 even 3 112.2.v.a.19.12 yes 56
7.5 odd 6 112.2.v.a.3.3 56
7.6 odd 2 inner 784.2.j.a.195.14 56
16.11 odd 4 inner 784.2.j.a.587.14 56
28.11 odd 6 448.2.z.a.47.10 56
28.19 even 6 448.2.z.a.367.10 56
56.5 odd 6 896.2.z.b.479.10 56
56.11 odd 6 896.2.z.a.607.5 56
56.19 even 6 896.2.z.a.479.5 56
56.53 even 6 896.2.z.b.607.10 56
112.5 odd 12 448.2.z.a.143.10 56
112.11 odd 12 112.2.v.a.75.3 yes 56
112.19 even 12 896.2.z.b.31.10 56
112.27 even 4 inner 784.2.j.a.587.13 56
112.53 even 12 448.2.z.a.271.10 56
112.59 even 12 784.2.w.f.411.3 56
112.61 odd 12 896.2.z.a.31.5 56
112.67 odd 12 896.2.z.b.159.10 56
112.75 even 12 112.2.v.a.59.12 yes 56
112.107 odd 12 784.2.w.f.619.12 56
112.109 even 12 896.2.z.a.159.5 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
112.2.v.a.3.3 56 7.5 odd 6
112.2.v.a.19.12 yes 56 7.4 even 3
112.2.v.a.59.12 yes 56 112.75 even 12
112.2.v.a.75.3 yes 56 112.11 odd 12
448.2.z.a.47.10 56 28.11 odd 6
448.2.z.a.143.10 56 112.5 odd 12
448.2.z.a.271.10 56 112.53 even 12
448.2.z.a.367.10 56 28.19 even 6
784.2.j.a.195.13 56 1.1 even 1 trivial
784.2.j.a.195.14 56 7.6 odd 2 inner
784.2.j.a.587.13 56 112.27 even 4 inner
784.2.j.a.587.14 56 16.11 odd 4 inner
784.2.w.f.19.12 56 7.3 odd 6
784.2.w.f.227.3 56 7.2 even 3
784.2.w.f.411.3 56 112.59 even 12
784.2.w.f.619.12 56 112.107 odd 12
896.2.z.a.31.5 56 112.61 odd 12
896.2.z.a.159.5 56 112.109 even 12
896.2.z.a.479.5 56 56.19 even 6
896.2.z.a.607.5 56 56.11 odd 6
896.2.z.b.31.10 56 112.19 even 12
896.2.z.b.159.10 56 112.67 odd 12
896.2.z.b.479.10 56 56.5 odd 6
896.2.z.b.607.10 56 56.53 even 6