Newspace parameters
| Level: | \( N \) | \(=\) | \( 784 = 2^{4} \cdot 7^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 784.bg (of order \(21\), degree \(12\), not minimal) |
Newform invariants
| Self dual: | no |
| Analytic conductor: | \(6.26027151847\) |
| Analytic rank: | \(0\) |
| Dimension: | \(48\) |
| Relative dimension: | \(4\) over \(\Q(\zeta_{21})\) |
| Twist minimal: | no (minimal twist has level 49) |
| Sato-Tate group: | $\mathrm{SU}(2)[C_{21}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
| Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 65.1 | 0 | −0.218016 | − | 2.90922i | 0 | −0.605902 | + | 0.413097i | 0 | 0.310399 | + | 2.62748i | 0 | −5.44954 | + | 0.821385i | 0 | ||||||||||
| 65.2 | 0 | 0.0483362 | + | 0.645002i | 0 | 1.29033 | − | 0.879733i | 0 | 2.25101 | − | 1.39030i | 0 | 2.55280 | − | 0.384773i | 0 | ||||||||||
| 65.3 | 0 | 0.0823774 | + | 1.09925i | 0 | −2.09852 | + | 1.43075i | 0 | 0.301609 | − | 2.62850i | 0 | 1.76493 | − | 0.266020i | 0 | ||||||||||
| 65.4 | 0 | 0.173202 | + | 2.31121i | 0 | −0.392378 | + | 0.267519i | 0 | 1.60453 | + | 2.10369i | 0 | −2.34522 | + | 0.353485i | 0 | ||||||||||
| 81.1 | 0 | −1.33832 | − | 0.412818i | 0 | −1.66779 | + | 1.54748i | 0 | 1.77774 | − | 1.95950i | 0 | −0.858025 | − | 0.584992i | 0 | ||||||||||
| 81.2 | 0 | 0.269714 | + | 0.0831957i | 0 | −1.49036 | + | 1.38285i | 0 | 0.607511 | + | 2.57506i | 0 | −2.41289 | − | 1.64508i | 0 | ||||||||||
| 81.3 | 0 | 0.776689 | + | 0.239577i | 0 | 1.80872 | − | 1.67825i | 0 | −1.97351 | − | 1.76217i | 0 | −1.93287 | − | 1.31781i | 0 | ||||||||||
| 81.4 | 0 | 3.07373 | + | 0.948121i | 0 | 0.291074 | − | 0.270077i | 0 | −2.43713 | + | 1.02976i | 0 | 6.07018 | + | 4.13858i | 0 | ||||||||||
| 193.1 | 0 | −0.218016 | + | 2.90922i | 0 | −0.605902 | − | 0.413097i | 0 | 0.310399 | − | 2.62748i | 0 | −5.44954 | − | 0.821385i | 0 | ||||||||||
| 193.2 | 0 | 0.0483362 | − | 0.645002i | 0 | 1.29033 | + | 0.879733i | 0 | 2.25101 | + | 1.39030i | 0 | 2.55280 | + | 0.384773i | 0 | ||||||||||
| 193.3 | 0 | 0.0823774 | − | 1.09925i | 0 | −2.09852 | − | 1.43075i | 0 | 0.301609 | + | 2.62850i | 0 | 1.76493 | + | 0.266020i | 0 | ||||||||||
| 193.4 | 0 | 0.173202 | − | 2.31121i | 0 | −0.392378 | − | 0.267519i | 0 | 1.60453 | − | 2.10369i | 0 | −2.34522 | − | 0.353485i | 0 | ||||||||||
| 289.1 | 0 | −1.64786 | − | 1.12349i | 0 | 0.0348203 | − | 0.464645i | 0 | 0.363905 | + | 2.62061i | 0 | 0.357192 | + | 0.910110i | 0 | ||||||||||
| 289.2 | 0 | −0.489949 | − | 0.334042i | 0 | −0.260520 | + | 3.47640i | 0 | −1.30029 | − | 2.30418i | 0 | −0.967557 | − | 2.46529i | 0 | ||||||||||
| 289.3 | 0 | 1.92585 | + | 1.31302i | 0 | −0.264371 | + | 3.52778i | 0 | −0.675443 | + | 2.55808i | 0 | 0.888840 | + | 2.26473i | 0 | ||||||||||
| 289.4 | 0 | 2.40355 | + | 1.63871i | 0 | 0.186621 | − | 2.49028i | 0 | 2.47068 | − | 0.946431i | 0 | 1.99564 | + | 5.08481i | 0 | ||||||||||
| 305.1 | 0 | −2.78061 | + | 0.419109i | 0 | −0.567937 | + | 1.44708i | 0 | 2.62161 | + | 0.356599i | 0 | 4.68940 | − | 1.44649i | 0 | ||||||||||
| 305.2 | 0 | −0.223157 | + | 0.0336355i | 0 | 0.711168 | − | 1.81203i | 0 | 2.04196 | + | 1.68237i | 0 | −2.81805 | + | 0.869254i | 0 | ||||||||||
| 305.3 | 0 | 1.96135 | − | 0.295625i | 0 | −1.11243 | + | 2.83442i | 0 | −2.44418 | + | 1.01290i | 0 | 0.892763 | − | 0.275381i | 0 | ||||||||||
| 305.4 | 0 | 2.00916 | − | 0.302832i | 0 | −0.0830372 | + | 0.211575i | 0 | −1.07894 | − | 2.41576i | 0 | 1.07830 | − | 0.332612i | 0 | ||||||||||
| See all 48 embeddings | |||||||||||||||||||||||||||
Inner twists
| Char | Parity | Ord | Mult | Type |
|---|---|---|---|---|
| 1.a | even | 1 | 1 | trivial |
| 49.g | even | 21 | 1 | inner |
Twists
| By twisting character orbit | |||||||
|---|---|---|---|---|---|---|---|
| Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
| 1.a | even | 1 | 1 | trivial | 784.2.bg.c | 48 | |
| 4.b | odd | 2 | 1 | 49.2.g.a | ✓ | 48 | |
| 12.b | even | 2 | 1 | 441.2.bb.d | 48 | ||
| 28.d | even | 2 | 1 | 343.2.g.g | 48 | ||
| 28.f | even | 6 | 1 | 343.2.e.c | 48 | ||
| 28.f | even | 6 | 1 | 343.2.g.h | 48 | ||
| 28.g | odd | 6 | 1 | 343.2.e.d | 48 | ||
| 28.g | odd | 6 | 1 | 343.2.g.i | 48 | ||
| 49.g | even | 21 | 1 | inner | 784.2.bg.c | 48 | |
| 196.j | even | 14 | 1 | 343.2.g.h | 48 | ||
| 196.k | odd | 14 | 1 | 343.2.g.i | 48 | ||
| 196.o | odd | 42 | 1 | 49.2.g.a | ✓ | 48 | |
| 196.o | odd | 42 | 1 | 343.2.e.d | 48 | ||
| 196.o | odd | 42 | 1 | 2401.2.a.h | 24 | ||
| 196.p | even | 42 | 1 | 343.2.e.c | 48 | ||
| 196.p | even | 42 | 1 | 343.2.g.g | 48 | ||
| 196.p | even | 42 | 1 | 2401.2.a.i | 24 | ||
| 588.bb | even | 42 | 1 | 441.2.bb.d | 48 | ||
| By twisted newform orbit | |||||||
|---|---|---|---|---|---|---|---|
| Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
| 49.2.g.a | ✓ | 48 | 4.b | odd | 2 | 1 | |
| 49.2.g.a | ✓ | 48 | 196.o | odd | 42 | 1 | |
| 343.2.e.c | 48 | 28.f | even | 6 | 1 | ||
| 343.2.e.c | 48 | 196.p | even | 42 | 1 | ||
| 343.2.e.d | 48 | 28.g | odd | 6 | 1 | ||
| 343.2.e.d | 48 | 196.o | odd | 42 | 1 | ||
| 343.2.g.g | 48 | 28.d | even | 2 | 1 | ||
| 343.2.g.g | 48 | 196.p | even | 42 | 1 | ||
| 343.2.g.h | 48 | 28.f | even | 6 | 1 | ||
| 343.2.g.h | 48 | 196.j | even | 14 | 1 | ||
| 343.2.g.i | 48 | 28.g | odd | 6 | 1 | ||
| 343.2.g.i | 48 | 196.k | odd | 14 | 1 | ||
| 441.2.bb.d | 48 | 12.b | even | 2 | 1 | ||
| 441.2.bb.d | 48 | 588.bb | even | 42 | 1 | ||
| 784.2.bg.c | 48 | 1.a | even | 1 | 1 | trivial | |
| 784.2.bg.c | 48 | 49.g | even | 21 | 1 | inner | |
| 2401.2.a.h | 24 | 196.o | odd | 42 | 1 | ||
| 2401.2.a.i | 24 | 196.p | even | 42 | 1 | ||
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{48} - 14 T_{3}^{47} + 89 T_{3}^{46} - 329 T_{3}^{45} + 679 T_{3}^{44} + 35 T_{3}^{43} + \cdots + 4439449 \)
acting on \(S_{2}^{\mathrm{new}}(784, [\chi])\).