# Properties

 Label 7800.2.a.u Level $7800$ Weight $2$ Character orbit 7800.a Self dual yes Analytic conductor $62.283$ Analytic rank $1$ Dimension $1$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [7800,2,Mod(1,7800)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(7800, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("7800.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$7800 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 7800.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$62.2833135766$$ Analytic rank: $$1$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 1560) Fricke sign: $$1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

 $$f(q)$$ $$=$$ $$q + q^{3} + q^{9}+O(q^{10})$$ q + q^3 + q^9 $$q + q^{3} + q^{9} + 4 q^{11} - q^{13} + 2 q^{17} - 4 q^{19} - 4 q^{23} + q^{27} - 6 q^{29} - 4 q^{31} + 4 q^{33} - 6 q^{37} - q^{39} - 2 q^{41} - 12 q^{43} - 8 q^{47} - 7 q^{49} + 2 q^{51} - 14 q^{53} - 4 q^{57} + 12 q^{59} - 2 q^{61} - 4 q^{69} + 8 q^{71} + 2 q^{73} + 8 q^{79} + q^{81} - 12 q^{83} - 6 q^{87} + 6 q^{89} - 4 q^{93} + 10 q^{97} + 4 q^{99}+O(q^{100})$$ q + q^3 + q^9 + 4 * q^11 - q^13 + 2 * q^17 - 4 * q^19 - 4 * q^23 + q^27 - 6 * q^29 - 4 * q^31 + 4 * q^33 - 6 * q^37 - q^39 - 2 * q^41 - 12 * q^43 - 8 * q^47 - 7 * q^49 + 2 * q^51 - 14 * q^53 - 4 * q^57 + 12 * q^59 - 2 * q^61 - 4 * q^69 + 8 * q^71 + 2 * q^73 + 8 * q^79 + q^81 - 12 * q^83 - 6 * q^87 + 6 * q^89 - 4 * q^93 + 10 * q^97 + 4 * q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
0 1.00000 0 0 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7800.2.a.u 1
5.b even 2 1 1560.2.a.b 1
15.d odd 2 1 4680.2.a.p 1
20.d odd 2 1 3120.2.a.p 1
60.h even 2 1 9360.2.a.bq 1

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1560.2.a.b 1 5.b even 2 1
3120.2.a.p 1 20.d odd 2 1
4680.2.a.p 1 15.d odd 2 1
7800.2.a.u 1 1.a even 1 1 trivial
9360.2.a.bq 1 60.h even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(7800))$$:

 $$T_{7}$$ T7 $$T_{11} - 4$$ T11 - 4 $$T_{17} - 2$$ T17 - 2 $$T_{19} + 4$$ T19 + 4

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T$$
$3$ $$T - 1$$
$5$ $$T$$
$7$ $$T$$
$11$ $$T - 4$$
$13$ $$T + 1$$
$17$ $$T - 2$$
$19$ $$T + 4$$
$23$ $$T + 4$$
$29$ $$T + 6$$
$31$ $$T + 4$$
$37$ $$T + 6$$
$41$ $$T + 2$$
$43$ $$T + 12$$
$47$ $$T + 8$$
$53$ $$T + 14$$
$59$ $$T - 12$$
$61$ $$T + 2$$
$67$ $$T$$
$71$ $$T - 8$$
$73$ $$T - 2$$
$79$ $$T - 8$$
$83$ $$T + 12$$
$89$ $$T - 6$$
$97$ $$T - 10$$