Properties

Label 7800.2.a.br
Level $7800$
Weight $2$
Character orbit 7800.a
Self dual yes
Analytic conductor $62.283$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7800 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(62.2833135766\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.788.1
Defining polynomial: \( x^{3} - x^{2} - 7x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + q^{3} + \beta_1 q^{7} + q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + q^{3} + \beta_1 q^{7} + q^{9} + (\beta_{2} - \beta_1 - 1) q^{11} - q^{13} - q^{17} + (\beta_{2} + 2 \beta_1 - 3) q^{19} + \beta_1 q^{21} + ( - \beta_{2} - 2 \beta_1 + 1) q^{23} + q^{27} + ( - 2 \beta_{2} - 2 \beta_1 + 1) q^{29} + ( - 3 \beta_{2} - \beta_1 - 1) q^{31} + (\beta_{2} - \beta_1 - 1) q^{33} + (\beta_{2} - 5) q^{37} - q^{39} + ( - 3 \beta_{2} + 1) q^{41} + (\beta_{2} + 1) q^{43} + ( - 2 \beta_{2} - 3 \beta_1 + 2) q^{47} + (\beta_{2} + 2 \beta_1 - 3) q^{49} - q^{51} + (3 \beta_{2} - 2 \beta_1 - 2) q^{53} + (\beta_{2} + 2 \beta_1 - 3) q^{57} + ( - 2 \beta_{2} + \beta_1 - 2) q^{59} + (2 \beta_{2} + 2 \beta_1 - 3) q^{61} + \beta_1 q^{63} + ( - \beta_{2} + \beta_1 - 1) q^{67} + ( - \beta_{2} - 2 \beta_1 + 1) q^{69} + (\beta_{2} - 2 \beta_1 - 3) q^{71} + ( - 3 \beta_{2} - 2 \beta_1 + 5) q^{73} + ( - 2 \beta_{2} - 2 \beta_1 - 5) q^{77} + ( - \beta_{2} - 5) q^{79} + q^{81} + (2 \beta_{2} - \beta_1 - 4) q^{83} + ( - 2 \beta_{2} - 2 \beta_1 + 1) q^{87} + (2 \beta_{2} + 2 \beta_1 - 4) q^{89} - \beta_1 q^{91} + ( - 3 \beta_{2} - \beta_1 - 1) q^{93} + ( - 2 \beta_1 - 8) q^{97} + (\beta_{2} - \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q + 3 q^{3} + q^{7} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q + 3 q^{3} + q^{7} + 3 q^{9} - 3 q^{11} - 3 q^{13} - 3 q^{17} - 6 q^{19} + q^{21} + 3 q^{27} - q^{29} - 7 q^{31} - 3 q^{33} - 14 q^{37} - 3 q^{39} + 4 q^{43} + q^{47} - 6 q^{49} - 3 q^{51} - 5 q^{53} - 6 q^{57} - 7 q^{59} - 5 q^{61} + q^{63} - 3 q^{67} - 10 q^{71} + 10 q^{73} - 19 q^{77} - 16 q^{79} + 3 q^{81} - 11 q^{83} - q^{87} - 8 q^{89} - q^{91} - 7 q^{93} - 26 q^{97} - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 7x - 3 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - 2\nu - 4 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + 2\beta _1 + 4 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.87740
−0.476452
3.35386
0 1.00000 0 0 0 −1.87740 0 1.00000 0
1.2 0 1.00000 0 0 0 −0.476452 0 1.00000 0
1.3 0 1.00000 0 0 0 3.35386 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7800.2.a.br yes 3
5.b even 2 1 7800.2.a.bg 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
7800.2.a.bg 3 5.b even 2 1
7800.2.a.br yes 3 1.a even 1 1 trivial

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7800))\):

\( T_{7}^{3} - T_{7}^{2} - 7T_{7} - 3 \) Copy content Toggle raw display
\( T_{11}^{3} + 3T_{11}^{2} - 17T_{11} - 53 \) Copy content Toggle raw display
\( T_{17} + 1 \) Copy content Toggle raw display
\( T_{19}^{3} + 6T_{19}^{2} - 20T_{19} - 100 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \) Copy content Toggle raw display
$3$ \( (T - 1)^{3} \) Copy content Toggle raw display
$5$ \( T^{3} \) Copy content Toggle raw display
$7$ \( T^{3} - T^{2} - 7T - 3 \) Copy content Toggle raw display
$11$ \( T^{3} + 3 T^{2} - 17 T - 53 \) Copy content Toggle raw display
$13$ \( (T + 1)^{3} \) Copy content Toggle raw display
$17$ \( (T + 1)^{3} \) Copy content Toggle raw display
$19$ \( T^{3} + 6 T^{2} - 20 T - 100 \) Copy content Toggle raw display
$23$ \( T^{3} - 32T + 44 \) Copy content Toggle raw display
$29$ \( T^{3} + T^{2} - 53 T - 93 \) Copy content Toggle raw display
$31$ \( T^{3} + 7 T^{2} - 65 T - 425 \) Copy content Toggle raw display
$37$ \( T^{3} + 14 T^{2} + 56 T + 60 \) Copy content Toggle raw display
$41$ \( T^{3} - 84T - 52 \) Copy content Toggle raw display
$43$ \( T^{3} - 4 T^{2} - 4 T + 12 \) Copy content Toggle raw display
$47$ \( T^{3} - T^{2} - 83 T + 89 \) Copy content Toggle raw display
$53$ \( T^{3} + 5 T^{2} - 125 T - 781 \) Copy content Toggle raw display
$59$ \( T^{3} + 7 T^{2} - 35 T + 9 \) Copy content Toggle raw display
$61$ \( T^{3} + 5 T^{2} - 45 T - 9 \) Copy content Toggle raw display
$67$ \( T^{3} + 3 T^{2} - 17 T + 15 \) Copy content Toggle raw display
$71$ \( T^{3} + 10 T^{2} - 12 T - 180 \) Copy content Toggle raw display
$73$ \( T^{3} - 10 T^{2} - 60 T - 52 \) Copy content Toggle raw display
$79$ \( T^{3} + 16 T^{2} + 76 T + 100 \) Copy content Toggle raw display
$83$ \( T^{3} + 11 T^{2} - 11 T - 255 \) Copy content Toggle raw display
$89$ \( T^{3} + 8 T^{2} - 32 T - 48 \) Copy content Toggle raw display
$97$ \( T^{3} + 26 T^{2} + 196 T + 440 \) Copy content Toggle raw display
show more
show less