Properties

Label 7800.2.a.bi
Level $7800$
Weight $2$
Character orbit 7800.a
Self dual yes
Analytic conductor $62.283$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 7800 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7800.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(62.2833135766\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.940.1
Defining polynomial: \(x^{3} - 7 x - 4\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 1560)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} -\beta_{2} q^{7} + q^{9} +O(q^{10})\) \( q - q^{3} -\beta_{2} q^{7} + q^{9} + ( 2 + \beta_{1} ) q^{11} + q^{13} + ( -2 + 2 \beta_{1} + \beta_{2} ) q^{17} + ( 2 + \beta_{1} + \beta_{2} ) q^{19} + \beta_{2} q^{21} + \beta_{2} q^{23} - q^{27} + ( 4 + \beta_{1} - \beta_{2} ) q^{29} -2 \beta_{1} q^{31} + ( -2 - \beta_{1} ) q^{33} + ( -4 - \beta_{1} ) q^{37} - q^{39} + \beta_{1} q^{41} + ( 2 \beta_{1} + 2 \beta_{2} ) q^{43} + ( 4 + 2 \beta_{1} ) q^{47} + ( 7 - \beta_{1} - 2 \beta_{2} ) q^{49} + ( 2 - 2 \beta_{1} - \beta_{2} ) q^{51} + ( \beta_{1} - 2 \beta_{2} ) q^{53} + ( -2 - \beta_{1} - \beta_{2} ) q^{57} + ( 4 + 2 \beta_{1} - 2 \beta_{2} ) q^{59} + ( \beta_{1} - 2 \beta_{2} ) q^{61} -\beta_{2} q^{63} + ( 4 - 2 \beta_{1} - 2 \beta_{2} ) q^{67} -\beta_{2} q^{69} + ( -6 + \beta_{1} ) q^{71} + ( -8 + \beta_{1} - \beta_{2} ) q^{73} + ( 2 - 3 \beta_{1} - 2 \beta_{2} ) q^{77} + ( 6 - \beta_{1} ) q^{79} + q^{81} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{83} + ( -4 - \beta_{1} + \beta_{2} ) q^{87} + ( 4 - \beta_{1} ) q^{89} -\beta_{2} q^{91} + 2 \beta_{1} q^{93} + ( -2 - 3 \beta_{2} ) q^{97} + ( 2 + \beta_{1} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 3 q^{3} - q^{7} + 3 q^{9} + O(q^{10}) \) \( 3 q - 3 q^{3} - q^{7} + 3 q^{9} + 5 q^{11} + 3 q^{13} - 7 q^{17} + 6 q^{19} + q^{21} + q^{23} - 3 q^{27} + 10 q^{29} + 2 q^{31} - 5 q^{33} - 11 q^{37} - 3 q^{39} - q^{41} + 10 q^{47} + 20 q^{49} + 7 q^{51} - 3 q^{53} - 6 q^{57} + 8 q^{59} - 3 q^{61} - q^{63} + 12 q^{67} - q^{69} - 19 q^{71} - 26 q^{73} + 7 q^{77} + 19 q^{79} + 3 q^{81} + 4 q^{83} - 10 q^{87} + 13 q^{89} - q^{91} - 2 q^{93} - 9 q^{97} + 5 q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - 7 x - 4\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu^{2} - 5 \)
\(\beta_{2}\)\(=\)\( -\nu^{2} + 2 \nu + 5 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\((\)\(\beta_{2} + \beta_{1}\)\()/2\)
\(\nu^{2}\)\(=\)\(\beta_{1} + 5\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−0.602705
2.89511
−2.29240
0 −1.00000 0 0 0 −3.43134 0 1.00000 0
1.2 0 −1.00000 0 0 0 −2.40857 0 1.00000 0
1.3 0 −1.00000 0 0 0 4.83991 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(1\)
\(3\) \(1\)
\(5\) \(1\)
\(13\) \(-1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7800.2.a.bi 3
5.b even 2 1 1560.2.a.q 3
15.d odd 2 1 4680.2.a.bh 3
20.d odd 2 1 3120.2.a.bi 3
60.h even 2 1 9360.2.a.cy 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1560.2.a.q 3 5.b even 2 1
3120.2.a.bi 3 20.d odd 2 1
4680.2.a.bh 3 15.d odd 2 1
7800.2.a.bi 3 1.a even 1 1 trivial
9360.2.a.cy 3 60.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(7800))\):

\( T_{7}^{3} + T_{7}^{2} - 20 T_{7} - 40 \)
\( T_{11}^{3} - 5 T_{11}^{2} - 8 T_{11} + 32 \)
\( T_{17}^{3} + 7 T_{17}^{2} - 52 T_{17} - 356 \)
\( T_{19}^{3} - 6 T_{19}^{2} - 16 T_{19} + 16 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} \)
$3$ \( ( 1 + T )^{3} \)
$5$ \( T^{3} \)
$7$ \( -40 - 20 T + T^{2} + T^{3} \)
$11$ \( 32 - 8 T - 5 T^{2} + T^{3} \)
$13$ \( ( -1 + T )^{3} \)
$17$ \( -356 - 52 T + 7 T^{2} + T^{3} \)
$19$ \( 16 - 16 T - 6 T^{2} + T^{3} \)
$23$ \( 40 - 20 T - T^{2} + T^{3} \)
$29$ \( 184 - 12 T - 10 T^{2} + T^{3} \)
$31$ \( -32 - 64 T - 2 T^{2} + T^{3} \)
$37$ \( -20 + 24 T + 11 T^{2} + T^{3} \)
$41$ \( 4 - 16 T + T^{2} + T^{3} \)
$43$ \( -256 - 112 T + T^{3} \)
$47$ \( 256 - 32 T - 10 T^{2} + T^{3} \)
$53$ \( -164 - 112 T + 3 T^{2} + T^{3} \)
$59$ \( 1024 - 160 T - 8 T^{2} + T^{3} \)
$61$ \( -164 - 112 T + 3 T^{2} + T^{3} \)
$67$ \( 640 - 64 T - 12 T^{2} + T^{3} \)
$71$ \( 160 + 104 T + 19 T^{2} + T^{3} \)
$73$ \( 328 + 180 T + 26 T^{2} + T^{3} \)
$79$ \( -160 + 104 T - 19 T^{2} + T^{3} \)
$83$ \( -320 - 176 T - 4 T^{2} + T^{3} \)
$89$ \( -20 + 40 T - 13 T^{2} + T^{3} \)
$97$ \( -1420 - 156 T + 9 T^{2} + T^{3} \)
show more
show less