Defining parameters
Level: | \( N \) | \(=\) | \( 7800 = 2^{3} \cdot 3 \cdot 5^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7800.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 53 \) | ||
Sturm bound: | \(3360\) | ||
Trace bound: | \(17\) | ||
Distinguishing \(T_p\): | \(7\), \(11\), \(17\), \(19\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(7800))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 1728 | 114 | 1614 |
Cusp forms | 1633 | 114 | 1519 |
Eisenstein series | 95 | 0 | 95 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(3\) | \(5\) | \(13\) | Fricke | Dim. |
---|---|---|---|---|---|
\(+\) | \(+\) | \(+\) | \(+\) | \(+\) | \(7\) |
\(+\) | \(+\) | \(+\) | \(-\) | \(-\) | \(7\) |
\(+\) | \(+\) | \(-\) | \(+\) | \(-\) | \(7\) |
\(+\) | \(+\) | \(-\) | \(-\) | \(+\) | \(7\) |
\(+\) | \(-\) | \(+\) | \(+\) | \(-\) | \(8\) |
\(+\) | \(-\) | \(+\) | \(-\) | \(+\) | \(5\) |
\(+\) | \(-\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(+\) | \(-\) | \(-\) | \(-\) | \(-\) | \(9\) |
\(-\) | \(+\) | \(+\) | \(+\) | \(-\) | \(8\) |
\(-\) | \(+\) | \(+\) | \(-\) | \(+\) | \(5\) |
\(-\) | \(+\) | \(-\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(+\) | \(-\) | \(-\) | \(-\) | \(9\) |
\(-\) | \(-\) | \(+\) | \(+\) | \(+\) | \(7\) |
\(-\) | \(-\) | \(+\) | \(-\) | \(-\) | \(7\) |
\(-\) | \(-\) | \(-\) | \(+\) | \(-\) | \(7\) |
\(-\) | \(-\) | \(-\) | \(-\) | \(+\) | \(7\) |
Plus space | \(+\) | \(52\) | |||
Minus space | \(-\) | \(62\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(7800))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(7800))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(7800)) \cong \) \(S_{2}^{\mathrm{new}}(\Gamma_0(15))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(24))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(26))\)\(^{\oplus 18}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(30))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(39))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(40))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(50))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(52))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(65))\)\(^{\oplus 16}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(75))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(78))\)\(^{\oplus 9}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(100))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(104))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(120))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(130))\)\(^{\oplus 12}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(150))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(156))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(195))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(200))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(260))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(312))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(325))\)\(^{\oplus 8}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(390))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(520))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(600))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(650))\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(780))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(975))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1300))\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1560))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(1950))\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(2600))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(3900))\)\(^{\oplus 2}\)