Defining parameters
Level: | \( N \) | \(=\) | \( 780 = 2^{2} \cdot 3 \cdot 5 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 780.h (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 5 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(336\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(7\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(780, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 180 | 12 | 168 |
Cusp forms | 156 | 12 | 144 |
Eisenstein series | 24 | 0 | 24 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(780, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
780.2.h.a | $2$ | $6.228$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(-2\) | \(0\) | \(q+iq^{3}+(-1-2i)q^{5}+iq^{7}-q^{9}+\cdots\) |
780.2.h.b | $2$ | $6.228$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(2\) | \(0\) | \(q+iq^{3}+(1+2i)q^{5}+3iq^{7}-q^{9}+\cdots\) |
780.2.h.c | $4$ | $6.228$ | \(\Q(i, \sqrt{6})\) | None | \(0\) | \(0\) | \(-4\) | \(0\) | \(q+\beta _{2}q^{3}+(-1-\beta _{2}+\beta _{3})q^{5}-2\beta _{2}q^{7}+\cdots\) |
780.2.h.d | $4$ | $6.228$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{8}^{2}q^{3}+(-\zeta_{8}+2\zeta_{8}^{3})q^{5}+(2\zeta_{8}+\cdots)q^{7}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(780, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(780, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(30, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(60, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(65, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(130, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(195, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(260, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(390, [\chi])\)\(^{\oplus 2}\)