Properties

Label 78.6.b.a
Level $78$
Weight $6$
Character orbit 78.b
Analytic conductor $12.510$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,6,Mod(25,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.25");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 78.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.5099379454\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\mathbb{Q}[x]/(x^{6} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11}\cdot 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{5}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_1 q^{2} - 9 q^{3} - 16 q^{4} + ( - \beta_{3} + 3 \beta_1) q^{5} + 9 \beta_1 q^{6} + ( - \beta_{5} - 14 \beta_1) q^{7} + 16 \beta_1 q^{8} + 81 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_1 q^{2} - 9 q^{3} - 16 q^{4} + ( - \beta_{3} + 3 \beta_1) q^{5} + 9 \beta_1 q^{6} + ( - \beta_{5} - 14 \beta_1) q^{7} + 16 \beta_1 q^{8} + 81 q^{9} + (\beta_{4} + 53) q^{10} + ( - \beta_{5} + 7 \beta_{3} - 11 \beta_1) q^{11} + 144 q^{12} + (3 \beta_{5} + 2 \beta_{4} - \beta_{3} + \cdots + 88) q^{13}+ \cdots + ( - 81 \beta_{5} + 567 \beta_{3} - 891 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 54 q^{3} - 96 q^{4} + 486 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 54 q^{3} - 96 q^{4} + 486 q^{9} + 320 q^{10} + 864 q^{12} + 530 q^{13} - 1360 q^{14} + 1536 q^{16} - 836 q^{17} - 1296 q^{22} - 416 q^{23} + 718 q^{25} - 1360 q^{26} - 4374 q^{27} + 18788 q^{29} - 2880 q^{30} + 6112 q^{35} - 7776 q^{36} + 528 q^{38} - 4770 q^{39} - 5120 q^{40} + 12240 q^{42} - 24200 q^{43} - 13824 q^{48} - 3038 q^{49} + 7524 q^{51} - 8480 q^{52} - 42396 q^{53} + 124656 q^{55} + 21760 q^{56} - 3196 q^{61} - 59344 q^{62} - 24576 q^{64} - 17168 q^{65} + 11664 q^{66} + 13376 q^{68} + 3744 q^{69} - 62240 q^{74} - 6462 q^{75} - 114024 q^{77} + 12240 q^{78} - 169328 q^{79} + 39366 q^{81} + 145120 q^{82} - 169092 q^{87} + 20736 q^{88} + 25920 q^{90} + 236152 q^{91} + 6656 q^{92} - 32688 q^{94} + 567168 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{6} - 2x^{5} + 2x^{4} - 2946x^{3} + 131769x^{2} - 1332936x + 6741792 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 11164\nu^{5} + 33517\nu^{4} + 136007\nu^{3} - 12505719\nu^{2} + 1388809431\nu - 7854226236 ) / 1807933527 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( -1108\nu^{5} - 131752\nu^{4} - 404420\nu^{3} + 1632084\nu^{2} + 4068576\nu - 9481422087 ) / 35449677 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( 383264 \nu^{5} + 1222625 \nu^{4} - 21601613 \nu^{3} - 1608343917 \nu^{2} + 37929979503 \nu - 221669454492 ) / 1807933527 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( -8786\nu^{5} - 276878\nu^{4} - 3206890\nu^{3} + 12941778\nu^{2} + 32262192\nu - 10639840401 ) / 35449677 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( 307633 \nu^{5} + 917590 \nu^{4} + 5937014 \nu^{3} - 1150320390 \nu^{2} + 39082121901 \nu - 220426926804 ) / 1205289018 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( 4\beta_{5} + \beta_{4} - 4\beta_{3} - 2\beta_{2} + 2\beta _1 + 15 ) / 48 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( -8\beta_{5} - \beta_{3} + 365\beta_1 ) / 6 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( 1388\beta_{5} - 365\beta_{4} - 1460\beta_{3} + 694\beta_{2} - 18386\beta _1 + 71025 ) / 48 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( 554\beta_{4} - 4393\beta_{2} - 1008681 ) / 12 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( -586204\beta_{5} - 126607\beta_{4} + 506428\beta_{3} + 293102\beta_{2} + 11019394\beta _1 + 43151439 ) / 48 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/78\mathbb{Z}\right)^\times\).

\(n\) \(53\) \(67\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
25.1
6.10758 + 6.10758i
−15.0768 15.0768i
9.96927 + 9.96927i
9.96927 9.96927i
−15.0768 + 15.0768i
6.10758 6.10758i
4.00000i −9.00000 −16.0000 37.1158i 36.0000i 176.407i 64.0000i 81.0000 −148.463
25.2 4.00000i −9.00000 −16.0000 9.73803i 36.0000i 105.184i 64.0000i 81.0000 −38.9521
25.3 4.00000i −9.00000 −16.0000 86.8538i 36.0000i 98.7774i 64.0000i 81.0000 347.415
25.4 4.00000i −9.00000 −16.0000 86.8538i 36.0000i 98.7774i 64.0000i 81.0000 347.415
25.5 4.00000i −9.00000 −16.0000 9.73803i 36.0000i 105.184i 64.0000i 81.0000 −38.9521
25.6 4.00000i −9.00000 −16.0000 37.1158i 36.0000i 176.407i 64.0000i 81.0000 −148.463
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 25.6
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 78.6.b.a 6
3.b odd 2 1 234.6.b.c 6
4.b odd 2 1 624.6.c.d 6
13.b even 2 1 inner 78.6.b.a 6
13.d odd 4 1 1014.6.a.o 3
13.d odd 4 1 1014.6.a.q 3
39.d odd 2 1 234.6.b.c 6
52.b odd 2 1 624.6.c.d 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.6.b.a 6 1.a even 1 1 trivial
78.6.b.a 6 13.b even 2 1 inner
234.6.b.c 6 3.b odd 2 1
234.6.b.c 6 39.d odd 2 1
624.6.c.d 6 4.b odd 2 1
624.6.c.d 6 52.b odd 2 1
1014.6.a.o 3 13.d odd 4 1
1014.6.a.q 3 13.d odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{6} + 9016T_{5}^{4} + 11237904T_{5}^{2} + 985457664 \) acting on \(S_{6}^{\mathrm{new}}(78, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 16)^{3} \) Copy content Toggle raw display
$3$ \( (T + 9)^{6} \) Copy content Toggle raw display
$5$ \( T^{6} + 9016 T^{4} + \cdots + 985457664 \) Copy content Toggle raw display
$7$ \( T^{6} + \cdots + 3359273140224 \) Copy content Toggle raw display
$11$ \( T^{6} + \cdots + 871026613185600 \) Copy content Toggle raw display
$13$ \( T^{6} + \cdots + 51\!\cdots\!57 \) Copy content Toggle raw display
$17$ \( (T^{3} + 418 T^{2} + \cdots - 1783218312)^{2} \) Copy content Toggle raw display
$19$ \( T^{6} + \cdots + 224220196832256 \) Copy content Toggle raw display
$23$ \( (T^{3} + 208 T^{2} + \cdots + 2602266624)^{2} \) Copy content Toggle raw display
$29$ \( (T^{3} - 9394 T^{2} + \cdots - 2546571960)^{2} \) Copy content Toggle raw display
$31$ \( T^{6} + \cdots + 18\!\cdots\!00 \) Copy content Toggle raw display
$37$ \( T^{6} + \cdots + 15\!\cdots\!44 \) Copy content Toggle raw display
$41$ \( T^{6} + \cdots + 40\!\cdots\!00 \) Copy content Toggle raw display
$43$ \( (T^{3} + \cdots - 1729964364544)^{2} \) Copy content Toggle raw display
$47$ \( T^{6} + \cdots + 20\!\cdots\!24 \) Copy content Toggle raw display
$53$ \( (T^{3} + \cdots - 26960052479832)^{2} \) Copy content Toggle raw display
$59$ \( T^{6} + \cdots + 11\!\cdots\!04 \) Copy content Toggle raw display
$61$ \( (T^{3} + \cdots + 17380383329800)^{2} \) Copy content Toggle raw display
$67$ \( T^{6} + \cdots + 94\!\cdots\!84 \) Copy content Toggle raw display
$71$ \( T^{6} + \cdots + 22\!\cdots\!00 \) Copy content Toggle raw display
$73$ \( T^{6} + \cdots + 11\!\cdots\!16 \) Copy content Toggle raw display
$79$ \( (T^{3} + \cdots - 35835411156480)^{2} \) Copy content Toggle raw display
$83$ \( T^{6} + \cdots + 11\!\cdots\!56 \) Copy content Toggle raw display
$89$ \( T^{6} + \cdots + 35\!\cdots\!16 \) Copy content Toggle raw display
$97$ \( T^{6} + \cdots + 30\!\cdots\!64 \) Copy content Toggle raw display
show more
show less