Defining parameters
Level: | \( N \) | \(=\) | \( 78 = 2 \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 78.k (of order \(12\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 39 \) |
Character field: | \(\Q(\zeta_{12})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(78, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 184 | 56 | 128 |
Cusp forms | 152 | 56 | 96 |
Eisenstein series | 32 | 0 | 32 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(78, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
78.4.k.a | $56$ | $4.602$ | None | \(0\) | \(0\) | \(0\) | \(-92\) |
Decomposition of \(S_{4}^{\mathrm{old}}(78, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(78, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)