Defining parameters
Level: | \( N \) | \(=\) | \( 78 = 2 \cdot 3 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 78.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 2 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(1\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(78, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 46 | 6 | 40 |
Cusp forms | 38 | 6 | 32 |
Eisenstein series | 8 | 0 | 8 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(78, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
78.4.b.a | $2$ | $4.602$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(-6\) | \(0\) | \(0\) | \(q+iq^{2}-3q^{3}-4q^{4}-4iq^{5}-3iq^{6}+\cdots\) |
78.4.b.b | $4$ | $4.602$ | \(\Q(i, \sqrt{17})\) | None | \(0\) | \(12\) | \(0\) | \(0\) | \(q-\beta _{1}q^{2}+3q^{3}-4q^{4}+(4\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(78, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(78, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)