Properties

Label 78.4.b
Level $78$
Weight $4$
Character orbit 78.b
Rep. character $\chi_{78}(25,\cdot)$
Character field $\Q$
Dimension $6$
Newform subspaces $2$
Sturm bound $56$
Trace bound $1$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 78.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q\)
Newform subspaces: \( 2 \)
Sturm bound: \(56\)
Trace bound: \(1\)
Distinguishing \(T_p\): \(5\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(78, [\chi])\).

Total New Old
Modular forms 46 6 40
Cusp forms 38 6 32
Eisenstein series 8 0 8

Trace form

\( 6 q + 6 q^{3} - 24 q^{4} + 54 q^{9} + O(q^{10}) \) \( 6 q + 6 q^{3} - 24 q^{4} + 54 q^{9} + 104 q^{10} - 24 q^{12} + 110 q^{13} + 56 q^{14} + 96 q^{16} - 188 q^{17} - 144 q^{22} + 184 q^{23} - 314 q^{25} + 8 q^{26} + 54 q^{27} + 164 q^{29} + 120 q^{30} - 1448 q^{35} - 216 q^{36} + 456 q^{38} - 138 q^{39} - 416 q^{40} - 168 q^{42} + 760 q^{43} + 96 q^{48} - 782 q^{49} - 12 q^{51} - 440 q^{52} + 876 q^{53} + 96 q^{55} - 224 q^{56} + 2156 q^{61} + 1928 q^{62} - 384 q^{64} + 1240 q^{65} - 1152 q^{66} + 752 q^{68} + 1896 q^{69} - 704 q^{74} - 1674 q^{75} - 2064 q^{77} - 600 q^{78} - 2096 q^{79} + 486 q^{81} + 40 q^{82} + 2532 q^{87} + 576 q^{88} + 936 q^{90} + 1720 q^{91} - 736 q^{92} - 288 q^{94} - 696 q^{95} + O(q^{100}) \)

Decomposition of \(S_{4}^{\mathrm{new}}(78, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
78.4.b.a 78.b 13.b $2$ $4.602$ \(\Q(\sqrt{-1}) \) None 78.4.b.a \(0\) \(-6\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+iq^{2}-3q^{3}-4q^{4}-4iq^{5}-3iq^{6}+\cdots\)
78.4.b.b 78.b 13.b $4$ $4.602$ \(\Q(i, \sqrt{17})\) None 78.4.b.b \(0\) \(12\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q-\beta _{1}q^{2}+3q^{3}-4q^{4}+(4\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(78, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(78, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(26, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)