Properties

Label 78.4.a.d.1.1
Level $78$
Weight $4$
Character 78.1
Self dual yes
Analytic conductor $4.602$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,4,Mod(1,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 78.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.60214898045\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 78.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -20.0000 q^{5} -6.00000 q^{6} -32.0000 q^{7} +8.00000 q^{8} +9.00000 q^{9} +O(q^{10})\) \(q+2.00000 q^{2} -3.00000 q^{3} +4.00000 q^{4} -20.0000 q^{5} -6.00000 q^{6} -32.0000 q^{7} +8.00000 q^{8} +9.00000 q^{9} -40.0000 q^{10} +50.0000 q^{11} -12.0000 q^{12} -13.0000 q^{13} -64.0000 q^{14} +60.0000 q^{15} +16.0000 q^{16} -30.0000 q^{17} +18.0000 q^{18} -120.000 q^{19} -80.0000 q^{20} +96.0000 q^{21} +100.000 q^{22} -20.0000 q^{23} -24.0000 q^{24} +275.000 q^{25} -26.0000 q^{26} -27.0000 q^{27} -128.000 q^{28} +82.0000 q^{29} +120.000 q^{30} -44.0000 q^{31} +32.0000 q^{32} -150.000 q^{33} -60.0000 q^{34} +640.000 q^{35} +36.0000 q^{36} -306.000 q^{37} -240.000 q^{38} +39.0000 q^{39} -160.000 q^{40} +108.000 q^{41} +192.000 q^{42} -356.000 q^{43} +200.000 q^{44} -180.000 q^{45} -40.0000 q^{46} -178.000 q^{47} -48.0000 q^{48} +681.000 q^{49} +550.000 q^{50} +90.0000 q^{51} -52.0000 q^{52} +198.000 q^{53} -54.0000 q^{54} -1000.00 q^{55} -256.000 q^{56} +360.000 q^{57} +164.000 q^{58} +94.0000 q^{59} +240.000 q^{60} -62.0000 q^{61} -88.0000 q^{62} -288.000 q^{63} +64.0000 q^{64} +260.000 q^{65} -300.000 q^{66} -140.000 q^{67} -120.000 q^{68} +60.0000 q^{69} +1280.00 q^{70} -778.000 q^{71} +72.0000 q^{72} +62.0000 q^{73} -612.000 q^{74} -825.000 q^{75} -480.000 q^{76} -1600.00 q^{77} +78.0000 q^{78} -1096.00 q^{79} -320.000 q^{80} +81.0000 q^{81} +216.000 q^{82} -462.000 q^{83} +384.000 q^{84} +600.000 q^{85} -712.000 q^{86} -246.000 q^{87} +400.000 q^{88} +1224.00 q^{89} -360.000 q^{90} +416.000 q^{91} -80.0000 q^{92} +132.000 q^{93} -356.000 q^{94} +2400.00 q^{95} -96.0000 q^{96} +614.000 q^{97} +1362.00 q^{98} +450.000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −3.00000 −0.577350
\(4\) 4.00000 0.500000
\(5\) −20.0000 −1.78885 −0.894427 0.447214i \(-0.852416\pi\)
−0.894427 + 0.447214i \(0.852416\pi\)
\(6\) −6.00000 −0.408248
\(7\) −32.0000 −1.72784 −0.863919 0.503631i \(-0.831997\pi\)
−0.863919 + 0.503631i \(0.831997\pi\)
\(8\) 8.00000 0.353553
\(9\) 9.00000 0.333333
\(10\) −40.0000 −1.26491
\(11\) 50.0000 1.37051 0.685253 0.728305i \(-0.259692\pi\)
0.685253 + 0.728305i \(0.259692\pi\)
\(12\) −12.0000 −0.288675
\(13\) −13.0000 −0.277350
\(14\) −64.0000 −1.22177
\(15\) 60.0000 1.03280
\(16\) 16.0000 0.250000
\(17\) −30.0000 −0.428004 −0.214002 0.976833i \(-0.568650\pi\)
−0.214002 + 0.976833i \(0.568650\pi\)
\(18\) 18.0000 0.235702
\(19\) −120.000 −1.44894 −0.724471 0.689306i \(-0.757916\pi\)
−0.724471 + 0.689306i \(0.757916\pi\)
\(20\) −80.0000 −0.894427
\(21\) 96.0000 0.997567
\(22\) 100.000 0.969094
\(23\) −20.0000 −0.181317 −0.0906584 0.995882i \(-0.528897\pi\)
−0.0906584 + 0.995882i \(0.528897\pi\)
\(24\) −24.0000 −0.204124
\(25\) 275.000 2.20000
\(26\) −26.0000 −0.196116
\(27\) −27.0000 −0.192450
\(28\) −128.000 −0.863919
\(29\) 82.0000 0.525070 0.262535 0.964923i \(-0.415442\pi\)
0.262535 + 0.964923i \(0.415442\pi\)
\(30\) 120.000 0.730297
\(31\) −44.0000 −0.254924 −0.127462 0.991843i \(-0.540683\pi\)
−0.127462 + 0.991843i \(0.540683\pi\)
\(32\) 32.0000 0.176777
\(33\) −150.000 −0.791262
\(34\) −60.0000 −0.302645
\(35\) 640.000 3.09085
\(36\) 36.0000 0.166667
\(37\) −306.000 −1.35962 −0.679812 0.733386i \(-0.737939\pi\)
−0.679812 + 0.733386i \(0.737939\pi\)
\(38\) −240.000 −1.02456
\(39\) 39.0000 0.160128
\(40\) −160.000 −0.632456
\(41\) 108.000 0.411385 0.205692 0.978617i \(-0.434055\pi\)
0.205692 + 0.978617i \(0.434055\pi\)
\(42\) 192.000 0.705387
\(43\) −356.000 −1.26255 −0.631273 0.775561i \(-0.717467\pi\)
−0.631273 + 0.775561i \(0.717467\pi\)
\(44\) 200.000 0.685253
\(45\) −180.000 −0.596285
\(46\) −40.0000 −0.128210
\(47\) −178.000 −0.552425 −0.276212 0.961097i \(-0.589079\pi\)
−0.276212 + 0.961097i \(0.589079\pi\)
\(48\) −48.0000 −0.144338
\(49\) 681.000 1.98542
\(50\) 550.000 1.55563
\(51\) 90.0000 0.247108
\(52\) −52.0000 −0.138675
\(53\) 198.000 0.513158 0.256579 0.966523i \(-0.417405\pi\)
0.256579 + 0.966523i \(0.417405\pi\)
\(54\) −54.0000 −0.136083
\(55\) −1000.00 −2.45164
\(56\) −256.000 −0.610883
\(57\) 360.000 0.836547
\(58\) 164.000 0.371280
\(59\) 94.0000 0.207420 0.103710 0.994608i \(-0.466929\pi\)
0.103710 + 0.994608i \(0.466929\pi\)
\(60\) 240.000 0.516398
\(61\) −62.0000 −0.130136 −0.0650679 0.997881i \(-0.520726\pi\)
−0.0650679 + 0.997881i \(0.520726\pi\)
\(62\) −88.0000 −0.180258
\(63\) −288.000 −0.575946
\(64\) 64.0000 0.125000
\(65\) 260.000 0.496139
\(66\) −300.000 −0.559507
\(67\) −140.000 −0.255279 −0.127640 0.991821i \(-0.540740\pi\)
−0.127640 + 0.991821i \(0.540740\pi\)
\(68\) −120.000 −0.214002
\(69\) 60.0000 0.104683
\(70\) 1280.00 2.18556
\(71\) −778.000 −1.30045 −0.650223 0.759744i \(-0.725324\pi\)
−0.650223 + 0.759744i \(0.725324\pi\)
\(72\) 72.0000 0.117851
\(73\) 62.0000 0.0994048 0.0497024 0.998764i \(-0.484173\pi\)
0.0497024 + 0.998764i \(0.484173\pi\)
\(74\) −612.000 −0.961399
\(75\) −825.000 −1.27017
\(76\) −480.000 −0.724471
\(77\) −1600.00 −2.36801
\(78\) 78.0000 0.113228
\(79\) −1096.00 −1.56088 −0.780441 0.625230i \(-0.785005\pi\)
−0.780441 + 0.625230i \(0.785005\pi\)
\(80\) −320.000 −0.447214
\(81\) 81.0000 0.111111
\(82\) 216.000 0.290893
\(83\) −462.000 −0.610977 −0.305488 0.952196i \(-0.598820\pi\)
−0.305488 + 0.952196i \(0.598820\pi\)
\(84\) 384.000 0.498784
\(85\) 600.000 0.765637
\(86\) −712.000 −0.892755
\(87\) −246.000 −0.303149
\(88\) 400.000 0.484547
\(89\) 1224.00 1.45779 0.728897 0.684623i \(-0.240033\pi\)
0.728897 + 0.684623i \(0.240033\pi\)
\(90\) −360.000 −0.421637
\(91\) 416.000 0.479216
\(92\) −80.0000 −0.0906584
\(93\) 132.000 0.147180
\(94\) −356.000 −0.390623
\(95\) 2400.00 2.59195
\(96\) −96.0000 −0.102062
\(97\) 614.000 0.642704 0.321352 0.946960i \(-0.395863\pi\)
0.321352 + 0.946960i \(0.395863\pi\)
\(98\) 1362.00 1.40391
\(99\) 450.000 0.456835
\(100\) 1100.00 1.10000
\(101\) 1058.00 1.04233 0.521163 0.853457i \(-0.325498\pi\)
0.521163 + 0.853457i \(0.325498\pi\)
\(102\) 180.000 0.174732
\(103\) 1768.00 1.69132 0.845661 0.533720i \(-0.179206\pi\)
0.845661 + 0.533720i \(0.179206\pi\)
\(104\) −104.000 −0.0980581
\(105\) −1920.00 −1.78450
\(106\) 396.000 0.362858
\(107\) −1808.00 −1.63351 −0.816757 0.576982i \(-0.804230\pi\)
−0.816757 + 0.576982i \(0.804230\pi\)
\(108\) −108.000 −0.0962250
\(109\) −1886.00 −1.65730 −0.828652 0.559765i \(-0.810891\pi\)
−0.828652 + 0.559765i \(0.810891\pi\)
\(110\) −2000.00 −1.73357
\(111\) 918.000 0.784979
\(112\) −512.000 −0.431959
\(113\) 1246.00 1.03729 0.518645 0.854990i \(-0.326437\pi\)
0.518645 + 0.854990i \(0.326437\pi\)
\(114\) 720.000 0.591528
\(115\) 400.000 0.324349
\(116\) 328.000 0.262535
\(117\) −117.000 −0.0924500
\(118\) 188.000 0.146668
\(119\) 960.000 0.739521
\(120\) 480.000 0.365148
\(121\) 1169.00 0.878287
\(122\) −124.000 −0.0920199
\(123\) −324.000 −0.237513
\(124\) −176.000 −0.127462
\(125\) −3000.00 −2.14663
\(126\) −576.000 −0.407255
\(127\) 1624.00 1.13470 0.567349 0.823477i \(-0.307969\pi\)
0.567349 + 0.823477i \(0.307969\pi\)
\(128\) 128.000 0.0883883
\(129\) 1068.00 0.728931
\(130\) 520.000 0.350823
\(131\) −2072.00 −1.38192 −0.690960 0.722893i \(-0.742812\pi\)
−0.690960 + 0.722893i \(0.742812\pi\)
\(132\) −600.000 −0.395631
\(133\) 3840.00 2.50354
\(134\) −280.000 −0.180510
\(135\) 540.000 0.344265
\(136\) −240.000 −0.151322
\(137\) −756.000 −0.471456 −0.235728 0.971819i \(-0.575747\pi\)
−0.235728 + 0.971819i \(0.575747\pi\)
\(138\) 120.000 0.0740223
\(139\) 172.000 0.104956 0.0524779 0.998622i \(-0.483288\pi\)
0.0524779 + 0.998622i \(0.483288\pi\)
\(140\) 2560.00 1.54542
\(141\) 534.000 0.318943
\(142\) −1556.00 −0.919554
\(143\) −650.000 −0.380110
\(144\) 144.000 0.0833333
\(145\) −1640.00 −0.939273
\(146\) 124.000 0.0702898
\(147\) −2043.00 −1.14628
\(148\) −1224.00 −0.679812
\(149\) 1272.00 0.699371 0.349686 0.936867i \(-0.386288\pi\)
0.349686 + 0.936867i \(0.386288\pi\)
\(150\) −1650.00 −0.898146
\(151\) 1404.00 0.756662 0.378331 0.925670i \(-0.376498\pi\)
0.378331 + 0.925670i \(0.376498\pi\)
\(152\) −960.000 −0.512278
\(153\) −270.000 −0.142668
\(154\) −3200.00 −1.67444
\(155\) 880.000 0.456021
\(156\) 156.000 0.0800641
\(157\) −2170.00 −1.10309 −0.551544 0.834146i \(-0.685961\pi\)
−0.551544 + 0.834146i \(0.685961\pi\)
\(158\) −2192.00 −1.10371
\(159\) −594.000 −0.296272
\(160\) −640.000 −0.316228
\(161\) 640.000 0.313286
\(162\) 162.000 0.0785674
\(163\) 248.000 0.119171 0.0595855 0.998223i \(-0.481022\pi\)
0.0595855 + 0.998223i \(0.481022\pi\)
\(164\) 432.000 0.205692
\(165\) 3000.00 1.41545
\(166\) −924.000 −0.432026
\(167\) 102.000 0.0472635 0.0236317 0.999721i \(-0.492477\pi\)
0.0236317 + 0.999721i \(0.492477\pi\)
\(168\) 768.000 0.352693
\(169\) 169.000 0.0769231
\(170\) 1200.00 0.541387
\(171\) −1080.00 −0.482980
\(172\) −1424.00 −0.631273
\(173\) 682.000 0.299720 0.149860 0.988707i \(-0.452118\pi\)
0.149860 + 0.988707i \(0.452118\pi\)
\(174\) −492.000 −0.214359
\(175\) −8800.00 −3.80124
\(176\) 800.000 0.342627
\(177\) −282.000 −0.119754
\(178\) 2448.00 1.03082
\(179\) −612.000 −0.255548 −0.127774 0.991803i \(-0.540783\pi\)
−0.127774 + 0.991803i \(0.540783\pi\)
\(180\) −720.000 −0.298142
\(181\) −66.0000 −0.0271035 −0.0135518 0.999908i \(-0.504314\pi\)
−0.0135518 + 0.999908i \(0.504314\pi\)
\(182\) 832.000 0.338857
\(183\) 186.000 0.0751340
\(184\) −160.000 −0.0641052
\(185\) 6120.00 2.43217
\(186\) 264.000 0.104072
\(187\) −1500.00 −0.586582
\(188\) −712.000 −0.276212
\(189\) 864.000 0.332522
\(190\) 4800.00 1.83278
\(191\) 608.000 0.230332 0.115166 0.993346i \(-0.463260\pi\)
0.115166 + 0.993346i \(0.463260\pi\)
\(192\) −192.000 −0.0721688
\(193\) 1370.00 0.510957 0.255479 0.966815i \(-0.417767\pi\)
0.255479 + 0.966815i \(0.417767\pi\)
\(194\) 1228.00 0.454460
\(195\) −780.000 −0.286446
\(196\) 2724.00 0.992711
\(197\) −4908.00 −1.77503 −0.887514 0.460781i \(-0.847569\pi\)
−0.887514 + 0.460781i \(0.847569\pi\)
\(198\) 900.000 0.323031
\(199\) −328.000 −0.116841 −0.0584204 0.998292i \(-0.518606\pi\)
−0.0584204 + 0.998292i \(0.518606\pi\)
\(200\) 2200.00 0.777817
\(201\) 420.000 0.147386
\(202\) 2116.00 0.737036
\(203\) −2624.00 −0.907235
\(204\) 360.000 0.123554
\(205\) −2160.00 −0.735907
\(206\) 3536.00 1.19595
\(207\) −180.000 −0.0604390
\(208\) −208.000 −0.0693375
\(209\) −6000.00 −1.98578
\(210\) −3840.00 −1.26183
\(211\) 1316.00 0.429371 0.214685 0.976683i \(-0.431127\pi\)
0.214685 + 0.976683i \(0.431127\pi\)
\(212\) 792.000 0.256579
\(213\) 2334.00 0.750812
\(214\) −3616.00 −1.15507
\(215\) 7120.00 2.25851
\(216\) −216.000 −0.0680414
\(217\) 1408.00 0.440467
\(218\) −3772.00 −1.17189
\(219\) −186.000 −0.0573914
\(220\) −4000.00 −1.22582
\(221\) 390.000 0.118707
\(222\) 1836.00 0.555064
\(223\) −1932.00 −0.580163 −0.290081 0.957002i \(-0.593682\pi\)
−0.290081 + 0.957002i \(0.593682\pi\)
\(224\) −1024.00 −0.305441
\(225\) 2475.00 0.733333
\(226\) 2492.00 0.733475
\(227\) 4998.00 1.46136 0.730680 0.682720i \(-0.239203\pi\)
0.730680 + 0.682720i \(0.239203\pi\)
\(228\) 1440.00 0.418273
\(229\) −78.0000 −0.0225082 −0.0112541 0.999937i \(-0.503582\pi\)
−0.0112541 + 0.999937i \(0.503582\pi\)
\(230\) 800.000 0.229350
\(231\) 4800.00 1.36717
\(232\) 656.000 0.185640
\(233\) −1282.00 −0.360458 −0.180229 0.983625i \(-0.557684\pi\)
−0.180229 + 0.983625i \(0.557684\pi\)
\(234\) −234.000 −0.0653720
\(235\) 3560.00 0.988208
\(236\) 376.000 0.103710
\(237\) 3288.00 0.901175
\(238\) 1920.00 0.522921
\(239\) 294.000 0.0795702 0.0397851 0.999208i \(-0.487333\pi\)
0.0397851 + 0.999208i \(0.487333\pi\)
\(240\) 960.000 0.258199
\(241\) −4962.00 −1.32627 −0.663134 0.748501i \(-0.730774\pi\)
−0.663134 + 0.748501i \(0.730774\pi\)
\(242\) 2338.00 0.621043
\(243\) −243.000 −0.0641500
\(244\) −248.000 −0.0650679
\(245\) −13620.0 −3.55163
\(246\) −648.000 −0.167947
\(247\) 1560.00 0.401864
\(248\) −352.000 −0.0901291
\(249\) 1386.00 0.352748
\(250\) −6000.00 −1.51789
\(251\) 744.000 0.187095 0.0935475 0.995615i \(-0.470179\pi\)
0.0935475 + 0.995615i \(0.470179\pi\)
\(252\) −1152.00 −0.287973
\(253\) −1000.00 −0.248496
\(254\) 3248.00 0.802353
\(255\) −1800.00 −0.442041
\(256\) 256.000 0.0625000
\(257\) −1026.00 −0.249028 −0.124514 0.992218i \(-0.539737\pi\)
−0.124514 + 0.992218i \(0.539737\pi\)
\(258\) 2136.00 0.515432
\(259\) 9792.00 2.34921
\(260\) 1040.00 0.248069
\(261\) 738.000 0.175023
\(262\) −4144.00 −0.977165
\(263\) −5532.00 −1.29703 −0.648513 0.761204i \(-0.724609\pi\)
−0.648513 + 0.761204i \(0.724609\pi\)
\(264\) −1200.00 −0.279753
\(265\) −3960.00 −0.917966
\(266\) 7680.00 1.77027
\(267\) −3672.00 −0.841658
\(268\) −560.000 −0.127640
\(269\) −3534.00 −0.801010 −0.400505 0.916294i \(-0.631165\pi\)
−0.400505 + 0.916294i \(0.631165\pi\)
\(270\) 1080.00 0.243432
\(271\) 2392.00 0.536176 0.268088 0.963394i \(-0.413608\pi\)
0.268088 + 0.963394i \(0.413608\pi\)
\(272\) −480.000 −0.107001
\(273\) −1248.00 −0.276675
\(274\) −1512.00 −0.333370
\(275\) 13750.0 3.01511
\(276\) 240.000 0.0523417
\(277\) 6102.00 1.32359 0.661794 0.749686i \(-0.269796\pi\)
0.661794 + 0.749686i \(0.269796\pi\)
\(278\) 344.000 0.0742149
\(279\) −396.000 −0.0849746
\(280\) 5120.00 1.09278
\(281\) −7540.00 −1.60071 −0.800354 0.599528i \(-0.795355\pi\)
−0.800354 + 0.599528i \(0.795355\pi\)
\(282\) 1068.00 0.225527
\(283\) −2756.00 −0.578895 −0.289447 0.957194i \(-0.593472\pi\)
−0.289447 + 0.957194i \(0.593472\pi\)
\(284\) −3112.00 −0.650223
\(285\) −7200.00 −1.49646
\(286\) −1300.00 −0.268778
\(287\) −3456.00 −0.710806
\(288\) 288.000 0.0589256
\(289\) −4013.00 −0.816813
\(290\) −3280.00 −0.664166
\(291\) −1842.00 −0.371065
\(292\) 248.000 0.0497024
\(293\) 968.000 0.193007 0.0965037 0.995333i \(-0.469234\pi\)
0.0965037 + 0.995333i \(0.469234\pi\)
\(294\) −4086.00 −0.810545
\(295\) −1880.00 −0.371043
\(296\) −2448.00 −0.480700
\(297\) −1350.00 −0.263754
\(298\) 2544.00 0.494530
\(299\) 260.000 0.0502883
\(300\) −3300.00 −0.635085
\(301\) 11392.0 2.18147
\(302\) 2808.00 0.535041
\(303\) −3174.00 −0.601787
\(304\) −1920.00 −0.362235
\(305\) 1240.00 0.232794
\(306\) −540.000 −0.100882
\(307\) −6436.00 −1.19649 −0.598244 0.801314i \(-0.704135\pi\)
−0.598244 + 0.801314i \(0.704135\pi\)
\(308\) −6400.00 −1.18401
\(309\) −5304.00 −0.976485
\(310\) 1760.00 0.322456
\(311\) 7932.00 1.44625 0.723123 0.690719i \(-0.242706\pi\)
0.723123 + 0.690719i \(0.242706\pi\)
\(312\) 312.000 0.0566139
\(313\) 10358.0 1.87051 0.935254 0.353978i \(-0.115171\pi\)
0.935254 + 0.353978i \(0.115171\pi\)
\(314\) −4340.00 −0.780001
\(315\) 5760.00 1.03028
\(316\) −4384.00 −0.780441
\(317\) −2820.00 −0.499643 −0.249822 0.968292i \(-0.580372\pi\)
−0.249822 + 0.968292i \(0.580372\pi\)
\(318\) −1188.00 −0.209496
\(319\) 4100.00 0.719611
\(320\) −1280.00 −0.223607
\(321\) 5424.00 0.943110
\(322\) 1280.00 0.221527
\(323\) 3600.00 0.620153
\(324\) 324.000 0.0555556
\(325\) −3575.00 −0.610170
\(326\) 496.000 0.0842666
\(327\) 5658.00 0.956844
\(328\) 864.000 0.145446
\(329\) 5696.00 0.954500
\(330\) 6000.00 1.00088
\(331\) −4180.00 −0.694120 −0.347060 0.937843i \(-0.612820\pi\)
−0.347060 + 0.937843i \(0.612820\pi\)
\(332\) −1848.00 −0.305488
\(333\) −2754.00 −0.453208
\(334\) 204.000 0.0334203
\(335\) 2800.00 0.456658
\(336\) 1536.00 0.249392
\(337\) −5026.00 −0.812414 −0.406207 0.913781i \(-0.633149\pi\)
−0.406207 + 0.913781i \(0.633149\pi\)
\(338\) 338.000 0.0543928
\(339\) −3738.00 −0.598880
\(340\) 2400.00 0.382818
\(341\) −2200.00 −0.349374
\(342\) −2160.00 −0.341519
\(343\) −10816.0 −1.70265
\(344\) −2848.00 −0.446378
\(345\) −1200.00 −0.187263
\(346\) 1364.00 0.211934
\(347\) −7332.00 −1.13430 −0.567150 0.823614i \(-0.691954\pi\)
−0.567150 + 0.823614i \(0.691954\pi\)
\(348\) −984.000 −0.151575
\(349\) −8162.00 −1.25187 −0.625934 0.779876i \(-0.715282\pi\)
−0.625934 + 0.779876i \(0.715282\pi\)
\(350\) −17600.0 −2.68788
\(351\) 351.000 0.0533761
\(352\) 1600.00 0.242274
\(353\) 1244.00 0.187568 0.0937839 0.995593i \(-0.470104\pi\)
0.0937839 + 0.995593i \(0.470104\pi\)
\(354\) −564.000 −0.0846787
\(355\) 15560.0 2.32631
\(356\) 4896.00 0.728897
\(357\) −2880.00 −0.426963
\(358\) −1224.00 −0.180699
\(359\) 9558.00 1.40516 0.702579 0.711605i \(-0.252032\pi\)
0.702579 + 0.711605i \(0.252032\pi\)
\(360\) −1440.00 −0.210819
\(361\) 7541.00 1.09943
\(362\) −132.000 −0.0191651
\(363\) −3507.00 −0.507079
\(364\) 1664.00 0.239608
\(365\) −1240.00 −0.177821
\(366\) 372.000 0.0531277
\(367\) −11032.0 −1.56912 −0.784558 0.620055i \(-0.787110\pi\)
−0.784558 + 0.620055i \(0.787110\pi\)
\(368\) −320.000 −0.0453292
\(369\) 972.000 0.137128
\(370\) 12240.0 1.71980
\(371\) −6336.00 −0.886654
\(372\) 528.000 0.0735901
\(373\) 5474.00 0.759874 0.379937 0.925012i \(-0.375946\pi\)
0.379937 + 0.925012i \(0.375946\pi\)
\(374\) −3000.00 −0.414776
\(375\) 9000.00 1.23935
\(376\) −1424.00 −0.195312
\(377\) −1066.00 −0.145628
\(378\) 1728.00 0.235129
\(379\) −7040.00 −0.954144 −0.477072 0.878864i \(-0.658302\pi\)
−0.477072 + 0.878864i \(0.658302\pi\)
\(380\) 9600.00 1.29597
\(381\) −4872.00 −0.655118
\(382\) 1216.00 0.162869
\(383\) −1830.00 −0.244148 −0.122074 0.992521i \(-0.538955\pi\)
−0.122074 + 0.992521i \(0.538955\pi\)
\(384\) −384.000 −0.0510310
\(385\) 32000.0 4.23603
\(386\) 2740.00 0.361301
\(387\) −3204.00 −0.420849
\(388\) 2456.00 0.321352
\(389\) 10158.0 1.32399 0.661994 0.749509i \(-0.269711\pi\)
0.661994 + 0.749509i \(0.269711\pi\)
\(390\) −1560.00 −0.202548
\(391\) 600.000 0.0776044
\(392\) 5448.00 0.701953
\(393\) 6216.00 0.797852
\(394\) −9816.00 −1.25513
\(395\) 21920.0 2.79219
\(396\) 1800.00 0.228418
\(397\) −12658.0 −1.60022 −0.800109 0.599854i \(-0.795225\pi\)
−0.800109 + 0.599854i \(0.795225\pi\)
\(398\) −656.000 −0.0826189
\(399\) −11520.0 −1.44542
\(400\) 4400.00 0.550000
\(401\) 15720.0 1.95765 0.978827 0.204689i \(-0.0656182\pi\)
0.978827 + 0.204689i \(0.0656182\pi\)
\(402\) 840.000 0.104217
\(403\) 572.000 0.0707031
\(404\) 4232.00 0.521163
\(405\) −1620.00 −0.198762
\(406\) −5248.00 −0.641512
\(407\) −15300.0 −1.86337
\(408\) 720.000 0.0873660
\(409\) 7654.00 0.925345 0.462672 0.886529i \(-0.346891\pi\)
0.462672 + 0.886529i \(0.346891\pi\)
\(410\) −4320.00 −0.520365
\(411\) 2268.00 0.272195
\(412\) 7072.00 0.845661
\(413\) −3008.00 −0.358387
\(414\) −360.000 −0.0427368
\(415\) 9240.00 1.09295
\(416\) −416.000 −0.0490290
\(417\) −516.000 −0.0605962
\(418\) −12000.0 −1.40416
\(419\) −1848.00 −0.215467 −0.107734 0.994180i \(-0.534359\pi\)
−0.107734 + 0.994180i \(0.534359\pi\)
\(420\) −7680.00 −0.892251
\(421\) −12542.0 −1.45192 −0.725962 0.687735i \(-0.758605\pi\)
−0.725962 + 0.687735i \(0.758605\pi\)
\(422\) 2632.00 0.303611
\(423\) −1602.00 −0.184142
\(424\) 1584.00 0.181429
\(425\) −8250.00 −0.941609
\(426\) 4668.00 0.530905
\(427\) 1984.00 0.224854
\(428\) −7232.00 −0.816757
\(429\) 1950.00 0.219457
\(430\) 14240.0 1.59701
\(431\) −5238.00 −0.585396 −0.292698 0.956205i \(-0.594553\pi\)
−0.292698 + 0.956205i \(0.594553\pi\)
\(432\) −432.000 −0.0481125
\(433\) −8258.00 −0.916522 −0.458261 0.888818i \(-0.651528\pi\)
−0.458261 + 0.888818i \(0.651528\pi\)
\(434\) 2816.00 0.311457
\(435\) 4920.00 0.542290
\(436\) −7544.00 −0.828652
\(437\) 2400.00 0.262718
\(438\) −372.000 −0.0405818
\(439\) −6304.00 −0.685361 −0.342681 0.939452i \(-0.611335\pi\)
−0.342681 + 0.939452i \(0.611335\pi\)
\(440\) −8000.00 −0.866784
\(441\) 6129.00 0.661808
\(442\) 780.000 0.0839385
\(443\) 12744.0 1.36678 0.683392 0.730051i \(-0.260504\pi\)
0.683392 + 0.730051i \(0.260504\pi\)
\(444\) 3672.00 0.392490
\(445\) −24480.0 −2.60778
\(446\) −3864.00 −0.410237
\(447\) −3816.00 −0.403782
\(448\) −2048.00 −0.215980
\(449\) −11776.0 −1.23774 −0.618868 0.785495i \(-0.712409\pi\)
−0.618868 + 0.785495i \(0.712409\pi\)
\(450\) 4950.00 0.518545
\(451\) 5400.00 0.563805
\(452\) 4984.00 0.518645
\(453\) −4212.00 −0.436859
\(454\) 9996.00 1.03334
\(455\) −8320.00 −0.857248
\(456\) 2880.00 0.295764
\(457\) 2134.00 0.218434 0.109217 0.994018i \(-0.465166\pi\)
0.109217 + 0.994018i \(0.465166\pi\)
\(458\) −156.000 −0.0159157
\(459\) 810.000 0.0823694
\(460\) 1600.00 0.162175
\(461\) 2724.00 0.275205 0.137602 0.990488i \(-0.456060\pi\)
0.137602 + 0.990488i \(0.456060\pi\)
\(462\) 9600.00 0.966737
\(463\) −5648.00 −0.566922 −0.283461 0.958984i \(-0.591483\pi\)
−0.283461 + 0.958984i \(0.591483\pi\)
\(464\) 1312.00 0.131267
\(465\) −2640.00 −0.263284
\(466\) −2564.00 −0.254882
\(467\) −18224.0 −1.80579 −0.902897 0.429856i \(-0.858564\pi\)
−0.902897 + 0.429856i \(0.858564\pi\)
\(468\) −468.000 −0.0462250
\(469\) 4480.00 0.441081
\(470\) 7120.00 0.698768
\(471\) 6510.00 0.636868
\(472\) 752.000 0.0733339
\(473\) −17800.0 −1.73033
\(474\) 6576.00 0.637227
\(475\) −33000.0 −3.18767
\(476\) 3840.00 0.369761
\(477\) 1782.00 0.171053
\(478\) 588.000 0.0562646
\(479\) 9066.00 0.864794 0.432397 0.901683i \(-0.357668\pi\)
0.432397 + 0.901683i \(0.357668\pi\)
\(480\) 1920.00 0.182574
\(481\) 3978.00 0.377092
\(482\) −9924.00 −0.937813
\(483\) −1920.00 −0.180876
\(484\) 4676.00 0.439144
\(485\) −12280.0 −1.14970
\(486\) −486.000 −0.0453609
\(487\) 8948.00 0.832593 0.416296 0.909229i \(-0.363328\pi\)
0.416296 + 0.909229i \(0.363328\pi\)
\(488\) −496.000 −0.0460100
\(489\) −744.000 −0.0688034
\(490\) −27240.0 −2.51138
\(491\) 8720.00 0.801483 0.400741 0.916191i \(-0.368753\pi\)
0.400741 + 0.916191i \(0.368753\pi\)
\(492\) −1296.00 −0.118756
\(493\) −2460.00 −0.224732
\(494\) 3120.00 0.284161
\(495\) −9000.00 −0.817212
\(496\) −704.000 −0.0637309
\(497\) 24896.0 2.24696
\(498\) 2772.00 0.249430
\(499\) 6604.00 0.592456 0.296228 0.955117i \(-0.404271\pi\)
0.296228 + 0.955117i \(0.404271\pi\)
\(500\) −12000.0 −1.07331
\(501\) −306.000 −0.0272876
\(502\) 1488.00 0.132296
\(503\) 3404.00 0.301743 0.150872 0.988553i \(-0.451792\pi\)
0.150872 + 0.988553i \(0.451792\pi\)
\(504\) −2304.00 −0.203628
\(505\) −21160.0 −1.86457
\(506\) −2000.00 −0.175713
\(507\) −507.000 −0.0444116
\(508\) 6496.00 0.567349
\(509\) −76.0000 −0.00661815 −0.00330908 0.999995i \(-0.501053\pi\)
−0.00330908 + 0.999995i \(0.501053\pi\)
\(510\) −3600.00 −0.312570
\(511\) −1984.00 −0.171755
\(512\) 512.000 0.0441942
\(513\) 3240.00 0.278849
\(514\) −2052.00 −0.176089
\(515\) −35360.0 −3.02553
\(516\) 4272.00 0.364466
\(517\) −8900.00 −0.757102
\(518\) 19584.0 1.66114
\(519\) −2046.00 −0.173043
\(520\) 2080.00 0.175412
\(521\) 12054.0 1.01362 0.506809 0.862058i \(-0.330825\pi\)
0.506809 + 0.862058i \(0.330825\pi\)
\(522\) 1476.00 0.123760
\(523\) 276.000 0.0230758 0.0115379 0.999933i \(-0.496327\pi\)
0.0115379 + 0.999933i \(0.496327\pi\)
\(524\) −8288.00 −0.690960
\(525\) 26400.0 2.19465
\(526\) −11064.0 −0.917136
\(527\) 1320.00 0.109108
\(528\) −2400.00 −0.197816
\(529\) −11767.0 −0.967124
\(530\) −7920.00 −0.649100
\(531\) 846.000 0.0691399
\(532\) 15360.0 1.25177
\(533\) −1404.00 −0.114098
\(534\) −7344.00 −0.595142
\(535\) 36160.0 2.92212
\(536\) −1120.00 −0.0902549
\(537\) 1836.00 0.147540
\(538\) −7068.00 −0.566400
\(539\) 34050.0 2.72103
\(540\) 2160.00 0.172133
\(541\) 13778.0 1.09494 0.547470 0.836825i \(-0.315591\pi\)
0.547470 + 0.836825i \(0.315591\pi\)
\(542\) 4784.00 0.379134
\(543\) 198.000 0.0156482
\(544\) −960.000 −0.0756611
\(545\) 37720.0 2.96467
\(546\) −2496.00 −0.195639
\(547\) −10844.0 −0.847634 −0.423817 0.905748i \(-0.639310\pi\)
−0.423817 + 0.905748i \(0.639310\pi\)
\(548\) −3024.00 −0.235728
\(549\) −558.000 −0.0433786
\(550\) 27500.0 2.13201
\(551\) −9840.00 −0.760795
\(552\) 480.000 0.0370112
\(553\) 35072.0 2.69695
\(554\) 12204.0 0.935917
\(555\) −18360.0 −1.40421
\(556\) 688.000 0.0524779
\(557\) 20544.0 1.56280 0.781398 0.624033i \(-0.214507\pi\)
0.781398 + 0.624033i \(0.214507\pi\)
\(558\) −792.000 −0.0600861
\(559\) 4628.00 0.350167
\(560\) 10240.0 0.772712
\(561\) 4500.00 0.338663
\(562\) −15080.0 −1.13187
\(563\) 6988.00 0.523107 0.261553 0.965189i \(-0.415765\pi\)
0.261553 + 0.965189i \(0.415765\pi\)
\(564\) 2136.00 0.159471
\(565\) −24920.0 −1.85556
\(566\) −5512.00 −0.409340
\(567\) −2592.00 −0.191982
\(568\) −6224.00 −0.459777
\(569\) −706.000 −0.0520159 −0.0260080 0.999662i \(-0.508280\pi\)
−0.0260080 + 0.999662i \(0.508280\pi\)
\(570\) −14400.0 −1.05816
\(571\) −17532.0 −1.28492 −0.642462 0.766318i \(-0.722087\pi\)
−0.642462 + 0.766318i \(0.722087\pi\)
\(572\) −2600.00 −0.190055
\(573\) −1824.00 −0.132982
\(574\) −6912.00 −0.502616
\(575\) −5500.00 −0.398897
\(576\) 576.000 0.0416667
\(577\) −14814.0 −1.06883 −0.534415 0.845222i \(-0.679468\pi\)
−0.534415 + 0.845222i \(0.679468\pi\)
\(578\) −8026.00 −0.577574
\(579\) −4110.00 −0.295001
\(580\) −6560.00 −0.469637
\(581\) 14784.0 1.05567
\(582\) −3684.00 −0.262383
\(583\) 9900.00 0.703287
\(584\) 496.000 0.0351449
\(585\) 2340.00 0.165380
\(586\) 1936.00 0.136477
\(587\) 14170.0 0.996352 0.498176 0.867076i \(-0.334003\pi\)
0.498176 + 0.867076i \(0.334003\pi\)
\(588\) −8172.00 −0.573142
\(589\) 5280.00 0.369369
\(590\) −3760.00 −0.262367
\(591\) 14724.0 1.02481
\(592\) −4896.00 −0.339906
\(593\) −11744.0 −0.813269 −0.406634 0.913591i \(-0.633298\pi\)
−0.406634 + 0.913591i \(0.633298\pi\)
\(594\) −2700.00 −0.186502
\(595\) −19200.0 −1.32290
\(596\) 5088.00 0.349686
\(597\) 984.000 0.0674580
\(598\) 520.000 0.0355592
\(599\) −15076.0 −1.02836 −0.514181 0.857682i \(-0.671904\pi\)
−0.514181 + 0.857682i \(0.671904\pi\)
\(600\) −6600.00 −0.449073
\(601\) 20230.0 1.37304 0.686522 0.727109i \(-0.259137\pi\)
0.686522 + 0.727109i \(0.259137\pi\)
\(602\) 22784.0 1.54254
\(603\) −1260.00 −0.0850931
\(604\) 5616.00 0.378331
\(605\) −23380.0 −1.57113
\(606\) −6348.00 −0.425528
\(607\) −28056.0 −1.87604 −0.938021 0.346577i \(-0.887344\pi\)
−0.938021 + 0.346577i \(0.887344\pi\)
\(608\) −3840.00 −0.256139
\(609\) 7872.00 0.523792
\(610\) 2480.00 0.164610
\(611\) 2314.00 0.153215
\(612\) −1080.00 −0.0713340
\(613\) 27446.0 1.80837 0.904187 0.427136i \(-0.140478\pi\)
0.904187 + 0.427136i \(0.140478\pi\)
\(614\) −12872.0 −0.846045
\(615\) 6480.00 0.424876
\(616\) −12800.0 −0.837219
\(617\) 8804.00 0.574450 0.287225 0.957863i \(-0.407267\pi\)
0.287225 + 0.957863i \(0.407267\pi\)
\(618\) −10608.0 −0.690480
\(619\) 3508.00 0.227784 0.113892 0.993493i \(-0.463668\pi\)
0.113892 + 0.993493i \(0.463668\pi\)
\(620\) 3520.00 0.228011
\(621\) 540.000 0.0348945
\(622\) 15864.0 1.02265
\(623\) −39168.0 −2.51883
\(624\) 624.000 0.0400320
\(625\) 25625.0 1.64000
\(626\) 20716.0 1.32265
\(627\) 18000.0 1.14649
\(628\) −8680.00 −0.551544
\(629\) 9180.00 0.581925
\(630\) 11520.0 0.728520
\(631\) 22084.0 1.39326 0.696632 0.717428i \(-0.254681\pi\)
0.696632 + 0.717428i \(0.254681\pi\)
\(632\) −8768.00 −0.551855
\(633\) −3948.00 −0.247897
\(634\) −5640.00 −0.353301
\(635\) −32480.0 −2.02981
\(636\) −2376.00 −0.148136
\(637\) −8853.00 −0.550657
\(638\) 8200.00 0.508842
\(639\) −7002.00 −0.433482
\(640\) −2560.00 −0.158114
\(641\) −7342.00 −0.452405 −0.226202 0.974080i \(-0.572631\pi\)
−0.226202 + 0.974080i \(0.572631\pi\)
\(642\) 10848.0 0.666879
\(643\) 2996.00 0.183749 0.0918746 0.995771i \(-0.470714\pi\)
0.0918746 + 0.995771i \(0.470714\pi\)
\(644\) 2560.00 0.156643
\(645\) −21360.0 −1.30395
\(646\) 7200.00 0.438514
\(647\) 9344.00 0.567775 0.283888 0.958858i \(-0.408376\pi\)
0.283888 + 0.958858i \(0.408376\pi\)
\(648\) 648.000 0.0392837
\(649\) 4700.00 0.284270
\(650\) −7150.00 −0.431455
\(651\) −4224.00 −0.254304
\(652\) 992.000 0.0595855
\(653\) −16686.0 −0.999960 −0.499980 0.866037i \(-0.666659\pi\)
−0.499980 + 0.866037i \(0.666659\pi\)
\(654\) 11316.0 0.676591
\(655\) 41440.0 2.47205
\(656\) 1728.00 0.102846
\(657\) 558.000 0.0331349
\(658\) 11392.0 0.674934
\(659\) 31356.0 1.85350 0.926750 0.375679i \(-0.122590\pi\)
0.926750 + 0.375679i \(0.122590\pi\)
\(660\) 12000.0 0.707726
\(661\) 590.000 0.0347176 0.0173588 0.999849i \(-0.494474\pi\)
0.0173588 + 0.999849i \(0.494474\pi\)
\(662\) −8360.00 −0.490817
\(663\) −1170.00 −0.0685355
\(664\) −3696.00 −0.216013
\(665\) −76800.0 −4.47846
\(666\) −5508.00 −0.320466
\(667\) −1640.00 −0.0952040
\(668\) 408.000 0.0236317
\(669\) 5796.00 0.334957
\(670\) 5600.00 0.322906
\(671\) −3100.00 −0.178352
\(672\) 3072.00 0.176347
\(673\) 5938.00 0.340109 0.170054 0.985435i \(-0.445606\pi\)
0.170054 + 0.985435i \(0.445606\pi\)
\(674\) −10052.0 −0.574464
\(675\) −7425.00 −0.423390
\(676\) 676.000 0.0384615
\(677\) 9486.00 0.538518 0.269259 0.963068i \(-0.413221\pi\)
0.269259 + 0.963068i \(0.413221\pi\)
\(678\) −7476.00 −0.423472
\(679\) −19648.0 −1.11049
\(680\) 4800.00 0.270694
\(681\) −14994.0 −0.843717
\(682\) −4400.00 −0.247045
\(683\) 26162.0 1.46568 0.732841 0.680400i \(-0.238194\pi\)
0.732841 + 0.680400i \(0.238194\pi\)
\(684\) −4320.00 −0.241490
\(685\) 15120.0 0.843366
\(686\) −21632.0 −1.20396
\(687\) 234.000 0.0129951
\(688\) −5696.00 −0.315637
\(689\) −2574.00 −0.142325
\(690\) −2400.00 −0.132415
\(691\) −17348.0 −0.955064 −0.477532 0.878614i \(-0.658468\pi\)
−0.477532 + 0.878614i \(0.658468\pi\)
\(692\) 2728.00 0.149860
\(693\) −14400.0 −0.789337
\(694\) −14664.0 −0.802072
\(695\) −3440.00 −0.187751
\(696\) −1968.00 −0.107179
\(697\) −3240.00 −0.176074
\(698\) −16324.0 −0.885204
\(699\) 3846.00 0.208110
\(700\) −35200.0 −1.90062
\(701\) 30.0000 0.00161638 0.000808191 1.00000i \(-0.499743\pi\)
0.000808191 1.00000i \(0.499743\pi\)
\(702\) 702.000 0.0377426
\(703\) 36720.0 1.97002
\(704\) 3200.00 0.171313
\(705\) −10680.0 −0.570542
\(706\) 2488.00 0.132630
\(707\) −33856.0 −1.80097
\(708\) −1128.00 −0.0598769
\(709\) 31466.0 1.66676 0.833378 0.552703i \(-0.186404\pi\)
0.833378 + 0.552703i \(0.186404\pi\)
\(710\) 31120.0 1.64495
\(711\) −9864.00 −0.520294
\(712\) 9792.00 0.515408
\(713\) 880.000 0.0462220
\(714\) −5760.00 −0.301908
\(715\) 13000.0 0.679961
\(716\) −2448.00 −0.127774
\(717\) −882.000 −0.0459399
\(718\) 19116.0 0.993597
\(719\) −28892.0 −1.49859 −0.749297 0.662234i \(-0.769609\pi\)
−0.749297 + 0.662234i \(0.769609\pi\)
\(720\) −2880.00 −0.149071
\(721\) −56576.0 −2.92233
\(722\) 15082.0 0.777415
\(723\) 14886.0 0.765721
\(724\) −264.000 −0.0135518
\(725\) 22550.0 1.15515
\(726\) −7014.00 −0.358559
\(727\) 13384.0 0.682786 0.341393 0.939921i \(-0.389101\pi\)
0.341393 + 0.939921i \(0.389101\pi\)
\(728\) 3328.00 0.169428
\(729\) 729.000 0.0370370
\(730\) −2480.00 −0.125738
\(731\) 10680.0 0.540375
\(732\) 744.000 0.0375670
\(733\) 7130.00 0.359280 0.179640 0.983732i \(-0.442507\pi\)
0.179640 + 0.983732i \(0.442507\pi\)
\(734\) −22064.0 −1.10953
\(735\) 40860.0 2.05054
\(736\) −640.000 −0.0320526
\(737\) −7000.00 −0.349862
\(738\) 1944.00 0.0969643
\(739\) −29268.0 −1.45689 −0.728444 0.685105i \(-0.759756\pi\)
−0.728444 + 0.685105i \(0.759756\pi\)
\(740\) 24480.0 1.21608
\(741\) −4680.00 −0.232016
\(742\) −12672.0 −0.626959
\(743\) −9898.00 −0.488725 −0.244362 0.969684i \(-0.578579\pi\)
−0.244362 + 0.969684i \(0.578579\pi\)
\(744\) 1056.00 0.0520361
\(745\) −25440.0 −1.25107
\(746\) 10948.0 0.537312
\(747\) −4158.00 −0.203659
\(748\) −6000.00 −0.293291
\(749\) 57856.0 2.82245
\(750\) 18000.0 0.876356
\(751\) −15120.0 −0.734669 −0.367335 0.930089i \(-0.619730\pi\)
−0.367335 + 0.930089i \(0.619730\pi\)
\(752\) −2848.00 −0.138106
\(753\) −2232.00 −0.108019
\(754\) −2132.00 −0.102975
\(755\) −28080.0 −1.35356
\(756\) 3456.00 0.166261
\(757\) −5454.00 −0.261861 −0.130931 0.991392i \(-0.541797\pi\)
−0.130931 + 0.991392i \(0.541797\pi\)
\(758\) −14080.0 −0.674682
\(759\) 3000.00 0.143469
\(760\) 19200.0 0.916391
\(761\) −11988.0 −0.571044 −0.285522 0.958372i \(-0.592167\pi\)
−0.285522 + 0.958372i \(0.592167\pi\)
\(762\) −9744.00 −0.463239
\(763\) 60352.0 2.86355
\(764\) 2432.00 0.115166
\(765\) 5400.00 0.255212
\(766\) −3660.00 −0.172639
\(767\) −1222.00 −0.0575279
\(768\) −768.000 −0.0360844
\(769\) 1338.00 0.0627432 0.0313716 0.999508i \(-0.490012\pi\)
0.0313716 + 0.999508i \(0.490012\pi\)
\(770\) 64000.0 2.99532
\(771\) 3078.00 0.143776
\(772\) 5480.00 0.255479
\(773\) −14408.0 −0.670401 −0.335200 0.942147i \(-0.608804\pi\)
−0.335200 + 0.942147i \(0.608804\pi\)
\(774\) −6408.00 −0.297585
\(775\) −12100.0 −0.560832
\(776\) 4912.00 0.227230
\(777\) −29376.0 −1.35632
\(778\) 20316.0 0.936200
\(779\) −12960.0 −0.596072
\(780\) −3120.00 −0.143223
\(781\) −38900.0 −1.78227
\(782\) 1200.00 0.0548746
\(783\) −2214.00 −0.101050
\(784\) 10896.0 0.496356
\(785\) 43400.0 1.97326
\(786\) 12432.0 0.564166
\(787\) −10660.0 −0.482831 −0.241415 0.970422i \(-0.577612\pi\)
−0.241415 + 0.970422i \(0.577612\pi\)
\(788\) −19632.0 −0.887514
\(789\) 16596.0 0.748838
\(790\) 43840.0 1.97438
\(791\) −39872.0 −1.79227
\(792\) 3600.00 0.161516
\(793\) 806.000 0.0360932
\(794\) −25316.0 −1.13153
\(795\) 11880.0 0.529988
\(796\) −1312.00 −0.0584204
\(797\) 1974.00 0.0877323 0.0438662 0.999037i \(-0.486032\pi\)
0.0438662 + 0.999037i \(0.486032\pi\)
\(798\) −23040.0 −1.02206
\(799\) 5340.00 0.236440
\(800\) 8800.00 0.388909
\(801\) 11016.0 0.485932
\(802\) 31440.0 1.38427
\(803\) 3100.00 0.136235
\(804\) 1680.00 0.0736928
\(805\) −12800.0 −0.560423
\(806\) 1144.00 0.0499946
\(807\) 10602.0 0.462464
\(808\) 8464.00 0.368518
\(809\) 31734.0 1.37912 0.689560 0.724229i \(-0.257804\pi\)
0.689560 + 0.724229i \(0.257804\pi\)
\(810\) −3240.00 −0.140546
\(811\) −38824.0 −1.68100 −0.840502 0.541808i \(-0.817740\pi\)
−0.840502 + 0.541808i \(0.817740\pi\)
\(812\) −10496.0 −0.453617
\(813\) −7176.00 −0.309561
\(814\) −30600.0 −1.31760
\(815\) −4960.00 −0.213179
\(816\) 1440.00 0.0617771
\(817\) 42720.0 1.82936
\(818\) 15308.0 0.654317
\(819\) 3744.00 0.159739
\(820\) −8640.00 −0.367954
\(821\) −16736.0 −0.711438 −0.355719 0.934593i \(-0.615764\pi\)
−0.355719 + 0.934593i \(0.615764\pi\)
\(822\) 4536.00 0.192471
\(823\) 42096.0 1.78296 0.891479 0.453062i \(-0.149668\pi\)
0.891479 + 0.453062i \(0.149668\pi\)
\(824\) 14144.0 0.597973
\(825\) −41250.0 −1.74078
\(826\) −6016.00 −0.253418
\(827\) 24858.0 1.04522 0.522610 0.852572i \(-0.324958\pi\)
0.522610 + 0.852572i \(0.324958\pi\)
\(828\) −720.000 −0.0302195
\(829\) 922.000 0.0386277 0.0193139 0.999813i \(-0.493852\pi\)
0.0193139 + 0.999813i \(0.493852\pi\)
\(830\) 18480.0 0.772832
\(831\) −18306.0 −0.764173
\(832\) −832.000 −0.0346688
\(833\) −20430.0 −0.849769
\(834\) −1032.00 −0.0428480
\(835\) −2040.00 −0.0845474
\(836\) −24000.0 −0.992892
\(837\) 1188.00 0.0490601
\(838\) −3696.00 −0.152358
\(839\) −14294.0 −0.588181 −0.294090 0.955778i \(-0.595017\pi\)
−0.294090 + 0.955778i \(0.595017\pi\)
\(840\) −15360.0 −0.630917
\(841\) −17665.0 −0.724302
\(842\) −25084.0 −1.02666
\(843\) 22620.0 0.924169
\(844\) 5264.00 0.214685
\(845\) −3380.00 −0.137604
\(846\) −3204.00 −0.130208
\(847\) −37408.0 −1.51754
\(848\) 3168.00 0.128290
\(849\) 8268.00 0.334225
\(850\) −16500.0 −0.665818
\(851\) 6120.00 0.246523
\(852\) 9336.00 0.375406
\(853\) 37966.0 1.52395 0.761976 0.647605i \(-0.224229\pi\)
0.761976 + 0.647605i \(0.224229\pi\)
\(854\) 3968.00 0.158996
\(855\) 21600.0 0.863982
\(856\) −14464.0 −0.577534
\(857\) 39038.0 1.55602 0.778012 0.628249i \(-0.216228\pi\)
0.778012 + 0.628249i \(0.216228\pi\)
\(858\) 3900.00 0.155179
\(859\) 20564.0 0.816804 0.408402 0.912802i \(-0.366086\pi\)
0.408402 + 0.912802i \(0.366086\pi\)
\(860\) 28480.0 1.12926
\(861\) 10368.0 0.410384
\(862\) −10476.0 −0.413937
\(863\) 39866.0 1.57248 0.786242 0.617918i \(-0.212024\pi\)
0.786242 + 0.617918i \(0.212024\pi\)
\(864\) −864.000 −0.0340207
\(865\) −13640.0 −0.536155
\(866\) −16516.0 −0.648079
\(867\) 12039.0 0.471587
\(868\) 5632.00 0.220233
\(869\) −54800.0 −2.13920
\(870\) 9840.00 0.383457
\(871\) 1820.00 0.0708018
\(872\) −15088.0 −0.585945
\(873\) 5526.00 0.214235
\(874\) 4800.00 0.185769
\(875\) 96000.0 3.70902
\(876\) −744.000 −0.0286957
\(877\) 30990.0 1.19322 0.596612 0.802530i \(-0.296513\pi\)
0.596612 + 0.802530i \(0.296513\pi\)
\(878\) −12608.0 −0.484623
\(879\) −2904.00 −0.111433
\(880\) −16000.0 −0.612909
\(881\) −4458.00 −0.170481 −0.0852405 0.996360i \(-0.527166\pi\)
−0.0852405 + 0.996360i \(0.527166\pi\)
\(882\) 12258.0 0.467969
\(883\) −3164.00 −0.120586 −0.0602928 0.998181i \(-0.519203\pi\)
−0.0602928 + 0.998181i \(0.519203\pi\)
\(884\) 1560.00 0.0593535
\(885\) 5640.00 0.214222
\(886\) 25488.0 0.966463
\(887\) −32512.0 −1.23072 −0.615359 0.788247i \(-0.710989\pi\)
−0.615359 + 0.788247i \(0.710989\pi\)
\(888\) 7344.00 0.277532
\(889\) −51968.0 −1.96057
\(890\) −48960.0 −1.84398
\(891\) 4050.00 0.152278
\(892\) −7728.00 −0.290081
\(893\) 21360.0 0.800431
\(894\) −7632.00 −0.285517
\(895\) 12240.0 0.457138
\(896\) −4096.00 −0.152721
\(897\) −780.000 −0.0290339
\(898\) −23552.0 −0.875212
\(899\) −3608.00 −0.133853
\(900\) 9900.00 0.366667
\(901\) −5940.00 −0.219634
\(902\) 10800.0 0.398670
\(903\) −34176.0 −1.25948
\(904\) 9968.00 0.366738
\(905\) 1320.00 0.0484843
\(906\) −8424.00 −0.308906
\(907\) 10500.0 0.384396 0.192198 0.981356i \(-0.438438\pi\)
0.192198 + 0.981356i \(0.438438\pi\)
\(908\) 19992.0 0.730680
\(909\) 9522.00 0.347442
\(910\) −16640.0 −0.606166
\(911\) 9840.00 0.357864 0.178932 0.983861i \(-0.442736\pi\)
0.178932 + 0.983861i \(0.442736\pi\)
\(912\) 5760.00 0.209137
\(913\) −23100.0 −0.837348
\(914\) 4268.00 0.154456
\(915\) −3720.00 −0.134404
\(916\) −312.000 −0.0112541
\(917\) 66304.0 2.38773
\(918\) 1620.00 0.0582440
\(919\) −35040.0 −1.25774 −0.628870 0.777511i \(-0.716482\pi\)
−0.628870 + 0.777511i \(0.716482\pi\)
\(920\) 3200.00 0.114675
\(921\) 19308.0 0.690793
\(922\) 5448.00 0.194599
\(923\) 10114.0 0.360679
\(924\) 19200.0 0.683586
\(925\) −84150.0 −2.99117
\(926\) −11296.0 −0.400874
\(927\) 15912.0 0.563774
\(928\) 2624.00 0.0928201
\(929\) 44172.0 1.56000 0.779998 0.625782i \(-0.215220\pi\)
0.779998 + 0.625782i \(0.215220\pi\)
\(930\) −5280.00 −0.186170
\(931\) −81720.0 −2.87676
\(932\) −5128.00 −0.180229
\(933\) −23796.0 −0.834990
\(934\) −36448.0 −1.27689
\(935\) 30000.0 1.04931
\(936\) −936.000 −0.0326860
\(937\) −54018.0 −1.88334 −0.941671 0.336535i \(-0.890745\pi\)
−0.941671 + 0.336535i \(0.890745\pi\)
\(938\) 8960.00 0.311892
\(939\) −31074.0 −1.07994
\(940\) 14240.0 0.494104
\(941\) −1672.00 −0.0579231 −0.0289616 0.999581i \(-0.509220\pi\)
−0.0289616 + 0.999581i \(0.509220\pi\)
\(942\) 13020.0 0.450334
\(943\) −2160.00 −0.0745910
\(944\) 1504.00 0.0518549
\(945\) −17280.0 −0.594834
\(946\) −35600.0 −1.22353
\(947\) 5238.00 0.179738 0.0898691 0.995954i \(-0.471355\pi\)
0.0898691 + 0.995954i \(0.471355\pi\)
\(948\) 13152.0 0.450588
\(949\) −806.000 −0.0275699
\(950\) −66000.0 −2.25402
\(951\) 8460.00 0.288469
\(952\) 7680.00 0.261460
\(953\) −50042.0 −1.70096 −0.850482 0.526004i \(-0.823690\pi\)
−0.850482 + 0.526004i \(0.823690\pi\)
\(954\) 3564.00 0.120953
\(955\) −12160.0 −0.412030
\(956\) 1176.00 0.0397851
\(957\) −12300.0 −0.415468
\(958\) 18132.0 0.611501
\(959\) 24192.0 0.814599
\(960\) 3840.00 0.129099
\(961\) −27855.0 −0.935014
\(962\) 7956.00 0.266644
\(963\) −16272.0 −0.544505
\(964\) −19848.0 −0.663134
\(965\) −27400.0 −0.914028
\(966\) −3840.00 −0.127899
\(967\) 37676.0 1.25293 0.626463 0.779452i \(-0.284502\pi\)
0.626463 + 0.779452i \(0.284502\pi\)
\(968\) 9352.00 0.310521
\(969\) −10800.0 −0.358045
\(970\) −24560.0 −0.812963
\(971\) −17364.0 −0.573880 −0.286940 0.957949i \(-0.592638\pi\)
−0.286940 + 0.957949i \(0.592638\pi\)
\(972\) −972.000 −0.0320750
\(973\) −5504.00 −0.181346
\(974\) 17896.0 0.588732
\(975\) 10725.0 0.352282
\(976\) −992.000 −0.0325340
\(977\) −14904.0 −0.488046 −0.244023 0.969769i \(-0.578467\pi\)
−0.244023 + 0.969769i \(0.578467\pi\)
\(978\) −1488.00 −0.0486513
\(979\) 61200.0 1.99792
\(980\) −54480.0 −1.77582
\(981\) −16974.0 −0.552434
\(982\) 17440.0 0.566734
\(983\) −18038.0 −0.585272 −0.292636 0.956224i \(-0.594533\pi\)
−0.292636 + 0.956224i \(0.594533\pi\)
\(984\) −2592.00 −0.0839735
\(985\) 98160.0 3.17527
\(986\) −4920.00 −0.158909
\(987\) −17088.0 −0.551081
\(988\) 6240.00 0.200932
\(989\) 7120.00 0.228921
\(990\) −18000.0 −0.577856
\(991\) 46176.0 1.48015 0.740075 0.672524i \(-0.234790\pi\)
0.740075 + 0.672524i \(0.234790\pi\)
\(992\) −1408.00 −0.0450646
\(993\) 12540.0 0.400750
\(994\) 49792.0 1.58884
\(995\) 6560.00 0.209011
\(996\) 5544.00 0.176374
\(997\) 55838.0 1.77373 0.886864 0.462030i \(-0.152879\pi\)
0.886864 + 0.462030i \(0.152879\pi\)
\(998\) 13208.0 0.418930
\(999\) 8262.00 0.261660
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 78.4.a.d.1.1 1
3.2 odd 2 234.4.a.f.1.1 1
4.3 odd 2 624.4.a.e.1.1 1
5.4 even 2 1950.4.a.h.1.1 1
8.3 odd 2 2496.4.a.i.1.1 1
8.5 even 2 2496.4.a.r.1.1 1
12.11 even 2 1872.4.a.r.1.1 1
13.5 odd 4 1014.4.b.e.337.1 2
13.8 odd 4 1014.4.b.e.337.2 2
13.12 even 2 1014.4.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
78.4.a.d.1.1 1 1.1 even 1 trivial
234.4.a.f.1.1 1 3.2 odd 2
624.4.a.e.1.1 1 4.3 odd 2
1014.4.a.d.1.1 1 13.12 even 2
1014.4.b.e.337.1 2 13.5 odd 4
1014.4.b.e.337.2 2 13.8 odd 4
1872.4.a.r.1.1 1 12.11 even 2
1950.4.a.h.1.1 1 5.4 even 2
2496.4.a.i.1.1 1 8.3 odd 2
2496.4.a.r.1.1 1 8.5 even 2