Properties

Label 78.4.a.c
Level $78$
Weight $4$
Character orbit 78.a
Self dual yes
Analytic conductor $4.602$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [78,4,Mod(1,78)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(78, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("78.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 78 = 2 \cdot 3 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 78.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.60214898045\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} + 10 q^{5} - 6 q^{6} - 8 q^{7} - 8 q^{8} + 9 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - 2 q^{2} + 3 q^{3} + 4 q^{4} + 10 q^{5} - 6 q^{6} - 8 q^{7} - 8 q^{8} + 9 q^{9} - 20 q^{10} + 40 q^{11} + 12 q^{12} + 13 q^{13} + 16 q^{14} + 30 q^{15} + 16 q^{16} + 130 q^{17} - 18 q^{18} - 20 q^{19} + 40 q^{20} - 24 q^{21} - 80 q^{22} - 24 q^{24} - 25 q^{25} - 26 q^{26} + 27 q^{27} - 32 q^{28} - 18 q^{29} - 60 q^{30} - 184 q^{31} - 32 q^{32} + 120 q^{33} - 260 q^{34} - 80 q^{35} + 36 q^{36} - 74 q^{37} + 40 q^{38} + 39 q^{39} - 80 q^{40} - 362 q^{41} + 48 q^{42} + 76 q^{43} + 160 q^{44} + 90 q^{45} - 452 q^{47} + 48 q^{48} - 279 q^{49} + 50 q^{50} + 390 q^{51} + 52 q^{52} + 382 q^{53} - 54 q^{54} + 400 q^{55} + 64 q^{56} - 60 q^{57} + 36 q^{58} + 464 q^{59} + 120 q^{60} + 358 q^{61} + 368 q^{62} - 72 q^{63} + 64 q^{64} + 130 q^{65} - 240 q^{66} - 700 q^{67} + 520 q^{68} + 160 q^{70} - 748 q^{71} - 72 q^{72} + 1058 q^{73} + 148 q^{74} - 75 q^{75} - 80 q^{76} - 320 q^{77} - 78 q^{78} - 976 q^{79} + 160 q^{80} + 81 q^{81} + 724 q^{82} - 1008 q^{83} - 96 q^{84} + 1300 q^{85} - 152 q^{86} - 54 q^{87} - 320 q^{88} - 386 q^{89} - 180 q^{90} - 104 q^{91} - 552 q^{93} + 904 q^{94} - 200 q^{95} - 96 q^{96} - 614 q^{97} + 558 q^{98} + 360 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−2.00000 3.00000 4.00000 10.0000 −6.00000 −8.00000 −8.00000 9.00000 −20.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 78.4.a.c 1
3.b odd 2 1 234.4.a.h 1
4.b odd 2 1 624.4.a.d 1
5.b even 2 1 1950.4.a.l 1
8.b even 2 1 2496.4.a.a 1
8.d odd 2 1 2496.4.a.j 1
12.b even 2 1 1872.4.a.d 1
13.b even 2 1 1014.4.a.j 1
13.d odd 4 2 1014.4.b.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
78.4.a.c 1 1.a even 1 1 trivial
234.4.a.h 1 3.b odd 2 1
624.4.a.d 1 4.b odd 2 1
1014.4.a.j 1 13.b even 2 1
1014.4.b.h 2 13.d odd 4 2
1872.4.a.d 1 12.b even 2 1
1950.4.a.l 1 5.b even 2 1
2496.4.a.a 1 8.b even 2 1
2496.4.a.j 1 8.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(78))\):

\( T_{5} - 10 \) Copy content Toggle raw display
\( T_{7} + 8 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 2 \) Copy content Toggle raw display
$3$ \( T - 3 \) Copy content Toggle raw display
$5$ \( T - 10 \) Copy content Toggle raw display
$7$ \( T + 8 \) Copy content Toggle raw display
$11$ \( T - 40 \) Copy content Toggle raw display
$13$ \( T - 13 \) Copy content Toggle raw display
$17$ \( T - 130 \) Copy content Toggle raw display
$19$ \( T + 20 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T + 18 \) Copy content Toggle raw display
$31$ \( T + 184 \) Copy content Toggle raw display
$37$ \( T + 74 \) Copy content Toggle raw display
$41$ \( T + 362 \) Copy content Toggle raw display
$43$ \( T - 76 \) Copy content Toggle raw display
$47$ \( T + 452 \) Copy content Toggle raw display
$53$ \( T - 382 \) Copy content Toggle raw display
$59$ \( T - 464 \) Copy content Toggle raw display
$61$ \( T - 358 \) Copy content Toggle raw display
$67$ \( T + 700 \) Copy content Toggle raw display
$71$ \( T + 748 \) Copy content Toggle raw display
$73$ \( T - 1058 \) Copy content Toggle raw display
$79$ \( T + 976 \) Copy content Toggle raw display
$83$ \( T + 1008 \) Copy content Toggle raw display
$89$ \( T + 386 \) Copy content Toggle raw display
$97$ \( T + 614 \) Copy content Toggle raw display
show more
show less